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Abstract 16 

Spatially resolved transcriptomics offers unprecedented insight by enabling the profiling of gene 17 
expression within the intact spatial context of cells, effectively adding a new and essential 18 
dimension to data interpretation. To efficiently detect spatial structure of interest, an essential 19 
step in analyzing such data involves identifying spatially variable genes. Despite researchers 20 
having developed several computational methods to accomplish this task, the lack of a 21 
comprehensive benchmark evaluating their performance remains a considerable gap in the field. 22 
Here, we present a systematic evaluation of 14 methods using 60 simulated datasets generated 23 
by four different simulation strategies, 12 real-world transcriptomics, and three spatial ATAC-seq 24 
datasets. We find that spatialDE2 consistently outperforms the other benchmarked methods, 25 
and Moran’s I achieves competitive performance in different experimental settings. Moreover, 26 
our results reveal that more specialized algorithms are needed to identify spatially variable peaks.  27 
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Introduction 32 

Recent years have witnessed significant progress in spatially-resolved transcriptome profiling 33 
techniques that simultaneously characterize cellular gene expression and their physical position, 34 
generating spatial transcriptomic (ST) data. The application of these techniques has dramatically 35 
advanced our understanding of disease and developmental biology, for example, tumor-36 
microenvironment interactions1, tissue remodeling following myocardial infarction2, and mouse 37 
organogenesis3, among others.  38 

 39 

Spatial transcriptome profiling methods are broadly categorized into two groups, i.e., next-40 
generation sequencing (NGS)-based (including 10x Visium4; Slide-seq5,6; HDST7; STARmap8) and 41 
imaging-based (including seqFISH9 and MERFISH10) (Fig. 1a). They vary in terms of the number of 42 
genes and spatial resolution. Specifically, NGS-based assays usually provide genome-wide gene 43 
expression through spots profiling multiple cells, thus precluding the possibility of delineating 44 
expression at the single-cell level. At the same time, the imaging-based methods can generate 45 
sub-cellular resolution data but can only detect a subset of genes (30-300). Due to these 46 
differences in the number of genes and spatial resolution, distinct computational methods and 47 
algorithms are required for the downstream analysis of each data type. In the case of NGS-based 48 
profiles, an important task involves associating cell types with spatial locations through cell-type 49 
deconvolution, often leveraging paired single-cell RNA-seq data to compensate for the low 50 
spatial resolution11–13. On the other hand, for imaging-based profiles, the initial step involves 51 
performing cell segmentation to accurately delineate the boundaries of individual cells14. 52 

 53 

One common task for all ST profiles, regardless of the employed protocols, is to identify genes 54 
that exhibit spatial patterns15 (Fig. 1a). These genes, defined as spatially variable genes (SVGs), 55 
contain additional information about the spatial structure of the tissues of interest, compared to 56 
highly variable genes (HVGs). Examples of SVGs include genes involved in developmental 57 
gradients16, cell signaling pathways17, and tumor micro-environment interface1. Additionally, 58 
SVGs may be critical to downstream tasks such as detecting spatial domains18 and inferring 59 
spatially aware gene regulatory networks (GRNs)19. To detect SVGs, researchers have developed 60 
various computational methods by incorporating the spatial context into the analysis. As the 61 
number of methods keeps increasing, it becomes difficult for users to choose the best 62 
approaches effectively. Previous benchmarking studies have typically compared no more than 63 
seven computational methods20–22, significantly fewer than the currently available methods (n > 64 
14). Furthermore, since obtaining ground truth from real-world ST profiles is not feasible, these 65 
studies have relied on simulation data to evaluate the accuracy of each method in detecting SVGs. 66 
However, the simulation data were generated either only using the predefined spatial 67 
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clusters20,22 or with a very limited number of spatial patterns (e.g., spots where the expression 68 
forms round contours and linear where the expression forms rectangular shapes)21. 69 
Consequently, the limitations of the simulation strategies may introduce inflating performance 70 
metrics compared to realistic settings. Therefore, there is a clear need for a comprehensive 71 
benchmarking study incorporating more methods and employing enhanced simulation strategies 72 
to capture biologically plausible patterns of interest. Such a study would provide a more robust 73 
and unbiased evaluation of the available methods for detecting SVGs in ST profiles, enabling 74 
researchers to make informed decisions when selecting the most appropriate computational 75 
methods for their analyses. 76 

 77 

In this work, we comprehensively evaluated 14 methods (see Table 1) for identifying SVGs (the 78 
selection of the 14 methods is discussed in the Discussion). We created multiple benchmarking 79 
datasets (n = 60) with verified ground truths and compared the methods in terms of prediction 80 
accuracy, sensitivity, specificity, statistical calibration, and scalability. We also investigated the 81 
impact of identified SVGs on spatial domain detection. Finally, we explored the applicability of 82 
the methods to other spatial modalities, specifically examining their effectiveness on spatial 83 
ATAC-seq data. Our benchmark results indicate that SpatialDE223 generally outperformed the 84 
other tested methods. Furthermore, Moran’s I24, despite its simplicity, consistently exhibited 85 
performance either comparable to or superior to most methods in our benchmark evaluations. 86 
Our results provide a detailed comparison of SVG detection methods and serve as a reference 87 
for both users and method developers. 88 

 89 
RESULTS 90 
 91 
Overview of computational methods for detection of spatially variable genes 92 

In contrast to the identification of HVGs solely from genes expression levels (i.e., mRNA molecular 93 
abundance) in single-cell RNA sequencing (scRNA-seq) data, detecting SVGs requires the 94 
additional consideration of spatial information at the cellular or subcellular level. A common and 95 
straightforward approach is to build a k-nearest-neighbor (KNN) graph where each node 96 
represents a spatial spot, and the edges between nodes represent the spatial proximity of spots. 97 
SVGs are identified by combining this spatial neighbor graph with gene expression profiles. For 98 
instance, Moran’s I estimates the correlation coefficient of the expression between a spot and 99 
its neighbors24,25. Similarly, Spanve quantifies the divergence in gene expression distributions 100 
between randomly and spatially sampled locations using Kullback-Leibler (KL) divergence26. A 101 
higher correlation or distribution divergence indicates that the gene is more likely to have a non-102 
random spatial pattern. Moreover, scGCO utilizes a hidden Markov random field (HMRF) to 103 
capture the spatial dependence of each gene’s expression levels and uses a graph cuts algorithm 104 
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to identify the SVGs27. SpaGCN first builds a graph by integrating gene expression, spatial 105 
location, and histology information (when available) and then clusters the spots using a graph 106 
convolutional network (GCN)28; then SVGs are identified by differential expression (DE) analysis 107 
on the obtained clusters29. SpaGFT constructs a KNN graph of spots based on their spatial 108 
proximity and then transforms each gene’s expression to the frequency domain; genes with low-109 
frequency signals tend to have less random spatial patterns30. Sepal uses a diffusion model to 110 
assess the degree of randomness of each gene’s spatial expression pattern and ranks the genes 111 
accordingly31. 112 

