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Abstract

Background: Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of
the richest sources of Type II restriction-modification (R-M) systems in microorganisms.

Principal Findings: We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain
26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that
HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The
special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease
instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to
verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated
cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity.

Conclusions/Significance: Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal
activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease
family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A
survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the
HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.
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Introduction

Restriction-modification (R-M) systems that recognize and

cleave DNA in a highly specific manner are ubiquitous in

prokaryotic microorganisms (and their viruses) [1]. Helicobacter

pylori, the etiologic agent of common gastritis and a risk factor for

gastric cancer [2], curiously is one of the richest sources of Type II

restriction-modification (R-M) systems in any living organisms

[3,4]. The extraordinary number of Type II R-M systems appears

to be the result of H. pylori’s natural competency of transformation

by exogenous DNA [4–6]. In addition to defense against invading

phages, evidence has suggested that the MTases (within active

R-M system [7] or orphan MTases [8,9]) are involved in

transcriptional regulation of other genes akin to the epigenetics

of mammalian cells.

Genome mining of sequenced microbial genomes has resulted

in a wealth of restriction enzymes with new specificities or

unique properties (ApeKI (G^CWGC), PhoI (GG^CC), CviKI-1

(RG^CY), NmeAIII (GCCGAG 20–21/18–19) [10,11], Nt.CviPII

(^CCD) [12]; NEB catalog 2009/10) [1]. The goal of this work

was to clone, express, purify and characterize HpyAV restriction

endonuclease (REase), which is one of the putative R-M systems

from H. pylori 26695 [3]. During the purification process, we found

that Ni++ has a stimulatory effect on HpyAV activity. Bioinfor-

matics analysis showed that HpyAV contains a HNH catalytic site

highly similar to that of colicin E9 (ColE9). Sequence alignment of

HpyAV and ColE9 and other HNH nucleases identified four

highly conserved catalytic residues. By site-directed mutagenesis

we confirmed that these residues are important for DNA cleavage.

In addition to Ni++, we found that HpyAV is also active in Mn++

and Co++. We therefore surveyed a few other HNH REases and

found that KpnI is also active in a multitude of transition metals.

Finally, a BLASTP search in sequenced bacterial genomes

revealed ten putative HpyAV R-M systems. These microorgan-

isms reside within human bodies or in mammals that are closely

associated with humans, suggesting a possible lateral transfer

mechanism.

Results

The HpyAV R-M System
Restriction mapping and run-off sequencing results indicated

that the native HpyAV REase isolated from Helicobacter pylori

strain 26695 recognizes the asymmetric target sequence CCTTC
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and cleaves 6 nt and 5 nt downstream of the top strand and the

bottom strand, respectively (CCTTC 6/5; data not shown).

Enzymes that recognize asymmetric sequences frequently require

two methyltransferases (MTases) to modify the two strands of

DNA. In the case of HpyAV the MTase(s) must modify a C of the

top strand and an A of the bottom strand in the target sequence.

From the genomic sequence of H. pylori 26695 (Genbank

nucleotide accession NC_000915), the R gene (hp_0053) of the

HpyAV R-M system is located downstream of the M gene

(hp_0054) and runs in the same direction as the M gene (Fig. 1A).

In addition, the M gene of the HpyAV R-M system is a fusion of

a C5 cytosine MTase and a N6 adenine MTase highly

homologous to M1.Hin4II and M2.Hin4II, respectively

(Fig. 1A). We re-sequenced the junction of the two MTase

domains from the cloned M gene and from a PCR product

derived from the genomic DNA and found no stop codon

Figure 1. Gene organization of the HpyAV/Hin4II R-M systems and the structural model of the HpyAV catalytic site. A. Organization of
the HpyAV and Hin4II R-M systems. The Hin4II R-M system consists of separate M1 and M2 genes for C5 cytosine (dark grey) and N6 adenine (light
grey) methylation, respectively, preceding the ORF of Hin4II [80]. M.HpyAV is a fusion of C5 and N6A MTase domains with high sequence similarity to
M1.Hin4II and M2.Hin4II, respectively. B. The structural model of HpyAV catalytic site and structural alignment to HNH endonucleases. Modeling of
amino acid residues 281 to 360 of HpyAV to the bba-Me motif of ColE9 and the structural alignment to ColE9, I-HmuI, Hpy99I and KpnI were done as
described in Materials and Methods. The blue dots underneath the alignment indicate metal-binding residues; the red dots indicate the general base
His and the green dot indicates the Asn implied to decrease the pKa of the general base His in ColE9 and I-HmuI. Amino acid residues that are
assigned to b-strands and the helix of the bba-Me motif are indicated by red arrows and blue rods, respectively. The conserved residues implicated in
catalysis are colored in black or grey.
doi:10.1371/journal.pone.0009071.g001
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between the two domains, confirming that M.HpyAV is a true

