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Abstract: Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is
not yet understood. I propose that cytokine storms result from synergistic interactions among
Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due
to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This
proposition is based on eight linked types of evidence and their logical connections. (1) Severe
cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased
TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3,
TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation
pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its
mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and
fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with
bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from
mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both
bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral
and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate
activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical,
experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19)
are discussed, and broader implications are outlined for understanding why other syndromes such
as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm
symptoms.

Keywords: cytokine storm; cytokine release syndrome; hyperinflammation; innate immunity; syn-
ergy; COVID-19; SARS-CoV-2; Toll-like receptors (TLR); nucleotide-oligomer-recognition-domain-
like receptors (NLR); bacterial coinfection; fungal coinfection; acute lung injury (ALI); acute respira-
tory distress syndrome (ARDS); sepsis; melatonin; TLR antagonists

1. Introduction: The Problem of What Causes Cytokine Overproduction Syndromes

Some patients experiencing severe COVID-19, the disease caused by the SARS-CoV-2
beta coronavirus, develop what is sometimes described as a “cytokine storm” or “cytokine
release syndrome” characterized by the overstimulation of macrophages, dendritic cells
and monocytes producing the cytokines interleukin 1 (IL1), interleukin 6 (IL6), interleukin
10 (IL10), tumor necrosis factor alpha (TNF-α), tumor necrosis factor beta (TNF-β) and
ferritin [1–6]. These cytokines produce eosinopenia and lymphocytopenia characterized by
low counts of eosinophils, CD8+ T cells, natural killer (NK) and naïve T-helper cells, simul-
taneously inducing naive B-cell activation, increased T-helper cell 17 (Th17) lymphocyte
differentiation and the stimulation of monocyte and neutrophil recruitment [1–6]. Oddly,
however, the release of cytokines interferon alpha (IFNα) and interferon gamma (IFNγ)
are severely impaired in severe COVID-19 [1–6]. The result is a generalized, nonspecific
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hyperinflammatory response in the lungs resulting in acute respiratory distress syndrome
(ARDS) with the concomitant activation of nonspecific inflammatory reactivity in the circu-
latory system and other organs, sometimes leading to multiorgan failure, leaky vasculature,
coagulopathies and strokes [1,7]. Cytokine storms are, however, rare in COVID-19: a
third of polymerase chain-reaction-positive SARS-CoV-2-infected people are symptom-
free; most experience mild-to-moderate symptoms that are treatable on an out-patient
basis, while only two to nine percent develop ARDS concomitant with clearly elevated
cytokine levels that require hospitalization and intensive care unit treatment [8–10]. It is
not known what triggers the nonspecific hyperinflammatory response in this minority of
COVID-19 patients. Lacking a clear understanding of the mechanism or mechanisms at
work, therapeutic approaches have had to develop on an ad hoc basis.

The problem of what causes “cytokine storms” or “cytokine release syndromes” ex-
tends beyond COVID-19 more generally to sepsis, acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS) associated with other respiratory infections [11–19].
All three are, like severe COVID-19, characterized by a release of unusual concentrations of
cytokines and complicated by dysregulated and nonspecific hyperinflammatory responses
that can lead to systemic complications [11–13]. Unfortunately, no agreed-upon definition
of what constitutes a cytokine storm exists [14], complicating the search for clear diag-
nostic criteria and mechanisms to explain their causation. Thus, for example, IL-6 and
interleukin 1RA (IL-1RA) increases were similar in some studies of influenza-associated
ALI/ARDS patients and COVID-19 ARDS patients, but, as noted above, the interferon
activity was significantly depressed in COVID-19 patients compared with influenza ARDS
patients [15,16]. In other studies, while IL-6, IL-8 and TNF-α were significantly raised
above their normal levels among COVID-19 ARDS patients, the increases were significantly
less than in non-COVID ARDS or sepsis patients [17,18]. Whereas typical ARDS has an
onset of less than one week after infection, COVID-19 ARDS averages eight to twelve
days and tends to be less destructive to the lung epithelium [7]. Tumor necrosis factor-α
(TNF-α) and interleukin 6 (IL-6) production by circulating monocytes is sustained in severe
COVID-19 patients but not in bacterial sepsis or influenza-associated cytokine storms
in which the monocyte numbers and function are impaired [16,19]. Overall, COVID-19
patients as a group (including mild and moderate cases) have ten to a hundred times lower
cytokine levels than ALI/ARDS and sepsis patients [20]. Thus, not all COVID-19 patients
experience cytokine storms and not all cytokine overproduction syndromes are the same.
Accounting for who is susceptible to cytokine overproduction syndromes and their diverse
characteristics is an important challenge for defining which COVID-19 patients are at risk
and how to best treat them. Such understanding may also improve the diagnosis and
treatments for ALI/ARDS and sepsis patients, as well.