 113 

Another strategy to incorporate spatial information involves utilizing a kernel function that takes 114 
spatial distance as input and computes a covariance matrix to capture the spatial dependency of 115 
gene expression across locations. This covariance matrix represents a prior of the underlying 116 
spatial pattern. One of the pioneer methods is SpatialDE32, which models the normalized 117 
expression data using non-parametric Gaussian Process (GP) regression and tests the significance 118 
of the spatial covariance matrix for each gene by comparing the fitted models with and without 119 
the spatial covariance matrix. SpatialDE223 further extends this framework by providing technical 120 
innovations and computational speedups. SPARK33 proposes another extension by modeling the 121 
raw counts with a generalized linear model based on the over-dispersed Poisson distribution. It 122 
provides a more robust statistical approach (Cauchy combination rule34) to assess the significance 123 
of the identified SVGs. In contrast, BOOST-GP uses a zero-inflated negative binomial (ZINB) 124 
distribution to model the read counts and infers the model parameters via a Markov Chain Monte 125 
Carlo (MCMC) algorithm35. Similarly, GPcounts36 models the counts with a negative binomial (NB) 126 
distribution and estimates the model parameters using variational Bayesian inference to improve 127 
computational efficiency. Notably, SPARK-X stands as an exception by directly comparing the 128 
expression covariance matrix and the spatial distance covariance matrix, yielding substantial 129 
computational efficiency gains37.  130 

 131 

In addition, two hybrid methods, namely nnSVG and SOMDE, have been developed to integrate 132 
graph and kernel approaches to capture the spatial dependence between spatial spots. The 133 
nnSVG method utilizes a hierarchical nearest-neighbor GP to model the large-scale spatial data38, 134 
providing computational efficiency gains over the standard Gaussian process used in SpatialDE. 135 
On the other hand, SOMDE employs a self-organizing map (SOM) to cluster neighboring cells into 136 
nodes and subsequently fits node-level spatial gene expression using a Gaussian process to 137 
identify SVGs39. Both methods reduce the computational complexity of kernel approaches by 138 
leveraging a spatial graph, which significantly improves their scalability. We summarized the key 139 
features of the 14 methods in Table 1. 140 
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 141 

Table 1| Overview of computational methods for identification of spatially variable genes.  142 
Method Spatial 

model 
Core 

methodology 
Significance 

test 
Input Gene 

ranking 
Language Refs. 

Moran’s I Graph Correlation Permutation Norm. Moran's I Python 25,24 

Spanve Graph Sampling G-test Norm. KL 
divergence 

Python 26 

scGCO Graph Graph cuts CSR model Norm. FDR Python 27 

SpaGCN Graph Clustering Wilcoxon test Norm. FDR Python 29 

SpaGFT Graph Fourier 
transform 

Wilcoxon test Norm. GFT score Python 30 

Sepal Graph Diffusion 
model 

NA Norm. Sepal score Python 31 

SpatialDE Kernel GP Chi-square Norm. FSV Python 32 

SpatialDE2 Kernel GP NA Norm. FSV Python 23 

SPARK Kernel GP Chi-square Counts Adj. p-value R 33 

SPARK-X Kernel Covariance test Chi-square Counts Adj. p-value R 37 

BOOST-GP Kernel GP BFDR Counts PPI R 35 

GPcounts Kernel GP Chi-square Counts LLR Python 36 

nnSVG Graph & 
Kernel 

GP LR  test Norm. FSV R 38 

SOMDE Graph & 
Kernel 

GP Chi-square Counts Adj. p-value Python 39 

We grouped the methods based on the underlying spatial model. KL, Kullback-Leibler;  GP, 143 
Gaussian Process; FDR, false discovery rate; HFRM, hidden Markov random field; CSR, complete 144 
spatial randomness, FSV, fraction of spatial variance; BFDR, Bayesian false discovery rate; PPI, 145 
posterior probabilities of inclusion; LR, likelihood ratio. 146 

 147 

 148 
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 149 
Fig. 1 Overview of spatial transcriptome profiling protocols, benchmarking datasets with 150 
simulation designs, and benchmarking workflow. a, Left: a schematic showing the NGS-based 151 
and imaging-based technologies for profiling spatially resolved transcriptomes. Middle: 152 
Visualization of gene expression with various patterns in spatial space. Colors refer to the 153 
expression levels of genes. Right: 3D plots showing the expression of the genes with different 154 
spatial patterns. A gene with a highly spatially correlated expression pattern is defined as a 155 
spatially variable gene (SVG; shown on the top), otherwise as a non-SVG (shown on the bottom). 156 
The x-axis and y-axis represent spatial coordinates, and the z-axis represents the expression of 157 
that gene. b, Schematics showing four approaches to simulate spatial transcriptomics datasets 158 
with ground truths. In the covariance-based simulation, we sampled data from a multivariate 159 
normal (MVN) with different covariance matrices for SVGs and non-SVGs. In the clustering-based 160 
simulation, we generated SVGs as differentially expressed genes for pre-defined spatial clusters. 161 
In the shuffling-based simulation, we first identified cluster-specific DE genes as SVGs and then 162 
generated the non-SVGs through data shuffling. In scDesign3-based simulation, we modeled a 163 
gene’s expression as a function of spatial locations via Gaussian Process regression. c, 164 
Benchmarking workflow. We compared 14 computational methods on 60 simulated, 12 spatial 165 
transcriptomics, and three spatial ATAC-seq datasets. The evaluation metrics include prediction 166 
accuracy (measured by auPRC, sensitivity, and specificity), statistical distribution similarity 167 
(measured by K-S distance), scalability (measured by memory and running time), and spatial 168 
domain detection accuracy (measured by ARI, NMI, LISI, and CHAOS). K-S, Kolmogorov-Smirnov.  169 
 170 
 171 
Benchmarking datasets and pipeline 172 
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In this study, the primary challenge we faced while benchmarking the 14 methods for detecting 173 
SVGs was the lack of established datasets with verified true labels (i.e., true SVGs and non-SVGs) 174 
in real-world scenarios. Hence, we focused on simulated data, an approach grounded in 175 
precedent studies26,27,33,37,38. Addressing the limitation of previous simulations that 176 
predominantly utilized pre-defined spatial clusters — a strategy failing to mirror the rich diversity 177 
of spatial patterns —, we formulated three innovative strategies and employed an recent 178 
simulation framework to foster a more representative simulation dataset: covariance-based, 179 
clustering-based, shuffling-based, and scDesign3-based simulation, illustrated in Fig. 1b.  180 

 181 

In the covariance-based simulations, we sampled gene expression data from a multivariate 182 
normal (MVN) distribution where the covariance matrix was pre-defined based on the spatial 183 
coordinates (see Methods). To generate SVGs with various spatial patterns, we employed 184 
multiple Gaussian kernels with diverse length scales to define the covariance matrix. We also 185 
controlled the noise levels and covariance amplitudes to introduce varying degrees of complexity 186 
(Supplementary Fig. 1). For non-SVGs, we simply used the identity matrix as the covariance 187 
matrix. In the clustering-based simulations, we first fitted a Gamma-Poisson mixture model on 188 
real-world spatial transcriptomics profiles from breast tumors with annotated spatial clusters40. 189 
We then generated synthetic data for each cluster by manipulating the log-fold change for each 190 
gene to simulate different gene expression levels and to assess the sensitivity of each SVG 191 
detection method (Supplementary Fig. 2). In the shuffling-based simulation, we downloaded a 192 
spatial transcriptomics dataset generated from the human dorsolateral prefrontal cortex 193 
(DLPFC)41 with distinct and well-annotated spatial clusters, and we obtained “true labels” based 194 
on differential expression analysis and data shuffling. Briefly, we considered the cluster-specific 195 
markers as true SVGs and randomly shuffled the spots to remove spatial correlation, creating 196 
non-spatially variable expressions (Supplementary Fig. 3a-c). Finally, we used scDesign342, a 197 
recent simulation framework for generating realistic spatial transcriptomics datasets with pre-198 
specified true SVGs (Supplementary Fig. 4). Details of the simulated datasets were provided in 199 
Supplementary Table 1. 200 