fusion of C5 cytosine MTase and N6 adenine MTase, although

the size of the translation product has not been confirmed

biochemically. An over-expression E. coli strain was constructed

by transforming E. coli ER3081 (NEB) with pSYX20-hpyAVM and

pAII17-hpyAVR by sequential transformation (See Materials and

Methods).

Metal Ion Requirement for DNA Cleavage
The purified recombinant HpyAV exhibited very low cleavage

activity on l DNA in the standard reaction condition containing

4 mM MgSO4 (Fig. 2A). However, when 2 mM NiSO4 was

added into the cleavage reaction in the presence or absence of

4 mM MgSO4, HpyAV exhibited equally high cleavage activity

(Fig. 2A). This shows that HpyAV prefers Ni++ for cleavage

activity. This discovery prompted us to examine HpyAV against

other divalent metal ions including Ca++, an alkaline earth metal

ion that is inhibitory to REases containing the canonical PD-X-

(D/E)XK catalytic motif, and ions of other transition metals in the

same period (Mn++, Co++, Cu++ and Zn++). We found that HpyAV

showed a different degree of cleavage activity with divalent metal

ions. It was most active with MnCl2, NiSO4 or CoSO4 - complete

cleavage of l DNA was achieved with 0.5 to 4 mM of these three

metal ions (Fig. 2B). For Cu(OAc)2 and Zn(OAc)2, concentrations

higher than 2 mM were inhibitory to HpyAV endonuclease

activity (data not shown), and complete cleavage was not obtained

under the assay conditions. HpyAV showed much lower activity in

the presence of CaCl2 or MgSO4 (Fig. 2B). Table 1 summarizes

the specific activity of HpyAV with various metal ions. HpyAV is

equally active in MnCl2, CoSO4 and NiSO4 (specific activities are

within a 2-fold margin for a 2-fold dilution series of the enzyme),

and complete cleavage of l DNA was not achieved in the presence

of MgSO4, CaCl2, Cu(OAc)2 or Zn(OAc)2 at the highest enzyme

concentration available (40 mmol of HpyAV on 0.3 pmol (1 mg) of

l DNA). By comparing the cleavage patterns, HpyAV is estimated

to exhibit less that 0.4% of cleavage activity in buffers with MgSO4

and CaCl2, less than 6% with Cu(OAc)2 and less than 0.8% with

Zn(OAc)2.

Figure 2. HpyAV endonuclease activity in buffers with various divalent cations. A. Cleavage activity of HpyAV in MgSO4 and NiSO4.
Decreasing concentrations of HpyAV were added to reactions containing 1 mg of l DNA, 20 mM Tris-HCl, pH 7.9, 200 mM NaCl supplemented with
2 mM of NiSO4, 4 mM of MgSO4, 2 mM of NiSO4 and 4 mM of MgSO4 or no divalent metal ions. The reactions were carried out as described in
Materials and Methods. The reactions that exhibit 1 U of HpyAV activity (complete cleavage) are marked with a dot. B. DNA cleavage activity of
HpyAV in buffers supplemented with the indicated concentration of metal ion solutions. Eight units of HpyAV were incubated with 1 mg of l DNA in
20 mM Tris-HCl, 200 mM NaCl as described in Materials and Methods.
doi:10.1371/journal.pone.0009071.g002
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Homology Modeling of Catalytic Residues
The strong stimulation effect of Ni++ on endonuclease activity is

unique to HpyAV. It led us to examine the HpyAV amino acid

sequence in more details. HpyAV is not homologous to any known

REases except its isoschizomer Hin4II (data not shown). Manual

examination of the amino acid sequence of HpyAV revealed a

HNH catalytic motif highly homologous to that of colicin E9.