The purpose of this paper is therefore to review the literature related to the innate
immune receptors involved in activating cytokine release pathways and to develop a gener-
alized model of how different viruses, bacteria and fungi associated with severe COVID-19,
influenza-associated ALI/ARDS and sepsis affect these receptor systems. Particular empha-
sis will be placed on Toll-like receptors (TLR), nucleotide-oligomer domain-like receptors
(NLR), NLR family pyrin domain containing proteins (NLRP) and retinoic acid inducible
gene 1-like receptors (RIG or RLR) and their synergistic or antagonistic interactions when
activated by single microbes and by polymicrobial infections. While a very robust litera-
ture exists on the innate receptor activation patterns (IRAP) of individual pathogens, this
literature has not previously been integrated or compared in any systematic fashion, so as
to develop a comprehensive model for analyzing such activation patterns. The resulting
model demonstrates that severe COVID-19, influenza-associated ALI/ARDS and sepsis
each induce different IRAP and that variations also exist even within these broader patterns
that help to explain the diversity of cytokine storm or cytokine release syndrome variations.
This model may also be useful for thinking about how best to prevent or treat such cytokine
overproduction syndromes.
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2. Innate Immune System Receptor Activation in Cytokine Storms
2.1. The Presence of Multiple Concurrent Infections in Cytokine Release Syndromes

One assumption of the innate receptor activation pattern (IRAP) model is that multi-
ple, concurrent infections explain the differences in observed cytokine storms that occur in
severe COVID-19, influenza-associated ALI/ARDS and sepsis and also differentiate these
cytokine-release syndromes from asymptomatic or mild COVID-19 and influenza virus
or bacterial infections that do not lead to ALI/ARDS or sepsis. Influenza-virus-associated
ALI/ARDS is found almost solely among patients with bacterial superinfections [21–23], so
endotoxemia and antibodies against lipopolysaccharides (LPS), a bacterial cell wall break-
down product, are almost universally found in such ALI/ARDS patients [24]. Indeed, the
symptoms of ALI/ARDS can be mimicked in rodent models merely by inoculating animals
with LPS or exposing them to inhaled LPS (reviewed in [25]). Similarly, Wang et al. [5]
noted that COVID-19-associated cytokine release is “exacerbated if combined with a su-
perimposed bacterial infection”, while Sirivongrangson et al. [26] reported that, even
though only a few COVID-19 patients had overt bacteremia, nearly all severe COVID-19
patients presenting with ARDS exhibited sepsis-like symptoms, the presence of bacterial
16S ribosomal RNA and evidence of bacterial endotoxins, both diagnostics for bacterial
infection.

It is therefore noteworthy that severe COVID-19 accompanied by ARDS is distin-
guishable from mild COVID-19 by additional clinical parameter diagnostics for bacterial
infection, including elevated ferritin [27,28], C-reactive protein [29–31] and procalcitonin
levels [32,33], as well as eosinopenia [34,35]. Notably, IL-6 increases correlated strongly
with CRP increases [29,30], suggesting a probable connection between cytokine over-
production and bacterial infection. Furthermore, cytokine-driven hyperinflammation in
COVID-19 patient lungs is highly associated with the formation of neutrophil extracellu-
lar traps (NET) [36,37], which form readily in response to the presence of Gram-positive
and Gram-negative bacteria and fungi [38,39] but are found only at low levels in viral
infections [38]. Indeed, high rates of bacterial and fungal coinfections, especially with Strep-
tococcus pneumoniae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Chlamydia pneumoniae,
Mycoplasma pneumoniae, Aspergillus and Candida species—more often than not diagnosed
by polymerase chain reaction (PCR) and/or urinary antigen tests rather than isolation or
culture—have been found to characterize severe COVID-19 patients and to distinguish
them from mild and asymptomatic cases [40–45].

The roles of bacterial and fungal infections in cytokine storms and release syndromes
will feature prominently in the model developed below. It will be argued that uncompli-
cated viral, fungal or bacterial infections do not activate sufficient innate immune system
pathways to result in the hyperactivation required to produce an overproduction of cy-
tokines. To achieve such hyperactivation, multiple synergistic innate systems must be
co-activated, and that requires multiple, concurrent infections. Moreover, since different
pathogens activate different sets of innate receptors, a plethora of virus–fungus–bacteria
combinations are possible, each of which may manifest itself in a different form of cytokine
overproduction.