 201 

Using the simulated datasets as described above, we benchmarked 14 SVG detection methods 202 
to identify spatially variable genes, covering most of the currently available methods for this task 203 
as detailed in Table 1 (for the method selection, see Discussion). We evaluated their prediction 204 
performance based on the area under the Precision-Recall curve (AUPRC), a widely accepted 205 
metric for assessing classification accuracy. Additionally, we compared the sensitivity, specificity, 206 
and statistical calibration of the methods. Using simulated data, we also investigated the memory 207 
requirements and time scalability of the methods in relation to the number of spatial spots. 208 
Importantly, considering potential downstream applications, we evaluated the impact of the 209 
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detected SVGs on spatial domain detection and measured the performance of this task against 210 
the true labels using commonly used metrics such as the Adjusted Rand Index (ARI) and 211 
Normalized Mutual Information (NMI). Finally, we explored the possibilities of applying these 212 
methods, which were developed for spatial transcriptomics data, to spatial ATAC-seq data for 213 
detecting spatially variable peaks (SVPs). The results were evaluated based on clustering analysis 214 
using the local inverse Simpson's index (LISI) and the spatial chaos score (CHAOS) metrics18. The 215 
overall benchmarking workflow is presented in Fig. 1c. 216 

 217 
Benchmarking prediction performance of the methods  218 

We reasoned that identifying SVGs can be considered as a binary classification problem where 219 
the task is distinguishing SVGs from non-SVGs based on the statistical significance of a calculated 220 
score that should capture the degree of spatially variable pattern. Currently available methods 221 
typically provide different scores to rank the genes. For example, SpatialDE and SpatialDE2 use 222 
the fraction of spatial variance (FSV) estimated by the GP regression model, while SpaGFT defined 223 
a GFT score as the sum of the low-frequency Fourier coefficients. We first assessed if these scores 224 
could correctly separate SVGs from non-SVGs. To this end, we applied the 14 algorithms to 50 225 
simulated datasets generated using different strategies and evaluated the results using auPRC. 226 
We observed that the methods exhibited various accuracies across the benchmarking datasets 227 
(Supplementary Fig. 5a-b). Specifically, for the covariance-, clustering-, and scDesign3-based 228 
simulation datasets, most algorithms achieved a high auPRC at a modest noise level, and their 229 
performance declined as the noise level increased. On the other hand, for shuffling-based 230 
simulation data, we found instead that SPARK-X, SpatialDE2, SpaGFT, and Moran’s I showed 231 
consistently higher auPRC than alternative methods.  232 

 233 

To compare the performance, we ranked the methods based on auPRC for each experimental 234 
setting and visualized the overall results within each dataset and across all the datasets (Fig. 2a; 235 
Supplementary Fig. 5c). Remarkably, we found that SpatialDE2 outperformed all other methods 236 
on two datasets (i.e., covariance- and scDesign3-based simulations), performed the second-best 237 
on the shuffling-based simulation data, and performed the third-best on clustering-based 238 
simulation data, demonstrating its robust performance. Interestingly, our evaluation revealed 239 
that Moran’s I statistic, which solely relies on auto-correlation between spots and their 240 
neighbors, showed the second-best performance despite its relative simplicity compared to 241 
other methods (Supplementary Fig. 5c). Moreover, SPARK and SPARK-X displayed similar 242 
performance, likely because they used the same kernel functions to capture spatial dependency. 243 
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 244 
 245 
Fig. 2 Comparison of the methods using simulated datasets. a, Box plot comparing the 246 
prediction performance of the methods for covariance-based (n=30), clustering-based (n=4), 247 
shuffling-based (n=12), and scDesign3-based (n=4) simulation datasets. The y-axis represents the 248 
rank of the method based on auPRC. A higher rank denotes a higher auPRC. b, Evaluation of 249 
sensitivity and specificity of each method for a false discovery rate (FDR) of 0.05. Each dot 250 
represents an average true positive rate and a true negative rate. The error bar represents the 251 
standard deviation of the corresponding values. c, Bar plot comparing the statistical calibration 252 
evaluated by K-S distance between the distribution of empirical p-values and uniformed 253 
distribution for the null hypothesis. A lower K-S distance represents a more calibrated model. K-254 
S: Kolmogorov–Smirnov. 255 
 256 
 257 
 258 
 259 
 260 
Sensitivity, specificity, and statistical distribution under null conditions  261 
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Many of the benchmarked methods also calculate statistical significance, enabling users to 262 
identify the most relevant SVGs ad hoc. However, because they utilize distinct statistical tests 263 
based on different null hypotheses, it is unclear how sensitive and specific the results are. To 264 
address this, we subsequently analyzed the methods' sensitivity (true positive rate) and 265 
specificity (true negative rate) at a false discovery rate (FDR) of 0.05. Of note, SpatialDE2 and 266 
Sepal were excluded from this analysis because they do not provide statistical significance results.  267 

 268 

In terms of sensitivity, we found that most methods achieved high values on the datasets with 269 
low noise. However, the performance decreased when the noise level increased, a trend that 270 
mirrored our findings in the accuracy evaluation (Supplementary Fig. 5a). Intriguingly, our 271 
analysis showed that no single method consistently outperformed the rest in both sensitivity and 272 
specificity across all benchmark datasets (Fig. 2b). For example, SPARK and SpaGFT displayed high 273 
sensitivity but low specificity. In contrast, Spanve and SOMDE showed high specificity but low 274 
sensitivity (Supplementary Fig. 5-6). These findings suggest that more sophisticated statistical 275 
approaches are needed to control both false positives and false negatives. Nevertheless, we 276 
found that SpatialDE exhibited the best balance between sensitivity and specificity. 277 

 278 
Additionally, we evaluated the p-value distribution of the methods under null conditions for each 279 
dataset. To this end, we measured the Kolmogorov–Smirnov (K-S) distance between the 280 
distribution of the computed p-values and the uniform distribution (ranging from 0 to 1). The 281 
intuition is that a well-calibrated model should produce uniformly distributed p-values between 282 
0 and 1 under the null condition. Therefore, a smaller distance represents a better-calibrated 283 
approach. Our analysis revealed that the methods demonstrated various degrees of calibrations 284 
in different datasets (Fig. 2c; Supplementary Fig. 8a-b). For instance, SOMDE showed the best 285 
calibration on the clustering-based simulation dataset but was not well-calibrated on the other 286 
three datasets. Next, we aggregated the results across all the benchmarking datasets to compare 287 
the methods comprehensively. We found that Moran’s I exhibited the best calibration among 288 
the selected methods. This can potentially be attributed to that this method used permutation 289 
to estimate the background distribution, thereby accurately recapitulating the true negatives 290 
(i.e., non-SVGs). 291 
 292 
 293 
Benchmarking the scalability of the methods 294 

Subsequently, we evaluated the space and time scalability of the analyzed methods. Given that 295 
all methods independently estimate the spatial variability for each gene, the scalability, in theory, 296 
is primarily influenced by the number of spatial locations. To benchmark this aspect, we 297 
generated ten simulation datasets, each consisting of the same number of genes (n = 100) but 298 
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varying the number of spots, ranging from 100 to 40000. We applied every method to each of 299 
the ten simulation datasets and recorded the memory consumption and running time as 300 
performance metrics (see Methods).  301 