Homology modeling of amino acid (aa) residues 287–325 of

HpyAV to the bba-Me motif of ColE9 (aa 95–131) resulted in a

model free of clashes and with all the conserved catalytic residues

(His102, His103, Asn118 and His127 in ColE9; H294, H295,

N311, and H320 in HpyAV) structurally aligned to the HNH

endonucleases including I-HmuI and Hpy99I (Fig. 1B).

Site-Directed Mutagenesis of the HNH Catalytic Site
From biochemical and structural studies of colicin E9, His103

acts as the general base to deprotonate a water molecule for the

hydrolysis of the scissile phosphodiester bond. His102 and His127

coordinate the single divalent metal ion for transition state

stabilization. Asn87 of I-HmuI and Asn118 of ColE9 are proposed

to form a hydrogen bond to the general base His and increase its

pKa for the activation of the nucleophilic water [13,14]. In this

study, the corresponding residues of HpyAV (His294, His295,

Asn311 and His320) were mutated to verify their role in catalysis.

Mutants H294D, H295A, and H320A were constructed and

purified. H294D and H320A did not show any cleavage activity at

up to 7.5 mg of protein (Fig. 3 and data not shown) in the presence

of 2 mM NiSO4 or MgSO4, indicating that (i) the removal of the

imidazole group at position 320 eliminated cleavage activity; (ii)

the negatively charged Asp (as found in I-HmuI, Hpy99I and

KpnI at the same aa position; Fig. 1B) cannot replace the

histidine residue at position 294 for metal coordination in HpyAV.

It is somewhat unexpected that substitution of the general base

His295 by Ala did not completely eliminate the cleavage activity

(Fig. 3); H295A still retains approximately 1% of wt activity,

suggesting that an alternative weaker general base exists in the

catalytic site when the general base His295 is absent. To explore

the consequence of other amino acid substitutions, we also

mutated His295 to Lys, Asn or acidic resides Asp/Glu. IPTG-

induced cell extracts expressing these four mutants (H295K,

H295N, H295D, and H295E) did not show any cleavage activity

(data not shown), indicating that Lys, Asn, Asp, or Glu residues

cannot replace His295 in the catalytic site. Cell extract with

Table 1. Specific activity of HpyAV and KpnI.

HpyAV KpnI

Sp. Activity
(U/mg) a %

Sp. Activity
(U/mg) a %

Mg++ ,,200 ,0.4b 282000 100

Ca++ ,,200 ,0.4b 7000 2.5

Mn++ 2000 200 N/Dc N/Dc

Co++ 830 83 42000 15

Ni++ 1000 100 32000 10

Cu++ ,200 ,6b N/Dc N/Dd

Zn++ ,200 ,0.8b 28000 10

aSpecific activity are average values of triplicate experiments for HpyAV and
duplicate experiments for KpnI.

bComplete cleavage of substrate DNA was not achieved with the highest
available concentration of HpyAV. Percentage activity was estimated by
comparing the cleavage pattern of the highest concentration of HpyAV with
the indicated metal ion to the matching pattern with Ni++ (data not shown).

bThe specific activity of KpnI was not determined in Mn++ because star activity
appeared before complete cleavage of the substrate DNA was achieved.

dSpecific activity of KpnI was not determined in Cu++ because the same
incomplete cleavage pattern was observed over a 120-fold difference in
enzyme concentration.

doi:10.1371/journal.pone.0009071.t001

Figure 3. DNA cleavage activity of the catalytic residue mutants. Purified protein of WT, H294D, H295A and H320A were assayed as
described in Materials and Methods in the presence of 2 mM NiSO4. Five ml of undiluted, three-fold and nine-fold dilutions of 1.5 mg/ml of enzyme
solution were assayed on 1 mg of l DNA.
doi:10.1371/journal.pone.0009071.g003
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N311A variant failed to show any detectable cleavage activity

(data not shown). It is concluded that His294, H295, Asn311 and

His320 are important residues for HpyAV endonuclease activity.