2.2. Overview of Receptor Regulation of Cytokine Production

The cytokines characterizing cytokine storms or cytokine release syndromes are pro-
duced by the cells of the innate immune system (macrophages, dendritic cells and/or
monocytes) upon exposure to pathogen-associated molecular pattern molecules (PAMPs)
that characterize microbes and distinguish them from host antigens. Danger-associated
molecular pattern molecules (DAMPs) such as fibrinogen and heat shock proteins that
are released upon host cell death can also activate innate immune responses. PAMPs and
DAMPs are recognized by diverse receptors on these innate cells, including Toll-like recep-
tors (TLR), nucleotide-oligomer domain-like receptors (NLR), NLR family pyrin domain
containing proteins (NLRP), retinoic acid inducible gene 1-like receptors (RIG or RLR) and
melanoma differentiation-associated protein 5 (MDA5), among others. TLR and NLR can
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be grouped by whether they exist on the cell membrane (TLRs 1, 2, 4, 5 and 6); within cells
on endosomal membranes (TLRs 3, 7, 8, 9 and 10) or in the cytoplasm (NOD1, NOD2, RIG1,
MDA5 and NLRP3) [46]. Cell membrane-located receptors recognize mainly bacterial
antigens, endosomal ones, mainly viral antigens and cytoplasmic ones, a mix of the two.
The analysis that follows will focus on patterns of the microbial activation of human TLR,
NOD-1, NOD-2 and NLRP3 among the NLR and RIG1 among the RLR, since these are the
most commonly studied innate immune system receptors involved in sepsis, ALI, ARDS
and COVID-19 research and, therefore, provide sufficient data for performing reasonable
comparisons between these syndromes. Other innate receptors and their associated path-
ways undoubtedly also play important roles in cytokine overproduction that may nuance
or modify the model presented below.

Each receptor type is specific for limited classes of PAMPs and DAMPs. Among the
most common PAMPs, TLR 1 recognizes triacyl lipopeptides; TLR2, diacyl lipopeptides
and glycolipids; TLR3, double-stranded RNA and polyI:C, an artificial double-stranded
RNA-like polymer used as an adjuvant; TLR4 recognizes lipopolysaccharides (LPS), heat
shock proteins, fibrinogen and related proteins; TLR 5, flagellins; TLR6, diacyl lipoproteins;
TLRs 7 and 8, single-stranded RNA; TLR9, viral and bacterial (CpG) DNA, which differs
from eukaryotic DNA in having unmodified bases singularly characteristic of microbes
and TLR10 recognizes retroviral proteins [47]. (Note that TLR10 has been omitted from the
schematic diagrams below and further text discussions, because there is no evidence at
present that retroviruses play a role in sepsis, ALI or ARDS in general or in COVID-19 in
particular.)

Among the NLR, NOD1 recognizes γ-d-glutamyl-meso-diaminopimelic acid (i.e., DAP), a
cell wall component of Gram-negative bacteria, while MDP recognizes N-acetyl muramyl-
L-alanyl-d-isoglutamine (MDP), a component of both Gram-negative and Gram-positive
bacteria. NOD2 can also be activated by single-stranded RNAs produced by various
viruses such as respiratory syncytial virus and influenza viruses [47]. RIG1 recognizes viral
RNAs and may be activated by the host cellular release of some microRNAs [47] Some
host cellular DAMP can also stimulate NOD2, including Rho GTPases, which are activated
by cells in response to infection, and by endoplasmic reticulum stress [48].

Among DAMPs, TLRs 1 and 2 recognize beta defensins; TLR2 also recognizes heat
shock and surfactant proteins and high mobility group box 1 proteins and TLR4 recognizes
the same proteins as TLR2, as well as hyaluronan, fibronectin and heparin sulfate. TLRs 7,
8 and 9 can recognize some host microRNAs and DNA fragments [49,50]. The DAMPs
activating NLRP3 include cholesterol crystals and amyloid proteins such as those found in
Alzheimer’s disease and diabetes [47]. Thus, once an innate immune response has been
activated by the presence of foreign antigens, it may be maintained by the release of host
antigens if the foreign antigens stimulate ongoing cellular damage or if an autoimmune
disease process is initiated [51].

The types of cytokines released as a result of TLR, NLR and RIG1 activation depend
on the sets of receptors activated by PAMPs and DAMPs. For example, TLRs 3, 4 and 6 can
activate the Toll/IL-1 receptor domain-containing adaptor protein inducing INF-α activa-
tors (TRIF) pathway, resulting in interleukin production and a Th1 (or cellular) immune
response. The other TLR along with TLR4 activate the myeloid differentiation primary
response protein 88 (MyD88) pathway that results in the production of proinflammatory
cytokines such as TNFα and IL6 and the production of a Th2 (antibody) response [52,53].
NLRP (including NLRP3) mediate the assembly of inflammasome complexes, leading
to the activation of procaspase-1 and the release of ILβ and IL18, while RIG1, NOD1
and NOD2 mediate the assembly of complexes that mediate MyD88 activation via the
mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) signaling pathways, resulting in the release of type 1 interferon,
as well as the process of cellular autophagy [47,54,55]. These pathways, along with the
main PAMPs and DAMPs that activate them, are summarized in Figure 1.
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2.3. Synergistic and Antagonistic Receptor Interactions within the Innate Immune System

The release of cytokines is normal in any infection, so the problem of cytokine storms,
cytokine release syndromes and systemic immune response syndrome reduces to the
question of how to explain the overproduction of cytokines. Logically, the fact that the vast
majority of individuals infected with SARS-CoV-2 or influenza A virus do not develop
ARDS-related cytokine overproduction argues against any simple explanation, such as
the virus itself being the sole necessary and sufficient trigger, which is a point that will be
demonstrated evidentially in Section 2.7. Similarly, very few people infected with influenza
viruses develop ALI/ARDS and its associated cytokine storm, again arguing against
influenza viruses themselves as being sufficient causes of cytokine overproduction. The
innate immune system has evolved to handle such uncomplicated infections by producing
the well-regulated release of cytokines; thus, some additional mechanism must be at work.