 302 

Our initial examination of memory usage revealed that most methods displayed moderate 303 
memory requirements, typically staying below 32 GB, even when confronted with datasets 304 
containing 40000 spots (Fig. 3a). For example, we observed that Moran’s I consumed less than 305 
4GB for all datasets. This favorable outcome suggests that these methods can be executed on 306 
modern laptops without encountering memory constraints. Among them, SOMDE exhibited the 307 
most efficient memory usage across all benchmarking datasets, followed by Spanve and SPARK-308 
X (Supplementary Fig. 9a). In contrast, both SPARK and SpatialDE exhibited significant increases 309 
in memory demand as the number of spots in the dataset increased. For instance, when applied 310 
to a dataset with 20000 spots, SPARK necessitated approximately 250 GB of memory, while 311 
SpatialDE consumed roughly 150 GB when dealing with a dataset containing 40000 spots. These 312 
observations can be attributed to the fact that both SPARK and SpatialDE are based on Gaussian 313 
Process regression, requiring the estimation of a covariance matrix across all spots. 314 
Consequently, this leads to a cubic scaling relationship with the number of spots, resulting in the 315 
pronounced memory consumption we observed for these two methods. 316 
 317 

Regarding running time, we observed that SOMDE achieved the best scalability again, closely 318 
followed by SPARK-X and scGCO. Notably, most methods completed their computations within a 319 
reasonable timeframe of about 2 hours (Fig. 3b; Supplementary Fig. 9b), making them suitable 320 
for practical usage. Both BOOST-GP and GPcounts exhibited poor scalability with increasing 321 
numbers of spots. For instance, BOOST-GP's computational time escalated significantly, requiring 322 
three days to process a dataset containing 20000 spots and failing to produce results within five 323 
days for a dataset with 40000 spots. Similarly, despite running on a GPU, GPcounts still require 324 
approximately 45 hours to process the largest datasets. In summary, our analysis revealed that 325 
SOMDE and SPARK-X exhibited the most favorable scalability when handling datasets with an 326 
increasing number of spots. In addition, SpatialDE2 and Moran’s I statistics, the top two 327 
performers in the evaluation of prediction accuracy, also demonstrated competitive scalability. 328 

 329 
 330 
 331 
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 332 
 333 
Fig. 3 Scalability of the methods. a, Line plot showing the memory scalability of the methods. 334 
The x-axis represents the number of spots (log10) of the input datasets with 100 genes. The y-335 
axis represents consumed memory (measured as GB) by each method. The red dash line denotes 336 
32 GB. We labeled the top four methods. b, Same as a for time scalability. The y-axis represents 337 
the consumed time (measured as hours) of each method. 338 
 339 
 340 
Benchmarking the impact of identified SVGs on spatial domain detection 341 

One of the important applications of spatially resolved transcriptomics is the identification of 342 
tissue or region substructures through domain detection analysis. In non-spatially resolved 343 
scRNA-seq data, it is a standard practice to utilize HVGs as features for cell clustering43. Therefore, 344 
we hypothesized that employing SVGs could similarly be beneficial for spatial domain detection. 345 
Using the human DLPFC datasets, we first evaluated which method might capture the most 346 
informative features for this task. To this end, we ran the methods to identify SVGs for each 347 
dataset and observed significant variations in the number of detected SVGs, highlighting 348 
discrepancies between the methods (Supplementary Fig. 10a). Specifically, scGCO, SOMDE, 349 
GPcounts, and Spanve tended to yield a low number of SVGs (<1000) across all datasets. In 350 
contrast, SpaGFT, Moran’s I, SpaGCN, and SpatialDE generated more SVGs. Because SpatialDE2 351 
and Sepal do not perform significance test, we here used the top 2000 genes based on the FSV 352 
and Sepal scores, respectively (see Methods). 353 
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 354 
Fig. 4 Impact of detected SVGs on spatial domain detection analysis. a, Box plots showing the 355 
clustering performance as evaluated using ARI. Methods are ranked by the average value. b, 356 
Same as a for NMI. 357 
 358 

Subsequently, we used the graph-based Leiden algorithm 44 (resolution = 1) to cluster the spatial 359 
spots based on the detected SVGs as input features for each method and dataset. To establish a 360 
baseline for comparison, we also selected the top 2000 HVGs, therefore discarding spatial 361 
information in this feature selection procedure. The detection results were evaluated against the 362 
annotated spatial domains using two metrics: Adjusted Rand Index (ARI) and Normalized Mutual 363 
Information (NMI) (see Methods for details). Remarkably, we observed that all methods, except 364 
for GPcounts and Sepal, exhibited improved accuracy when utilizing SVGs compared to using only 365 
HVGs (Fig. 4a-b; Supplementary Fig. 10b). This finding underscores the importance and power 366 
of incorporating spatial information into this analysis, which can better capture the spatial 367 
organization and tissue structures. Among the evaluated methods, SpatialDE2 demonstrated the 368 
highest average ARI (0.31) and NMI (0.44), further confirming its superior performance. 369 
Additionally, Moran’s I achieved the second-highest average ARI (0.303), closely followed by 370 
SPARK (0.301) and SPARK-X (0.296). Concerning the NMI metric, SPARK ranked second-best with 371 
an average value of 0.438, followed by nnSVG (0.434) and SPARK-X (0.43). In conclusion, our 372 
analysis highlighted that incorporating SVGs can notably enhance clustering accuracy in spatial 373 
transcriptomic analysis. Furthermore, it revealed that SpatialDE2, SPARK, and SPARK-X generally 374 
outperformed other methods in this context, showcasing their effectiveness in capturing 375 
meaningful spatial patterns and facilitating the discovery of tissue structures in spatial 376 
transcriptomics data. 377 
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 378 
Fig. 5 Benchmarking the methods on spatial ATAC-seq data. a, Image of a mouse embryo at days 379 
of E12.5. b, Number of detected spatially variable peaks by each method. c, Left: violin plot 380 
showing the LISI scores. Methods are sorted by the median values. Right: The bar plot shows the 381 
CHAOS score. For both metrics, a lower value represents a better performance. d, Visualization 382 
of obtained clusters by using spatially variable peaks identified by different methods. 383 
 384 
 385 
Benchmarking the methods with spatial ATAC-seq profiles 386 

Recent technological advances have allowed for profiling spatially-resolved chromatin 387 
accessibility45,46. However, specific methods for detecting spatially variable open chromatin 388 
regions (i.e., spatially variable peaks, abbreviated as SVPs) are currently lacking. In this section, 389 
we aimed to investigate the feasibility of applying methods developed for SVG detection to 390 
analyze spatial chromatin accessibility profiles. For this, we downloaded spatial ATAC-seq data 391 
from mouse gestational development at embryonic days of E12.546 (Fig. 5a). Following data 392 
processing, we obtained a dataset consisting of 2246 spatial spots and 34460 peaks representing 393 
open chromatin regions (see Methods). Subsequently, we tried to employ each of the 14 394 
methods to detect SVPs. However, given that these methods were not specifically designed for 395 
this task, we encountered several challenges. BOOST-GP and GPcounts failed to produce results 396 
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even after 120 hours of running, due to the fact the number of peaks exceeded substantially the 397 
number of genes, highlighting the limitation of these two methods in terms of scalability. 398 
Additionally, SPARK encountered memory issues and did not yield any results. As in the previous 399 
section, we wanted to investigate if SVPs recovered from these procedures could boost spatial 400 
clustering. Since SpatialDE2 and Sepal do not provide statistical results, we here used the top 401 
20000 peaks. For other methods, we determined the peaks at the FDR of 0.05. Importantly, we 402 
observed considerable variation in the number of SVPs detected by different methods (Fig. 5b). 403 
For example, nnSVG and SOMDE did not identify any significant peaks, indicating their limitations 404 
in capturing spatial variability in this context. In contrast, SpaGFT identified almost all the peaks 405 
as significant as SVPs (32079 out of 34460) 406 