KpnI Endonuclease Activity with Different Divalent Metal
Ions

KpnI is an HNH Type IIP REase that has been shown to be

active with Mg++ or Ca++ [15,16]. The high activity of HpyAV

with transition metal ions prompted us to investigate if it is also

true for KpnI. Fig. 4 shows that KpnI is active in all of the

transition metals tested. Table 1 shows that the specific activity of

KpnI is highest with MgSO4, followed by CoSO4 (15% of

MgSO4), NiSO4 and Zn(OAc)2 (both 15% of MgSO4) and CaCl2
(2.5% of MgSO4). The specific activity could not be determined

with MnCl2 because cleavage at non-cognate sites (star activity)

was observed before complete cleavage of the cognate sites was

achieved (data not shown). The specific activity in Cu(OAc)2 was

also not determined because the same incomplete cleavage pattern

was observed over a 120-fold difference in enzyme concentration

(data not shown). As a control, 10 U of EcoRI, a canonical PD-

(D/E)XK Type IIP REase, was also tested. Under the assay

conditions, EcoRI was most active in MgSO4, with very low level

of activity in MnCl2 and CoSO4 and no activity in CaCl2, NiSO4,

Cu(OAc)2 or Zn(OAc)2. For all three enzymes, no cleavage activity

was observed without the added divalent metal ions, indicating

that all the activities observed were caused by the presence of the

metal ion cofactors.

Homologous HpyAV Systems from Sequenced Microbial
Genomes

HpyAV is an isoschizomer of Hin4II. M.HpyAV contains a C5

cytosine and a N6 adenine MTase domain highly homologous to

M1 and M2.Hin4II (Fig. 1A). Sequence analysis showed that the

corresponding regions of M.HpyAV are 57% and 56% identical to

M1 and M2.Hin4II, respectively (Table 2). The REases HpyAV

and Hin4II also share 48% sequence identity (Table 2). A

BLASTP search of the GenBank genomes discovered 10 putative

R-M systems that are highly homologous to the HpyAV system.

The MTases and REases of these homologous systems, along with

those of HpyAV and Hin4II, are shown in Table 2. Except for

the Yersinia kristensenii and Vibrionales bacterium SWAT-3 systems, the

M gene precedes the R gene with both of them oriented in the

same direction. Also, like the HpyAV system, all of these R-M

systems contain single MTase that are fusions of C5 cytosine and

N6 adenine MTases. Their high sequence similarity suggests that

these putative R-M systems may share the same recognition

Figure 4. DNA cleavage activity of KpnI and EcoRI in the presence of different metal ions. Ten units of KpnI or EcoRI were incubated with
1 mg of pXba or l DNA, respectively, as described in Materials and Methods.
doi:10.1371/journal.pone.0009071.g004
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sequence (CCTTC). It is also noticeable that these homologous R-

M systems are mostly carried by infectious microorganisms of

human or mammalian hosts closely associated with humans.

However, there are two putative endonucleases (EsaSS23P = 393

aa; EsaSS44P = 385 aa) without companion MTases from

shotgun-sequenced environmental samples that share significant

amino acid sequence identity with HpyAV and Hin4II (EsaSS23P

vs. HpyAV = 34% aa sequence identity; EsaSS44P vs Hin4II

= 29% aa sequence identity). They may recognize CCTTC or

similar target site with 1-bp difference.

Discussion

Metal Ion Cofactor Preference of HNH Endonucleases
It has been well-documented that for restriction endonucleases

(REases) with the canonical PD-X-(D/E)XK catalytic site, Mg++

and Mn++ support catalysis but Ca++ only supports DNA binding.

One to two coordinated metal ions have been observed in the

catalytic site in the crystal structures of REases in the presence of

substrate DNA. Catalytic mechanisms for one- and two- ion-

induced cleavage have been proposed [17–20]. It has been

generally accepted that most Type IIP REases use a two-metal ion

mechanism where metal ion A deprotonates the nucleophilic water

molecule and metal ion B stabilizes the pentavalent phosphoanion

transition state and activates a water molecule for protonation of

the leaving 39-phosphate oxygen. Some REases (EcoRI and BglII),

however, appear to use a one-metal ion mechanism where the

metal ion occupies site 1 and coordinates a nucleophilic water

molecule for the attack of the scissile phosphate, although it has

been noted that the second metal ions might have escaped

detection because the second metal ions tend to have low

occupancy in other structures [21–23]. Recently, Pingoud and

colleagues presented experimental evidence and MD simulation

results to support a generalized one-metal ion catalytic mechanism

where site 1 has a higher affinity to Mg++ and site 2 plays a

modulating role in the cleavage activity [23].