An underappreciated aspect of innate immune function involving synergistic receptor
interactions may be of paramount importance in resolving this problem. While any par-
ticular PAMP or DAMP activates only one or two innate receptor pathways, every innate
receptor synergizes with some limited set of other receptors, so that combinations of PAMPs
and DAMPs can initiate far greater releases of cytokines than individual ones. Figure 2A,B
summarize the currently known sets of innate receptor synergisms based on two previous
reviews [51,56] supplemented by additional sources that were found during the process
of researching the present paper [57–75]. For example, TLR4 synergizes with multiple
TLR, especially TLR2 and TLR9, as well as NLRP3 [51,56]. TLR2 coactivates TLR1 and
TLR6, forming heterodimers and, also, synergizes with NLRP3 and NOD1. There is also
TLR5-TLR7 synergy [57]; TLR5-TLR3 synergy [58,59]; NOD1 and 2 synergize with TLR2, 3,
4 and 9 [60]; RIG1 synergizes with TLR3 [61]; RIG1 synergizes with TLR3 [62,63]; NOD1/2
synergizes mostly with TLR [56,65]; TLR4 synergizes with NLRP3 but TLR2, TLR5 and
TLR9 do not [70–73]; TLR2-NOD1 synergism [74] and NOD2-NLRP3 synergism [75].

Notably, the innate immune system is also characterized by receptor antagonisms
to help regulate its function (Figure 2A,B). For example, RIG1 and TLR2 are antagonists;
NOD2 pretreatment antagonizes TLRs2, 4, 5 and 9 [64]; NOD2 inhibits TLR1/2 [66,67],
as well as TLR4, TLR9 and RIG1 [56]; TLR2, TLR4 and TLR5 inhibit TLR8 [68] and TLR9
inhibits TLR4 [69]. Sometimes, the same pair of receptors may, under one set of conditions,
synergize with each other and, in another set of conditions, antagonize each other [51,56].
In the vast majority of cases, where both synergy and antagonism occur in the same pair
of receptors, the synergy occurs when both receptors are activated simultaneously while



Int. J. Mol. Sci. 2021, 22, 2108 6 of 44

the antagonism results when one receptor is activated significantly in advance (several
hours to days) of the other. Thus, an agonist for one receptor may act as an antagonist for
another [51,56]. These complications may explain some cases of conflicting data that will
be discussed below with regard to whether particular sets of innate receptors are activated
during cytokine storms of varying causes.
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It must also be cautioned that receptor synergisms and antagonisms are still being
discovered and characterized, so as complex as the network illustrated in Figure 2A,B may
be, it is likely to be incomplete, particularly with regards to antagonisms, which are less well-
studied than synergisms. Additionally, as will be demonstrated explicitly in the following
Sections 2.7 and 2.8, the complexity of Figure 2A,B hides the fact that very few of these
synergistic and antagonistic innate pathways are usually activated by any given infection,
such as SARS-CoV-2, influenza virus, or any single bacterium or fungus. In practice, the
sets of TLR and NLR that are activated or repressed are ordinarily quite small. On the other
hand, as will be demonstrated in the next Section 2.6, severe COVID-19, influenza-related
ALI/ARDS and sepsis are characterized by reasonably complex innate activity patterns
(IRAP). These complex patterns are what need to be explained by whatever etiological
agents trigger the cytokine storms that characterize these overproduction syndromes.

2.4. A Hypothesis Concerning the Mechanism Producing Cytokine Storms

Let us pause, however, before proceeding to the analysis of IRAP in cytokine release
syndromes and how they might be accounted for by first clearly stating the hypothesis
that is to be tested and the alternative hypotheses against which it will be measured. The
hypothesis to be explored here is that the cytokine overproduction in each case is caused by
polymicrobial infections that activate multiple, synergistic innate receptors. Different sets
of microbes exhibit different PAMPs and induce the expression of different DAMPs and,
therefore, activate different sets of synergistic (and antagonistic) innate receptors, producing
different distributions of cytokines. In consequence, cytokine storms or overproduction
syndromes can exhibit multiple manifestations that, while similar in their systemic effects,
are different in their causes and specific mechanisms. Due to these different mechanisms
and manifestations, there is unlikely to be a single approach to treating cytokine storms
and cytokine release syndromes that is effective for all.