 407 

In the subsequent step, we used Leiden-based clustering analysis—utilizing the SVPs to group the 408 
spots—to evaluate the quality of SVPs discovered by each method. We excluded Spanve and 409 
scGCO for this analysis as they only detected 39 and 26 SVPs. Because the ground truth is 410 
unavailable in this dataset, we measured the spatial locality and continuity of the clusters using 411 
two metrics: the local inverse Simpson's index (LISI) and the spatial chaos score (CHAOS)18. The 412 
underlying assumption is that a more accurate identification of SVPs would yield more 413 
continuous and cohesive clusters18. We also included the results generated using all the peaks as 414 
a baseline. Interestingly, we observed that SpatialDE2 outperformed other methods (median LISI 415 
= 4.8; CHAOS = 0.1), indicating that it has good potential to identify SVPs (Fig. 5c-d). Surprisingly, 416 
our analysis revealed that using all peaks yielded the second-best performance (median LISI = 417 
4.87; CHAOS = 0.102). This finding suggests that more specialized methods are required to 418 
analyze spatial chromatin accessibility data. Similar results were also observed from the spatial 419 
ATAC-seq from embryos at E13.5 and E15.5 (Supplementary Fig. 11). 420 

 421 
Discussion 422 

Recently, over a dozen computational methods have been developed to identify spatially variable 423 
genes for spatial transcriptomics data. These methods diverge substantially in several aspects, 424 
including the assumptions in modeling spatial relationships between cells (graph vs. kernel), the 425 
algorithms to estimate spatial variation (e.g., auto-correlation vs. Gaussian Process regression vs. 426 
graph cut), the statistical tests to determine significances (e.g., permutation test vs. Wilcoxon 427 
test vs. Chi-square test), the choice of input data (raw counts vs. normalized data), and the 428 
programming languages (Python vs. R) (Table 1). These factors complicate the selection of 429 
methods for users, a situation exacerbated by the current absence of systematic benchmarking 430 
of the methods’ performance. 431 

 432 
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In this study, we systematically evaluated the performance of 14 methods for detecting SVGs 433 
using simulated and real-world data. Compared to previous works20,22, we used four different 434 
approaches to generate simulation data. The rationale behind this quadruple simulation strategy 435 
is to minimize potential biases and prevent the undue advantages of certain methods on specific 436 
types of simulated data. For instance, methods like SpatialDE, which models spatial covariance 437 
in their algorithmic framework, might overestimate performance when evaluated on covariance-438 
based simulation data. On the other hand, methods such as SpaGCN can benefit from clustering-439 
based simulation as this method utilizes clusters to identify SVGs. Moreover, the shuffling-based 440 
simulation enables the testing of methods against real-world spatial transcriptomics data. In 441 
addition, scDesign3-based simulation can generate in silico spatial transcriptomics data, 442 
enhancing our simulation with a method capable of explicitly accounting for dependencies 443 
between genes. Overall, our benchmark datasets covered a variety of scenarios and represented 444 
a useful resource for developing and testing methods in the future. 445 

 446 

Our evaluation results revealed that SpatialDE2 generally outperformed other methods by 447 
providing a high average auPRC across various experimental settings, however, this method does 448 
not provide any statistical significance for the recovered genes. Interestingly, we found that 449 
Moran’s I achieved the second-best prediction performance, although it is simply based on auto-450 
correlation between spots and their spatial neighbors, which has been neglected in previous 451 
benchmarks23,26,27,30,32,33,37. Going forward, it would be prudent to include Moran’s I as a baseline 452 
in future SVG benchmarking. Additionally, we observed comparable effectiveness between 453 
kernel-based and graph-based methods on simulation data and real-world datasets, suggesting 454 
their capability to effectively capture similar spatial dependencies. Regarding the sensitivity and 455 
specificity, we observed that no single method consistently outperformed the others for both 456 
metrics on all benchmarking datasets, indicating that robustly estimating statistical significance 457 
remains a difficult problem. Our analysis highlighted the superior p-value calibration of Moran’s 458 
I, which is attributable to their use of permutation tests that produce well-calibrated statistical 459 
significance.  460 

 461 

Scalability is another crucial aspect to consider, especially with the emergence of large-scale 462 
spatially-resolved profiling methods capable of capturing sub-cellular resolution and 463 
accommodating an increasing number of spots, exemplified by Stereo-seq3 (> 104 spots). Our 464 
investigations revealed notable distinctions in scalability between graph-based and kernel-based 465 
methods, with the former generally outperforming the latter. Among the methods we examined, 466 
SOMDE stood out as the most efficient in both memory utilization and running time 467 
(Supplementary Fig. 9). It is important to note that SOMDE initially clusters adjacent data points 468 
into graph nodes and then employs GP regression to identify SVGs in a node-centric manner. This 469 
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strategy significantly mitigates the complexities associated with both time and memory. SPARK-470 
X, as a kernel-based method, demonstrated comparable performance to SOMDE by directly 471 
comparing the expression and spatial distance covariance matrix rather than using GP regression 472 
to estimate spatial variation, unlike its predecessor SPARK. Moreover, we found that SpatialDE2 473 
demonstrated reasonable scalability. Given its superior prediction performance, we envision that 474 
this method could be the default one to use in practice. Of note, this method provides no 475 
statistical significance for its SVG identification results. Therefore, we recommend selecting the 476 
top genes based on the fraction of spatial variation (FSV) for downstream analysis. In summary, 477 
our findings not only underscore the significance of scalability in the context of SVG detection 478 
but also shed light on the relative advantages of different analytical methods when processing 479 
large-scale datasets. Future methods should consider scalability alongside prediction 480 
performance as advanced spatial profiling techniques produce better quality and larger quantity 481 
of data.  482 

 483 

In addition, we also demonstrated that the incorporation of SVGs identified by 12 out of the 14 484 
methods led to a notable enhancement in spatial domain detection when applied to real data 485 
with annotated clusters, as opposed to relying solely on HVGs. These results imply the 486 
significance of capturing spatial information in improving clustering analysis by incorporating 487 
more comprehensive information on the architecture of complex tissues and tumors. As novel 488 
technologies like Slide-Tag47 emerge, enabling the simultaneous acquisition of single-cell 489 
measurements and spatial data, we anticipate a surge in the adoption and popularity of SVG 490 
identification tools in various downstream analysis tasks. 491 

 492 

Finally, we also showed that some methods can be applied to other modalities like Spatial-ATAC 493 
seq, facilitating the identification of potential SVPs. We use the term “potential” due to the 494 
absence of a ground truth; instead, we leveraged the SVPs for clustering and evaluated the spatial 495 
locality and continuity of the obtained clusters. It is essential to note that not all methods were 496 
capable of detecting SVPs due to limitations in memory or algorithmic complexity. Therefore, 497 
there is a pressing need to develop novel methodologies or modify existing ones to make them 498 
applicable to spatial-ATAC seq data. Tools focused on discerning SVPs have the potential to reveal 499 
the regulatory elements that govern gene expression profiles within specific spatial sub-regions. 500 
This, in turn, can enhance our understanding of the regulatory mechanisms governing SVGs and, 501 
consequently, the spatial organization of tissues and tumors. In the future, integrating SVGs and 502 
SVPs through novel algorithms holds tremendous potential to facilitate the construction of 503 
accurate spatially aware gene regulatory networks.  504 