Endonucleases that contain the bba-Me motif, on the other

hand, are only observed with one coordinated divalent metal ion

in their catalytic sites. The bba-Me motif adopts a V-shape

conformation consisting of two beta-strands connected by a loop in

one arm followed by a helix that constitutes the other arm. The

bba-Me motif is present in non-specific endonucleases such as

Serratia nuclease [24,25], E. coli defense nucleases colicin E7

[26,27] and E9 [28,29], Holliday junction resolving T4 endonu-

clease VII [30] and homing endonucleases I-PpoI of the His-Cys

family [31,32]. HNH enzymes are a sub-group of the bba-Me

family where the metal ion is coordinated by two negatively

charged amino acid residues (two histidines in ColE9 [29,33,34]; a

glutamate and a asparagine in I-HmuI [13,14] and Hpy99I [35])

and the non-bridging oxygen of the scissile phosphodiester bond of

the transition state. In His-Cys homing endonucleases and Serratia

nuclease, only one asparagine is involved in metal ion coordina-

tion. The coordinated metal ion is believed to stabilize the

transition state by neutralizing the negatively charged pentavalent

phosphoanion transition state. In ColE9, it has been proposed that

the water molecule coordinated by the metal ion and His131 acts

as the general acid that protonates the leaving group [29]. The

conserved asparagine lowers the pKa of the invariable histidine

which in turn activates the nucleophilic water molecule for in-line

attack of the scissile phosphate. Recently, more Type II restriction

endonucleases, namely, KpnI [36], MnlI [37], Hpy99I [35],

Eco31I [38,39], HphI [40], SphI [41], PacI and others [42] are

identified as containing this HNH motif through X-ray crystal-

lography or sequence alignment/structural prediction. GIY-YIG

Table 2. Homologous HpyAV R-M systems.

REasea Length (aa) % ID MTase1 Length (aa) % ID Organism

HpyAV 419 100 M. HpyAV 823 100 Helicobacter pylori 26659

HpyPORF48P 423 92 M.HpyPORF48P 822 98 Helicobacter pylori P12

HpyGORF49Pb 419 96 M.HpyGORF49P 823 97 Helicobacter pylori G27

CupORF1468P 339 50 M.CupORF1468P 817 64 Campylobacter upsaliensis
RM3195

SeqZORF1536P 417 50 M. SeqZORF1536P 810 52 Streptococcus equi subsp.
zooepidemicus MGCS10565

Hin4II 418 48 M1.Hin4II
M2.Hin4II

387
445

57c

56c
Haemophilus
influenzae RFL4

BhyWAORF699P 386 43 M.BhyWAORF699P 812 43 Brachyspira hyodysenteriae
WA1

Nme180ORF295P 296 31 M.Nme18ORF295P 862 42 Neisseria meningitidis FAM18

MmyLCORFBP 330 40 M. MmyLCORFBP 834 55 Mycoplasma mycoides subsp.
mycoides LC str. GM12

YkrORF13790P 426 39 M.YkrORF13790P 826 44 Yersinia kristensenii ATCC
33638

Bst43183ORF2897P 390 33 M.Bst43183ORF2897P 856 43 Bacteroides stercoris ATCC
43183

VbaORF22060P 326 30 M.VbaORF22060P 820 43 Vibrionales bacterium SWAT-3

aNames as in REBASE. All REases, except HpyAV and Hin4II, are putative (names end with P).
bIn the genomic sequence, HpyGORF49P contains a deletion that introduces a stop codon within the HNH catalytic site. The reported length is a theoretical number

based on the re-introduction of the deleted nucleotide to the genomic sequence.
cSequence identity for M1 and M2.Hin4II were calculated based on pair-wise alignment of segments of M.HpyAV that can be aligned to M1 and M2.Hin4II, respectively
(Fig. 1).

doi:10.1371/journal.pone.0009071.t002
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endonucleases (including homing endonucleases I-TevI [43,44],

nucleotide excise repair enzyme UvrC and Type IIP REases

Hpy188I [45] Eco29kI [46,47] and Cfr42I [47,48]) is proposed to

adapt a similar catalytic mechanisms as HNH/His-Cys endonu-

clease except for the use of Tyr as the general base based on the

structure of UvrC [49].