In order to test this hypothesis, the following sections will review what is known
about the innate receptors activated in severe COVID-19, ALI/ARDS and sepsis to gener-
ate the IRAP characteristics of each type of overproduction syndrome. These “cytokine
storm” IRAP will then be compared with the IRAP generated by the viruses associated
with respiratory infections (e.g., SARS-CoV-2, influenza A virus, respiratory syncytial
virus, adenoviruses, etc.), then by the bacteria and fungi most often associated with sev-
ered COVID-19 and ALI/ARDS (e.g., Streptococcus pneumoniae, Haemophilus parainfluenzae,
Klebsiella pneumoniae, Mycoplasma pneumoniae, Aspergillus, Candida, etc.). If any of these
individual pathogen IRAP can account for the IRAP of the cytokine release syndromes, then
the hypothesis proposed here will be falsified, and a sufficient etiology will be established.
On the other hand, if the proposed hypothesis is correct, then no single pathogen IRAP
will be sufficient to account for the IRAP of the overproduction syndromes, so it will be
necessary to investigate whether there are various combinations of viruses and bacteria
and/or fungi that are sufficient.

In short, the innate receptor activation patterns (IRAP) of individual pathogens asso-
ciated with severe COVID-19, ALI/ARDS and sepsis patients will be compared with the
IRAP of these syndromes in order to evaluate the relative contributions that the individual
or combined infections may make. These IRAP will then be evaluated using the model of
synergisms and antagonisms summarized in Figure 2A,B to determine whether the sets of
synergisms are sufficient to explain the cytokine storm or release syndromes.

2.5. Methods for Reviewing Literature Relevant for Comparing Alternative Hypotheses

Since the purpose of this paper is to review the literature relevant to testing the
alternative hypotheses laid out in Section 2.4, the following method was used to choose
and evaluate the relevance and usefulness of the sources. Eight types of literature were
tapped that addressed the questions of what is known about: (1) innate receptor synergies
and antagonisms, (2) the specific activation of innate receptors by individual microbes
associated with COVID-19, (3) innate receptor activation in COVID-19, (4) the specific
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activation of innate receptors by individual microbes associated with influenza-associated
ALI/ARDS, (5) innate receptor activation in influenza-associated ALI/ARDS patients,
(6) the specific activation of innate receptors in sepsis, (7) the activation of innate receptors
in sepsis and, finally, (8) the innate receptor antagonism by various treatments for cytokine
release syndromes, especially focusing on COVID-19. Where possible, recent reviews of
the relevant literature were employed, but where such reviews did not contain the needed
information, recourse to PubMed searches for relevant studies was conducted and the most
recent results utilized and, where possible, consensus results reported. For example, there
are many good reviews of TLR–TLR synergisms that are cited in the next section but very
few that address NLR–NLR or NLR–TLR synergisms, and antagonistic interactions are
generally ignored in the review literature. Therefore, a systematic search was conducted on
each pair of TLR and NLR in relationship to “antagonism” or “antagonist” or “synergism”
or “synergy” (e.g., “NOD1 and TLR1 and synergy”) to try to capture any relevant studies.
In some cases, relevant studies contradicted each other, in which case, a reference is made
in the text below and in the various tables to the range of results obtained so as not to
bias the discussion. Similarly, there are good reviews cited below that summarize what
is known about the activation of TLR and/or NLR by some bacteria, fungi and viruses,
but none covered the entire set of pathogens needed to test the alternative hypotheses put
forward here, so, again, PubMed searches using relevant key terms such as “Klebsiella
pneumoniae and NOD1” or “Mycoplasma pneumoniae and RIG1” were used to fill in the
gaps as far as possible. In many cases, as will become apparent by the absence of entries
in the tables below, no relevant studies could be located using this search procedure. The
procedure was used, with similarly incomplete results, to attempt to capture everything
that is known about TLR and NLR activation in COVID-19, ALI/ARDS and sepsis. In all
cases, emphasis was put on acquiring the information from human studies (either clinical or
laboratory ones utilizing human cells) rather than relying on animal models, and whenever
the latter are used below, an explicit mention is made of this fact. No attempt at compiling a
complete list of sources concerning cytokine storms of cytokine release syndromes or their
treatments was made, but, rather, articles addressing key points of difference between the
various hypotheses to be tested were selected and particular emphasis was put on finding
studies that could provide data relevant to such tests. In sum, the primary criterion utilized
in choosing sources to include in this review/hypothesis paper is whether a publication
provided data that was useful to test some aspect relevant to differentiating the hypotheses
and creating as complete a model of TLR-NLR activity in cytokine over-released syndromes
as possible.