 505 
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Although we have covered a large number of available methods (n = 14) in the present study, 506 
there are still some methods that are not included. This is because either the repository has not 507 
been maintained for a long time, resulting in outdated dependencies that make it difficult to 508 
install and execute, for instance, trendsceek48, or the method was unavailable during the 509 
preparation of our manuscript, for example, BSP49. Another limitation of our work is its exclusive 510 
focus on spatial transcriptomics and spatial ATAC-seq, despite the advent of other spatially-511 
resolved omics data, including spatial proteomics. Future directions may also include testing and 512 
or adapting SVG detection methods on these modalities. Nonetheless, our benchmarking study 513 
provides a detailed evaluation of various SVG detection methods across simulated and real-world 514 
datasets of spatial transcriptomics and spatial-ATAC-seq.  515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
Methods 544 
 545 
Simulation datasets 546 
We used for different approaches to generate simulated spatial transcriptomics data with ground 547 
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truth. The details are described below. 548 
 549 

Covariance-based simulation. This simulation is based on a pre-defined covariance matrix. 550 
Specificially, given 𝑚 spatial locations where each location is represented by its coordinates 𝑥, 551 
for each gene, we first calculated a covariance matrix 𝐾 ∈ 	𝑅!×! based on multiple Gaussian 552 
kernels: 553 

𝐾(𝑎, 𝑏) = -
#

$%1

𝛽$ ⋅ 	𝑒𝑥𝑝(
||𝑥(𝑎) 	− 	𝑥(𝑏)||2

2 ⋅ 𝑙$
2 ) 554 

(𝛽1, 𝛽2, ⋯ , 𝛽#) 	∼ 	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1/𝑁,⋯ , 1/𝑁) 555 

where 𝑥(𝑎) and 𝑥(𝑏) denote two spatial locations, 𝑁 is the number of kernels, 𝛽$ is the weight 556 
of the 𝑛th kernel and is sampled from a Dirichlet distribution, 𝑙$ denotes the length scale. By 557 
sampling 𝛽	for each gene, we obtained different spatial covariance matrices.  558 

 559 

We next sampled expression 𝜆& 	 ∈ 	𝑅! for gene 𝑗 across all locations from a multivariate normal 560 
distribution (MVN) as follows: 561 

𝑙𝑜𝑔(𝜆&) 	∼ 	 (1	 − 	𝛼) ⋅ 𝑀𝑉𝑁(𝜇, 𝜎2 ⋅ 𝐾) 	+ 	𝛼 ⋅ 𝑀𝑉𝑁(𝜇, 𝜎2 ⋅ 𝐼) 562 

where 𝜎2 represents the amplitude of the spatial covariance; 𝐼 is an identity matrix (i.e. with zeros 563 
everywhere except on the diagonal); 𝛼 ∈ 	 [0, 1] denotes the noise level in simulated gene 564 
expression. When 𝛼	 = 1, signals are sampled from an MVN without spatial correlation, thus they 565 
are considered non-spatially variable genes. Because some methods can only work on raw 566 
counts, we next converted the data to counts as follows: 567 

𝜆'&
ʹ 	= 	

𝜆'&
∑&%1 𝜆'&

 568 

𝑦'& 	∼ 	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠 ⋅ 𝜆'&
ʹ	) 569 

where 𝑠 denotes the library size and is set to 10,000 for all locations. 570 

 571 

To evaluate the prediction accuracy, we generated simulation data on a 50 by 50 grid layout (in 572 
a total of 2500 spots) by setting 𝑁 = 5 and using 𝑙	 ∈ [1, 3.25, 5.5, 7.75, 10] to generate different 573 
covariance matrices. Moreover, we used five noise levels 𝛼 ∈ [0, 0.2, 0.4, 0.6, 0.8]and six different 574 
amplitudes of the covariance matrix 𝜎	 ∈ 	 [0.5, 1, 1.5, 2, 2.5, 3] to generate 30 simulation datasets 575 
(Supplementary Fig. 1). We generated 100 SVGs and 100 non-SVGs for each dataset using the 576 
above process. 577 
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 578 

To benchmark the scalability of the methods with the number of spatial spots, we generated ten 579 
simulation datasets as described above. Each dataset had the same number of genes (n = 100) 580 
and a different number of spots (n = 100, 500, 1000, 2000, 5000, 7500, 10000, 15000, 20000, 581 
40000). 582 

 583 

Clustering-based simulation. This simulation is based on spatial data with annotated clusters. To 584 
generate a simulation that can recapitulate a real ST dataset, we followed the two-step strategy 585 
proposed in SRTsim50, i.e., first estimating the parameters required for the simulation from a real 586 
ST dataset and then generating a synthetic dataset based on the estimated parameters. 587 
Specifically, given a real-world dataset with a count matrix 𝑌	 ∈ 𝑅!×$ where 𝑚 is the number of 588 
spatial locations, 𝑛 is the number of genes, and 𝑦'&  is the expression of gene 𝑗 in spatial location 589 
𝑖, we modeled the count 𝑦'&  using the following process: 590 

𝑦'& 	∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠' 	 ⋅ 	𝜆'&
ʹ) 591 

𝜆'&
ʹ 	= 	

𝜆'&
∑&%1 𝜆'&

 592 

𝑠' ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 593 

𝜆'& 	∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 594 

We denoted 𝑠'  the total number of reads in location 𝑖 and assumed that it follows a Log-Normal 595 
distribution parameterized by 𝜇 and 𝜎	. We denoted 𝜆'&  the log normalized mean expression of 596 

gene 𝑗 sampled from a Gamma distribution parameterized by 𝛼 and 𝛽. 𝜆'& ʹ represents the 597 
proportion of gene 𝑗 at the location 𝑖. We estimated the parameters 𝜇, 𝜎, 𝛼, and 𝛽 using the 598 
maximum likelihood algorithm based on the count matrix 𝑌 and log normalized matrix 𝑌$()! 599 
which was generated using functions pp.normalize_total and pp.log1p from the scanpy 600 
package51. 601 

 602 

Once we inferred the parameters, we used them to generate synthetic data by sampling data 603 
using the above process. To obtain SVGs, we randomly selected a number of genes for each input 604 
spatial cluster and multiplied the sampled mean expression by a differential factor. Since the 605 
clusters are spatially associated, these marker genes are considered as SVGs. For non-SVGs, the 606 
differential factors were set to one. Using breast tumors as input, we generated simulation data 607 
with 100 SVGs and 100 non-SVGs. We varied the differential expression levels from 0.5 to 2, 608 
generating four simulation datasets (Supplementary Fig. 2).  609 
 610 
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Shuffling-based simulation. To test the methods against real-world data, we here created true 611 
labels through data shuffling. For this, we downloaded the LIBD human dorsolateral prefrontal 612 
cortex (DLPFC) spatial transcriptomics data from http://research.libd.org/spatialLIBD. The data 613 
was generated with the 10x Genomics Visium platform and included 12 samples. Each sample 614 
was manually annotated as one of the six prefrontal cortex layers (L1-6) and white matter (WM). 615 
We filtered the genes by the number of detected spots (>500). Next, we identified marker genes 616 
for each cluster with differential expression analysis (t-test, p-value < 0.01, and logFC > 1). These 617 
marker genes were considered true positives (i.e., spatially variable genes). Next, we randomly 618 
permuted the spots to remove spatial correlation to generate uniformly distributed gene 619 
expression profiles. We considered these genes as true negative (i.e., non-spatially variable 620 
genes). This resulted in an average number of 549 true labels across all the samples 621 
(Supplementary Fig. 3). 622 
 623 

scDesign3-based simulation. scDesign3 aims to generate realistic in silico data by first learning 624 
interpretable parameters from real data and then generating synthetic data. We installed 625 
scDesign3 (v0.99.6) from https://github.com/SONGDONGYUAN1994/scDesign3 and followed 626 
the tutorial to generate four datasets with different numbers of true positives ranging from 50 627 
to 200 (Supplementary Fig. 4). 628 
 629 
 630 
Identify SVGs with computational methods. 631 