In this study, we demonstrated the importance of conserved

catalytic residues H294, H295, N311, and H320 by site-directed

mutagenesis. HpyAV variants H294D, N311A, and H320A lack

any detectable catalytic activity (less than 0.1% activity).

Substitution of the general base His295 by Ala displays impaired

cleavage activity only (H295A retains approximately 1% of wt

activity), suggesting that an alternative weaker general base exists

in the catalytic site when the general base His295 is mutated. In

addition, positively charged aa substitution by Lys in H295K did

not rescue the catalytic activity, indicating Lys cannot replace His

as the general base in HpyAV. Other charged aa residue

substitutions at the 295 position (HpyAV variants H295N,

H295D, and H295E) failed to show any detectable cleavage

activity. The observation that deletion of the proposed histidine

general base in the HpyAV active site yields an endonuclease with

reduced activity, rather than completely inactivating the enzyme,

is unusual for the HNH superfamily, but not unprecedented.

Mutation of the active histidine general base in the I-PpoI homing

endonuclease also results in reduced activity [50]; this result is

attributed to the ability of a neighboring histidine to participate in

a less-efficient long-range proton transfer reaction and activation

of the nucleophilic water with reduced activity as compared to the

wild-type enzyme.

MnlI and I-PpoI are the only bba-Me endonuclease whose

metal ion preference has been systematically studied. In the

presence of 1 mM M++, the order of MnlI activity was shown to be

Mg++ . Ni++ = Co++ . Mn++ . Ca++ . Zn++ [51]. I-PpoI

activity follows the order of Mg++ . Mn++ . Ca++ = Co++ .

Ni++ . Zn++ (10 mM) [52]. Hpy99I is active in Mg++ and Mn++

but not in Ca++ or Zn++ [35]. It has also been reported that ColE9

prefers Mg++ and Ca++ for dsDNA and Ni++ for ssDNA substrates

[18,34,53]. Our preliminary results showed that PacI and SphI are

active with Ni++ but less so than in Mg++, whereas HphI showed

comparable activity with Ni++ and with Mg++ (data not shown).

Non-specific HNH endonucleases colicin E9 has also been

reported to have distinct metal ion preference: Mg++ and Ca++

are most efficient cofactors for cleavage of double-strand DNA but

Ni++ is most efficient for cleavage of single-strand DNA; and

colicin E9 cleaves RNA in the absence of any divalent metal ions

[34]. In addition, although Serratia endonuclease is most active

with Mg++, mutants that are more active in Mn++, Co++ and

Zn++ have been isolated [54]. Compared to our results reported

here, where HpyAV activity follows the order of Mn++ = Ni++ =

Co++ . Cu++ . Zn++ . Ca++ . Mg++ (2 mM for Mg++, Ca++,

Mn++, Ni++ and Co++; 0.1 mM for Cu++ and Zn++) and KpnI

activity follows the order of Mg++ . Co++ . Ni++ = Zn++ .

Ca++, it appears that HNH endonucleases in general have a less

stringent metal ion requirement than their counterparts with the

canonical PD-X-(D/E)XK catalytic motif.

HpyAV is unique in that it is the only HNH-type endonuclease

characterized so far to have higher double-strand cleavage activity

with transition metals (Mn++, Ni++ and Co++) than with Mg++. It

has been argued that in bba-Me REases, the metal ion is not

involved in the coordination of the nucleophilic water but only

interacts with the phosphoanion transition state and the leaving

group through a water molecule, therefore allowing for a less

stringent metal ion requirement for catalysis [55,56]. This

property also raises the caution that transition metal ions should

be taken into consideration when the cleavage activity of HNH

enzymes is to be optimized.