2.6. Synergistic and Antagonistic Receptor Activation Networks in Severe COVID-19, ALI/ARDS
and Sepsis

Begin by considering what is known about innate receptor activation patterns (IRAP)
in severe COVID-19, influenza-related ALI/ARDS and sepsis. Figure 2A,B can be used
as a template for analyzing the probable sets of synergistic and antagonistic receptor
interactions that can be expected in any given disease if the set of TLR, NOD, NLRP and
RIG activities is known. Such data, as currently available from studies of human patients
or experiments on human-derived macrophages, dendritic cells or monocytes (unless
otherwise explicitly noted), are summarized in Table 1 for severe COVID-19 patients with
ARDS, influenza-associated ALI/ARDS patients, sepsis patients and murine models of
the latter two syndromes. Since all three syndromes are characterized by cytokine storms,
comparing their activation profiles may illuminate the question of why the specific natures
of these overproduction syndromes vary.
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Table 1. Summary of studies quantifying the increased activation or protein expression of TLR and NLR for various syndromes associated with cytokine storms. Blank squares indicate that
no data were found regarding the activity or expression pattern of the receptor. – indicates no change, ˆ indicates increased activation or protein expression, V indicates downregulation or
decreased protein expression, +/− indicates conflicting reports about whether there is increased activity or protein expression and -/V indicates conflicting reports about whether there is
no change or downregulation. ALI stands for acute lung injury; ARDS stands for acute respiratory distress syndrome; Gram- = expressed by Gram-negative bacteria; PGN = peptidoglycan;
LTA = lymphotoxin alpha; HSP = heat shock protein; HMGB1 = High Mobility Group Box 1 protein; dsRNA = double-stranded ribonucleic acid; polyI:C = polymer composed of
inosine and cytosine; DAMP = damage-associated proteins; Gram+ = expressed by Gram-positive bacteria; lipopeps = lipopolypeptides; ssRNA = single-stranded ribonucleic acids;
CpG DNA = deoxyribonucleic acid high in cytosine and guanine, typifying a microbial genomic origin; mtDNA = deoxyribonucleic acid derived from mitochondria; DAP = diaminopimelic
acid, a bacterial cell wall component; MDP = muramyl dipeptide, a bacterial cell wall component and ? = activators not presently known.

Receptors TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 NOD1 NOD2 NL-RP3 RIG1

Activated by: Lipo-
peptides

Gram-
PGN, LTA

& HSP,
HMGB1

ds-RNA,
polyI:C,
DAMP

Gram+
LPS &
HSP,

HMGB1

Flagellin LTA,
lipopeps ss-RNA

ss-
RNA

&
pyogenic
Bacteria

CpG DNA
& mtDNA

Retroviral
RNA

Meso-
DAP MDP ? Viral

RNA

COVID-19 SEVERE - ˆ +/- ˆ - - ˆ - +/- - - - ˆ -

INFLUENZA-
ASSOCIATED

ALI/ARDS
v ˆ ˆ ˆ - ˆ +/- ˆ ˆ v

SEPSIS/ALI
(murine) ˆ +/- ˆ - ˆ ˆ - - ˆ

SEPSIS human
patients - +/- - ˆ +/- - +/- - -/v - - - ˆ

Polymicrobial
SEPSIS murine

model
- ˆ - ˆ - - ˆ - - - - ˆ

SEPSIS
CONCENSUS - ˆ - ˆ - - ˆ - - - - ˆ
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Innate immune receptor activation or inactivation has not been studied extensively
for severe COVID-19-associated ARDS, but consistent evidence exists for the activation
of TLR4 [76,77], TLR7 [78] and NLRP3 [79–81]. Conversely, increased levels of NR3C1,
an NLRP3 antagonist, decreased the COVID-19 severity [82]. Conflicting reports for the
activation of TLR2 [76,83], TLR3 [76,84] and TLR9 [76,77] also exist. Consistent data
indicate that TLR1, TLR5, TLR6, TLR8, NOD1, NOD2 and RIG1 are not activated in severe
COVID-19 [76,77]. These data distinguish COVID-19-associated ARDS from influenza
virus-associated ALI-ARDS, which is characterized by the activation of TLR3, TLR4, TLR7
and NLRP3 and the downregulation of TLR2 and RIG1 [85–90]. Murine models of sepsis-
induced ALI mimic TLR3, TLR4, TLR7 and NLRP3 activation but, unlike the human
disease, also activate TLR2 and TLR9 [91–94]. Human sepsis patients have extremely
diverse innate receptor activation profiles. Silva et al. [95] found no changes in the protein
expression of TLR2, TLR4 or TLR9 and the upregulation of TLR5 in human sepsis patients,
while Härter et al. [96] reported that TLR2 and TLR4 were the main receptors upregulated
during sepsis, a finding confirmed by Gao et al. [97] and Kumar [98] in their patients, who
also found increased expression of TLR3 and TLR7. Armstrong [99], meanwhile, found
increased TLR2 mRNA and protein expression and increased TLR4 mRNA but no increase
in protein, which was the exact opposite of the results reported by Brandl et al. [100]. RIG1
mRNA was also upregulated in human sepsis patients but not the protein expression [101].
In sum, all that can be said in general about innate activation in sepsis is that TLR2, TLR4,
TLR5, TLR7 and NLRP3 [102] can be, but are not necessarily, activated, while TLR9 may
or may not be downregulated [103–105]. The same generalizations can be made about
murine polymicrobial sepsis models [91,106–108], suggesting that sepsis is not a single,
definable disease [97]. Table 1 summarizes these data, demonstrating that cytokine release
syndromes share only partial overlaps in their innate receptor activation profiles, which
provides a possible clue as to why their cytokine release profiles also differ and, therefore,
why it has been difficult to define a clear set of diagnostic criteria for them or to devise a
comprehensive or universal approach to treatment.