We described below the details of running the methods to identify SVGs. 632 

 633 

Moran’s I. Moran’s I measures the correlation of gene expression between a spatial location and 634 
its neighbors25. We computed Moran’s I score using Squidpy (v1.2.3)24 by following the tutorial: 635 
https://squidpy.readthedocs.io/en/stable/auto_examples/graph/compute_moran.html. Spatial 636 
neighbors were found using the function spatial_neighbors, and scores were estimated using the 637 
function spatial_autocorr. We set parameter n_perms to 100 to obtain the statistical significance 638 
and used 0.05 as the threshold for the adjusted p-value to identify significant SVGs. To compute 639 
auPRC, we used the Moran’s I score to rank genes. 640 

 641 

Spanve. Spanve (Spatial Neighborhood Variably Expressed Genes) is a non-parametric statistical 642 
approach for detecting SVGs26. Similar to Moran’s I, this method uses the difference between a 643 
location and its spatial neighbors to estimate the spatial variation. Specifically, for each gene, it 644 
computes Kullback-Leibler divergence between space-based and randomly sampled expressions. 645 
The significance is calculated by the G-test. We installed Spanve (v0.1.0) and ran the method by 646 
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following the tutorial: https://github.com/zjupgx/Spanve/blob/main/tutorial.ipynb. Genes were 647 
ranked by FDR to compute auPRC. We used 0.05 as the threshold for FDR to select significant 648 
SVGs. 649 

 650 

SpaGFT. SpaGFT is a hypothesis-free Fourier transform model to identify SVGs30. It decomposed 651 
the signal from the spatial domain to the frequency domain based on a spatial KNN graph. and 652 
estimated a GFTscore per gene on the Fourier coefficient for low-frequency signals. We installed 653 
SpaGFT (v0.1.1.4) and ran it by following the tutorial: https://spagft.readthedocs.io/en/latest. 654 
We computed auPRC for this method using GFTscore and selected significant SVGs using q-value 655 
< 0.05.  656 

 657 

SpaGCN. SpaGCN is a graph convolutional network (GCN)-based approach that integrates gene 658 
expression, spatial location, and histology to identify SVGs29. It first identifies spatial domains 659 
through clustering and then detects SVGs that are enriched in each domain. We installed SpaGCN 660 
(v1.2.5) and ran the method by following the tutorial: 661 
https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.ipynb. We used the 662 
adjusted p-values to rank genes for computing auPRC and select significant SVGs (<0.05). 663 

 664 

scGCO. scGCO (single-cell graph cuts optimization) utilizes a hidden Markov random field (HMRF) 665 
with graph cuts to identify SVGs27. We installed scGCO (v1.1.0) and executed the method by 666 
following the tutorial: https://github.com/WangPeng-667 
Lab/scGCO/blob/master/code/Tutorial/scGCO_tutorial.ipynb. To compute auPRC, we used FDR 668 
to rank the genes. To select significant SVGs, we used 0.05 of FDR as threshold. 669 

 670 

Sepal. Sepal assesses the degree of randomness exhibited by the expression profile of each gene 671 
through a diffusion process and ranks the genes accordingly31. We computed the Sepal score 672 
using Squidpy (v1.2.3) by following the tutorial: 673 
https://squidpy.readthedocs.io/en/stable/auto_examples/graph/compute_sepal.html. We used 674 
the sepal score to rank the genes to calculate auPRC.  675 

 676 

SpatialDE. SpatialDE is one of the pioneer methods for identifying SVGs32. It models the 677 
normalized spatial gene expression using the Gaussian process regression and estimates the 678 
significance by comparing the models with and without spatial covariance. We installed 679 
SpatialDE~(v1.1.3) with pip and processed the data with the functions NaiveDE.stabilize and 680 
NaiveDE.regress_out. We ran the function SpatialDE.run to obtain results and used the fraction 681 
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of spatial variance (FSV) to compute auPRC. To select significant SVGs, we used the adjusted p-682 
values (< 0.05). 683 

 684 

SpatialDE2. SpatialDE2 is a flexible framework for modeling spatial transcriptomics data that 685 
refines SpatialDE by providing technical innovations and computational speedups23. We obtained 686 
the source code from https://github.com/PMBio/SpatialDE and estimated spatial variance using 687 
the function SpatialDE.fit. Similar to SpatialDE, we ranked the genes by FSV to compute auPRC.  688 

 689 

SPARK. SPARK extended the computation framework proposed in SpatialDE by directly modeling 690 
the raw count data using a generalized linear spatial model (GLSM) based on Poisson 691 
distribution33. We obtained SPARK (v1.1.1) from https://github.com/xzhoulab/SPARK and ran the 692 
method by following the tutorial https://xzhoulab.github.io/SPARK/02_SPARK_Example. We 693 
used the adjusted p-values to compute auPRC and select significant SVGs (< 0.05). 694 

 695 

SPARK-X. SPARK-X is a non-parametric covariance test method based on multiple spatial kernels 696 
for modeling sparse count data from spatial transcriptomic experiments37. We ran SPARK-X 697 
(v1.1.1) by following the tutorial: https://xzhoulab.github.io/SPARK/02_SPARK_Example. We 698 
used the adjusted p-values to compute auPRC and select significant SVGs (< 0.05). 699 

 700 

BOOST-GP. BOOST-GP is a Bayesian hierarchical model to analyze spatial transcriptomics data 701 
based on zero-inflated negative binomial distribution and Gaussian process35. We downloaded 702 
the source codes of BOOST-SP from https://github.com/Minzhe/BOOST-GP and ran the function 703 
boost.gp by setting the parameters iter to 100 and burn to 50. We used p-values to compute 704 
auPRC and select significant SVGs using 0.05 as the threshold. 705 

 706 

GPcounts. GPcounts implemented Gaussian process regression for modeling counts data using a 707 
negative binomial likelihood function36. We obtained the source codes of GPcounts from 708 
https://github.com/ManchesterBioinference/GPcounts and followed the tutorial 709 
https://github.com/ManchesterBioinference/GPcounts/blob/master/demo_notebooks/GPcoun710 
ts_spatial.ipynb. To compute auPRC, we ranked the genes by the log-likelihood ratio (LLR), 711 
representing the ratio between the dynamic and constant (null) models. Significant SVGs were 712 
selected based on the q-values with 0.05 as the threshold. We noted that GPcounts sometimes 713 
failed to generate results for certain genes, especially when applied to real-world datasets. In this 714 
case, we set the LLR as 0 and the q-value as 1. 715 
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 716 

nnSVG. nnSVG is a method built on nearest-neighbor Gaussian processes to identify SVGs38. We 717 
installed the package (v1.2.0) from Bioconductor and ran the method by following the tutorial 718 
https://bioconductor.org/packages/release/bioc/vignettes/nnSVG/inst/doc/nnSVG.html. We 719 
used the fraction of spatial variance estimated by the method to compute auPRC. Significant 720 
SVGs were selected based on adjusted p-values using 0.05 as the threshold. 721 