The loss of fidelity of KpnI in the presence of Mn++ has also

been observed in EcoRI [57], PstI [58], EcoRV [59] and CeqI

[60] and other DNA enzymes such as HIV ribonuclease H [61],

the translesion DNA polymerase Dpo4 [62] and Tn10 in IS10

transposition [63]. This effect has been attributed to the similar

chemical nature of Mn++ to Mg++ but a relaxed coordination

requirement for Mn++ [55], suggesting a role of the metal ion for

the specificity of these REases. In EcoRV, it has also been

demonstrated that the affinity for Mg++ is lower when the enzyme

is bound to non-cognate sites [64]. Interestingly, HpyAV does not

show increased non-cognate cleavage activity in Mn++ under our

assay conditions, possibly because unlike Type IIP REases, target

site recognition and phosphodiester bond cleavage of Type IIS

REases such as HpyAV are uncoupled by separate DNA

recognition and cleavage domains. The different metal ion

preference of different HNH endonuclease is an interesting

phenomenon, given their highly similar set of metal coordinators

and general base. Further genetic, biochemical and structural

studies of HNH enzymes are needed to understand the catalytic

role of different metal ions. For example, it is possible to target the

metal binding region by localized saturation mutagenesis of

HpyAV by construction of a plasmid mutant library in the

presence of methylase protection and then transfer the mutant

library DNA into non-modified dinD::lacZ indicator strain and

screen for blue colonies on X-gal plates supplemented with high

concentration of Mg++ (active mutants will damage chromosomal

DNA and induce SOS-induction in vivo). Such active HpyAV

mutants may contain altered metal binding site with preference for

Mg++ as a cofactor. KpnI mutants with altered metal binding and

preference have been isolated (SHC and SYX, unpublished

results).

Distribution of HpyAV Homologous Systems
In addition to Hin4II, a BLASTP search of GenBank database

discovered 10 putative R-M systems highly homologous to the

HpyAV system. Interestingly, these R-M systems are mostly

carried by infectious microorganisms of human or mammalian

hosts closely associated with humans (Table 2). While Helicobacter

pylori strains where HpyAV and the putative HpyPORF28P and

HpyGORF49P R-M systems reside, are the etiological agent of

common gastritis and a risk factor for gastric cancer, Campylobacter

upsaliensis, Yersinia kristensenii and Vibrionales bacterium are mainly

zoonotic but opportunistic pathogens of humans. Bacteroides stercoris

is a symbiotic bacterium in the human intestines that helps to

digest food. Haemophilus influenzae, from which Hin4II is isolated, is

found in the upper respiratory tract of humans; it can cause

bacteremia, pneumonia and acute bacterial meningitis. Neisseria

meningitidis causes meningitis in humans. Other HpyAV homolo-

gous systems are found in microbes that infect pigs (enteric

Brachyspira hyodysenteriae) [65], cattle, goats (Mycoplasma mycoides

through inhalation) [66,67] and horses (Streptococcus equi that causes

strangles) [68]. It is possible that these pathogenic microbes

acquired a prototypical R-M system through lateral transfer when

they were brought in the vicinity of a mammalian host organism,

which need not be permissive to the microorganisms concerned

[69,70]; or they could be transferred during food intake. It has

been shown that the virulent factor iceA1 is a functional

isoschizomer of NlaIII in H. pylori CH4 [71,72]. Therefore, the

acquired HpyAV homologous systems may provide survival

advantage to the receiving microorganisms. It is noted, however,

that whole-genome sequencing efforts have largely been focused

on mammalian pathogens and their sequences are over-repre-
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sented in sequence databases. It is possible that HpyAV

homologous R-M systems exist in non-mammalian-associated

microorganisms. Shotgun sequencing of marine samples has

revealed two ORFs EsaSS23P and EsaSS44P that are also

homologous to HpyAV and Hin4II aa sequences.

Materials and Methods

Strains, DNA Sequences and Mutagenesis
The HpyAV R-M system was identified in Helicobacter pylori

26695 (Genbank nucleotide accession NC_000915). ORF

hp_0054 is the M gene which was amplified in PCR and inserted

into pSYX20 at the EcoRV and SphI sites with a GGAGGT

ribosome-binding site and upstream stop codons in all three ORFs

(pSYX20 carries pSC101 replication origin, KmR, and TcR).