Parenthetically, it is noteworthy that experiments utilizing mRNA expression as a
measure of receptor production not only fail to mirror the results of direct measurements of
protein expression or receptor activation but often yield contradictory results [99,100,109]
(Table 2). The reasons for these results are obscure and beyond the scope of the current
paper but may potentially be of significance in understanding the regulation of protein
expression systems in the highly activated disease states being discussed here and may
argue against using mRNA expression as a clinical measure.

The data in Table 1 can be incorporated into the activation profile template provided
in Figure 2A,B to elucidate the likely synergisms and antagonisms elicited by receptor
activation. The result for severe COVID-19 is shown in Figure 3A. As Figure 3A illustrates,
severe COVID-19 is characterized by seven innate receptor synergisms that may be offset
by four antagonistic interactions (though, as noted above, antagonisms are often the
result of the activation of one receptor significantly in advance of the other, which may,
or may not, be the case in COVID-19). These synergisms, even moderated by some
antagonistic interactions, help to explain the cytokine overproduction that characterizes
severe COVID-19.
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Table 2. Summary of studies quantifying the increased activation or protein expression of TLR and NLR for innate immune system cells following viral infections. CoV229E = coronavirus
type 229E (a cold virus); SARS-CoV-1 = severe acute respiratory syndrome coronavirus type 1; MERS = Middle East respiratory syndrome virus; SARS-CoV-2 = severe acute respiratory
syndrome coronavirus type 2 and RESP = respiratory. Blank squares indicate that no data were found regarding the activity or expression pattern of the receptor. – indicates no change, ˆ
indicates increased activation or protein expression, V indicates downregulation or decreased protein expression, +/- indicates conflicting reports about whether there is increased activity
or protein expression and -/V indicates conflicting reports about whether there is no change or downregulation. PGN = peptidoglycan; LTA = lymphotoxin alpha; HSP = heat shock
protein; HMGB1 = High Mobility Group Box 1 protein; dsRNA = double-stranded ribonucleic acid; polyI:C = polymer composed of inosine and cytosine; DAMP = damage-associated
proteins; Gram+ = expressed by Gram-positive bacteria; lipopeps = lipopolypeptides; ssRNA = single-stranded ribonucleic acids; CpG DNA = deoxyribonucleic acid high in cytosine and
guanine, typifying a microbial genomic origin; mtDNA = deoxyribonucleic acid derived from mitochondria; DAP = diaminopimelic acid, a bacterial cell wall component; MDP = muramyl
dipeptide, a bacterial cell wall component and ? = activators not presently known.