 722 

SOMDE. SOMDE uses a self-organizing map (SOM) to cluster neighboring locations into nodes 723 
and then uses a Gaussian process to fit the node-level spatial gene expression to identify SVGs39. 724 
We installed SOMDE (v0.1.7) with pip and followed the tutorial 725 
https://github.com/WhirlFirst/somde/blob/master/slide_seq0819_11_SOM.ipynb to run the 726 
method. We ranked the genes by FSV to compute auPRC and selected significant SVGs based on 727 
the q-values using 0.05 as the threshold. 728 
 729 
Benchmarking prediction performance, sensitivity, and specificity 730 
We applied each method on the simulated datasets to identify SVGs. For comparison, we 731 
computed the auPRC using the function pr.curve from the R package PRROC52 by ranking the 732 
prediction for each method accordingly (see Table 1). We calculated the true positive rate 733 
(sensitivity) and true negative rate (specificity) at the false discovery rate of 0.05 as follows: 734 

𝑇𝑃𝑅	 = 	
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁 735 

𝑇𝑁𝑅	 = 	
𝑇𝑁

𝑇𝑁	 + 	𝐹𝑃 736 

where 𝑇𝑃 denotes the number of true positives, 𝐹𝑁 denotes the number of false negatives, 𝑇𝑁 737 
denotes the number of true negatives and 𝐹𝑃 denotes the number of false positives. For 738 
SpatialDE2 and Sepal, we selected the top n genes (n = the number of true positives) as significant 739 
SVGs to sensitivity and specificity. 740 

 741 
Benchmarking scalability with the number of spatial spots 742 
We used the Snakemake53 workflow (v7.25.2) management system to evaluate the scalability of 743 
each method with the number of spatial spots. For this, we generated simulation datasets with 744 
100 genes and various numbers of spots from 100 to 40000 (see above). Next, we ran each 745 
method on a dedicated HPC node with AMD EPYC 7H12 64-Core Processor using the same 746 
computational resource (1TB memory, 120 hours, and 10 CPUs) defined by the Snakemake 747 
pipeline. For methods (i.e., GPcounts and SpatialDE2) that require a graphics processing unit 748 
(GPU) for running, we used an A100 with 40GB of memory. We measured the memory usage and 749 
running time using the benchmark directive provided by the Snakemake tool (--benchmark). 750 
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Notably, we could not run SPARK for datasets with 40000 spots because of memory issues. 751 
Moreover, BOOST-GP did not generate results for datasets with 20000 and 40000 spots within 752 
120 hours. 753 
 754 
Benchmarking impact of identified SVGs on spatial domain detection analysis 755 
We utilized the human DLPFC datasets to evaluate the impact of identified SVGs on spatial 756 
domain detection. We ran the methods and determined the SVGs based on an FDR 0.05. Since 757 
SpatialDE2 and Sepal did not provide statistical significance, we selected the top 2000 genes 758 
based on the FSV and Sepal scores, respectively. Because BOOST-GP failed to produce any results 759 
after 120 hours of running, we excluded it from this evaluation. In addition, we also identified 760 
the highly variable genes using the function scanpy.pp.highly_variable_genes and used the top 761 
2000 as our baseline for comparison. We next used these genes to perform dimension reduction 762 
using the function scanpy.tl.pca and generated a k-nearest-neighbor graph with 763 
scanpy.pp.neighbors. The clustering was conducted using the function scanpy.tl.leiden 764 
(resolution = 1). We next compared the obtained clusters (denoted by 𝑋) with the annotated 765 
layers (denoted by 𝑌). We assessed the clustering quality with Adjusted Rand Index (ARI): 766 

𝐴𝑅𝐼(𝑌, 𝑋) 	= 	
∑'& 	

𝑐'&
2 	− 	(	∑'

𝑎'
2 ∑&

𝑏&
2 		)	/	

𝑛
2

1
2 (∑'

𝑎'
2 	+ 	∑&

𝑏&
2 ) 	−		 (	∑'

𝑎'
2 ∑&

𝑏&
2 		)	/	

𝑛
2

 767 

where 𝑐'&  denotes the number of common spots for each obtained cluster 𝑖 and ground truth 𝑗, 768 
𝑎' 	= 	∑*& 𝑐'&, and 𝑏' 	= 	∑)' 𝑐'&. We also calculated the Normalized Mutual Information 769 
(NMI) for comparison as follows: 770 

𝑁𝑀𝐼(𝑌, 𝑋) 	= 	
2 ⋅ 𝐼(𝑌, 𝑋)

𝐻(𝑌) 	+ 	𝐻(𝑋) 771 

where 𝐻 represents entropy of the partition and 𝐼 represents the mutual information between 772 
clusters and the true labels. Both ARI and NMI have values from 0 to 1, with 1 indicating that the 773 
two partitions are the same and 0 indicating that the two are independent. 774 
 775 
Benchmarking the methods for spatial ATAC-seq data 776 

We downloaded spatial ATAC-seq data of mouse embryos at stages E12.5, E13.5, and E15.5 from 777 
GEO with accession number GSE214991. We first identified open chromatin regions by peak 778 
calling on all the spots using MACS254 (--nomodel --nolambda --shift -75 --extsize 150) and 779 
obtained 34460 (E12.5), 31099 (E13.5), and 69896 (E15.5) peaks for each sample, respectively. 780 
We next built a cell-by-peak count matrix using the fragments and peaks as input based on the 781 
function FeatureMatrix from the Signac55 package. We only retained the spots that were located 782 
on the tissue. 783 

 784 
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We ran each method on the cell-by-peak matrix of spatial ATAC-seq data from mouse embryos 785 
to detect spatially variable peaks. For those methods that require normalized data as input, we 786 
used TF-IDF (Term Frequency - Inverse Document Frequency) for normalization. Of note, BOOST-787 
GP and GPcounts failed to produce results after 120 hours, and we could not obtain results from 788 
SPARK due to memory issues. Therefore, these three methods were excluded from this 789 
evaluation. We selected the significant variable peaks using an FDR of 0.05 for the rest of the 790 
methods. For SpatialDE2 and Sepal, we opted for the top 20000 peaks since they did not provide 791 
statistical significance. We next used the spatially variable peaks to cluster the spots. Because the 792 
true clusters were unavailable, we evaluated the clustering performance by following ref.18 based 793 
on the local inverse Simpson's index (LISI) and the spatial chaos score (CHAOS). The LISI score was 794 
calculated as follows: 795 

𝑆	 = 	
1

∑+,%1 𝑝(𝑘)
 796 

where 𝑝(𝑘) is the probability that the cluster label 𝑘 is in the local neighborhood, and 𝐾 is the 797 
total number of clusters. A lower LISI score indicates more homogeneous neighborhood clusters 798 
of the spots. The CHAOS score was calculated as follows: 799 

𝐶𝐻𝐴𝑂𝑆	 = 	
∑+,%1 ∑$!',& 𝑑,'&

𝑁  800 

where 𝑑,'&  is the Euclidean distance between the spots 𝑖 and 𝑗 in the cluster 𝑘 and  𝑁 is the total 801 
number of spots. A lower CHAOS indicates better spatial continuity. 802 
 803 
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Data Availability 924 
All the datasets used in this study are publicly available. The human DLPFC data were downloaded 925 
from http://research.libd.org/spatialLIBD. The breast tumor data were downloaded from 926 
https://github.com/almaan/her2st. Spatial-ATAC-seq data were obtained from the Gene 927 
Expression Omnibus (GEO) with the accession number GSE214991. 928 
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Code Availability 930 
The code for running the benchmarked methods is available on GitHub: 931 
https://github.com/pinellolab/SVG_Benchmarking. The code for generating the simulation 932 
datasets is available on Github: https://github.com/pinellolab/simstpy. 933 
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