Expression of the M gene is under the control of the TcR

promoter. ORF hp_0053 is the R gene which was amplified in

PCR and inserted into pAII17 (NEB) at NdeI and BamHI sites,

under the control of the T7 promoter. The over-expression strain

was constructed by sequential transformation of E. coli ER3081

(NEB) by pSYXS20-hpyAVM and then pAII17-hpyAVR. ER3081

(fhuA2 8 lacZ::T7 gene1 [lon] ompT gal attB::pCD13(Ptet-lysY, lacIq)

[SpecR] sulA11 R(mcr-73::miniTn10—TetS)2 [dcm] R(zgb-210::Tn10

—TetS) endA1 D(mcrC-mrr)114::IS10) is a derivative of ER2566 (T7

Express, NEB). This strain contains the T7 RNA polymerase gene

at the chromosomal lac locus, replacing much of lacZY; the K128Y

mutant of T7 lysozyme (lysY) and the lacIq gene are expressed from

the chromosomal attB site. Stable integration of the lysY and lacIq

genes was accomplished using the pCD13PKS plasmid described

by Platt et al. [73,74]. Site-directed mutagenesis was carried out

using a modified inverse PCR procedure [75] using pAII17-

hpyAVR isolated from the over-expression strain as template.

Primers designed to construct mutants (H295A, H320A and

N311A) were synthesized by Integrated DNA Technologies. All

DNA sequences were verified by DNA sequencing.

Protein Expression and Purification
The over-expression strain of HpyAV was cultured in LB

medium containing 100 mg/ml ampicillin and 30 mg/ml kanamy-

cin at 30uC and 200 rpm overnight (,15 h). Ten milliliters of the

overnight culture was inoculated into 1 L of LB medium

containing the same antibiotics and cultured at 30uC and

200 rpm to log phase. The culture was cooled down to 25uC
before IPTG was added to a final concentration of 0.25 mM.

Growth was then continued at 25uC for ,15 h and the cultures

were harvested by centrifugation. The cell pellet was resuspended

in 100 ml of 20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM

EDTA (Buffer A) supplemented with 1% PMSF and sonicated on

ice. After centrifugation, the supernatant was loaded onto a

Heparin HiTrap column (5 ml; GE Life Sciences). Peak fractions

from a linear elution gradient of 0.05–1 M NaCl in Buffer A was

diluted 4-fold in Buffer A and loaded onto a HiTrap SP HP

column (5 ml; GE Life Sciences). Peak fractions from a 0.05–1 M

NaCl gradient were pooled and concentrated by Vivaspin 15

(10 kDa MWCO; Sartorius). An equal volume of 60% glycerol

was added to the concentrated protein for storage at 220uC.

DNA Cleavage Activity Assays
The DNA cleavage activity of the crude extract or purified

HpyAV was assayed in 50 ml reactions containing 20 mM Tris-

HCl, pH 7.9, 200 mM NaCl supplemented with the indicated

concentrations of MgSO4, CaCl2, MnCl2, CoSO4, NiSO4,

Cu(OAc)2 or Zn(OAc)2 and 1 mg of l DNA at 37uC for 1 h.

KpnI was assayed in 20 mM Tris-HCl, 50 mM NaCl, pH 7.9

with the same battery of salts using 1 mg of pXba DNA (a 10 kb

XbaI fragment of adenovirus DNA inserted into pUC19; NEB).

EcoRI activity assay was carried out in the same buffer using 1 mg

of l DNA. The cleavage reactions were then analyzed by 1.2%

agarose gel electrophoresis in 1x TBE. One enzyme unit is defined

as the amount of enzyme needed to cleave the 1 mg of the

designated DNA completely at 37uC in 1 h. Specific activity is

defined as the number of units per mg of enzyme. Specific activity

was determined in duplicate (KpnI) or triplicate (HpyAV) by

titrating the enzymes (in steps of 2-fold dilution) in their respective

reaction buffer in the presence of 2 mM MgSO4, CaCl2, MnCl2,

CoSO4 or NiSO4, or 0.1 mM Cu(OAc)2 or Zn(OAc)2. KpnI and

EcoRI were from NEB. All reaction buffers and metal ion

solutions were prepared using MilliQ water.

Homology Modeling and Structural Alignment
Amino acid residues 281 to 360 of HpyAV were modeled to the

bba-Me motif of ColE9 (mutant H103A; PDB: 1V14) by

homology modeling using SWISS-MODEL [76,77]. The struc-

tural model of the HpyAV bba-Me motif was aligned pair-wise

with the crystal structures of ColE9 (PDB: 1V14), I-HmuI (PDB:

1U3E), Hpy99I (PDB: 3GOX) and the KpnI model built by

Nagaraja and colleagues [36] using the TM-Align module [78] of

STRAP [79].
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