Receptor: TLR
1

TLR
2

TLR
3

TLR
4

TLR
5

TLR
6

TLR
7

TLR
8

TLR
9

TLR
10

NOD
1

NOD
2

NL-RP
3

RIG
1

Activated by: Lipopeptides

Gram-
PGN, LTA

& HSP,
HMGB1

ds-RNA,
polyI:C,
DAMP

Gram+
LPS &
HSP,

HMGB1

Flagellin LTA,
lipopeps ss-RNA

ss-
RNA

&
pyogenic
Bacteria

CpG DNA
& mtDNA

Retroviral
RNA

Meso-
DAP MDP ? Viral

RNA

CoV 229E - - - ˆ - v

SARS-CoV-1 - +/- ˆ - - - ˆ ˆ v - ˆ v

MERS ˆ v ˆ +/- ˆ v

SARS-CoV-2 +/- ˆ ˆ ˆ ˆ v

Coronavirus
CONCENSUS ˆ ˆ ˆ v

Influenza A viruses - v ˆ v - - ˆ ˆ ˆ - ˆ ˆ ˆ

Rhinoviruses ˆ ˆ - +/-

Respiratory
syncytial virus - - ˆ +/- - ˆ ˆ +/- ˆ ˆ ˆ

Adenovirus ˆ ˆ ˆ ˆ ˆ

Coxsackie-viruses ˆ ˆ ˆ ˆ ˆ ˆ ˆ

RESP VIRUS
CONCENSUS - - ˆ - - - ˆ ˆ ˆ ˆ ˆ ˆ
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Figure 3. (A) Innate receptor activation pattern 2 for severe COVID-19 patients showing syner-
gisms and antagonisms predicted from Table 1 and the model in Figure 2A,B. Receptors that are 
not known to be activated have been faded. The activation and increased expression of TLR2, 
TLR3, TLR4, TLR7, TLR9 and NLRP3 (Table 1) results in seven pairs of synergistic cytokine activa-
tion pathways. While some of these receptors may also be involved in the antagonisms shown, the 
fact that the receptors are known to be upregulated and expressed suggests that these antago-
nisms are either not active or do not outweigh the synergistic effects. The result is multiple syner-
gisms that could drive the cytokine storm associated with severe COVID-19. See Table 1 for abbre-
viations. (B) Innate receptor activation pattern interaction network for influenza-associated 
ALI/ARDS predicted from Table 1 and the model in Figure 2A,B. TLR3, TLR4, TLR7, NOD2 and 
NLRP3 are activated, while the other receptors (faded) are not. Note that this is a different set of 
receptor activations, synergisms and antagonisms that were illustrated for coronaviruses in Figure 
3A. The net result is five pairs of receptor synergies with only a single known antagonism on any 
of the activated receptors (the rest of the antagonisms acting upon receptors that are not upregu-
lated or do not have increased expression in ALI/ARDS). These five synergies may explain how 
the cytokine storm is driven in ALI/ARDS and, also, why the details of the cytokine storms associ-
ated with ALI/ARDS differ in their details from those for sepsis (Figure 3C) or severe COVID-19 
(Figure 3A). See Table 1 for abbreviations. (C) Innate receptor activation pattern interaction net-
work for sepsis patients predicted from Table 1 and the model in Figure 2A,B. TLR2, TLR4, TLR5, 
TLR7 and NLRP3 are activated, while the other receptors (faded) are not. Note that this is a differ-
ent set of receptor activations, synergisms and antagonisms from those illustrated for corona-
viruses in Figure 3A or for the influenza A virus in Figure 3B. The net result is five pairs of recep-
tor synergies with only a single known antagonism on any of the activated receptors (the rest of
the antagonisms acting upon receptors that are not upregulated or do not have increased expres-
sion in sepsis). These five synergies may explain how the cytokine storm is driven in sepsis and,
also, why the details of the cytokine storms associated with sepsis differ in their details from those 
for influenza-associated ALI/ARDS (Figure 3B) or severe COVID-19 (Figure 3A). See Table 1 for 
abbreviations. 

2.7. Varied Receptor Activation by PAMP Produced by Different Pathogens 
The previous Section 2.6 raises the question of how to explain the activation of the 

particular sets of innate immune system receptors that participate in the numerous syner-
gistic and antagonistic interactions present in severe COVID-19, ALI/ARDS and sepsis.
The hypothesis outlined in Section 2.4 proposes that the mechanism may involve multiple, 
concurrent infections. One way to test this proposition is by examining an alternative hy-
pothesis, which is that individual causative agents suffice to activate the sets of receptor 
networks associated with COVID-9, ALI/ARDS and sepsis. Thus, perhaps SARS-CoV-2, 

Figure 3. (A) Innate receptor activation pattern 2 for severe COVID-19 patients showing synergisms and antagonisms
predicted from Table 1 and the model in Figure 2A,B. Receptors that are not known to be activated have been faded. The
activation and increased expression of TLR2, TLR3, TLR4, TLR7, TLR9 and NLRP3 (Table 1) results in seven pairs of
synergistic cytokine activation pathways. While some of these receptors may also be involved in the antagonisms shown,
the fact that the receptors are known to be upregulated and expressed suggests that these antagonisms are either not
active or do not outweigh the synergistic effects. The result is multiple synergisms that could drive the cytokine storm
associated with severe COVID-19. See Table 1 for abbreviations. (B) Innate receptor activation pattern interaction network
for influenza-associated ALI/ARDS predicted from Table 1 and the model in Figure 2A,B. TLR3, TLR4, TLR7, NOD2 and
NLRP3 are activated, while the other receptors (faded) are not. Note that this is a different set of receptor activations,
synergisms and antagonisms that were illustrated for coronaviruses in Figure 3A. The net result is five pairs of receptor
synergies with only a single known antagonism on any of the activated receptors (the rest of the antagonisms acting upon
receptors that are not upregulated or do not have increased expression in ALI/ARDS). These five synergies may explain
how the cytokine storm is driven in ALI/ARDS and, also, why the details of the cytokine storms associated with ALI/ARDS
differ in their details from those for sepsis (Figure 3C) or severe COVID-19 (Figure 3A). See Table 1 for abbreviations.
(C) Innate receptor activation pattern interaction network for sepsis patients predicted from Table 1 and the model in
Figure 2A,B. TLR2, TLR4, TLR5, TLR7 and NLRP3 are activated, while the other receptors (faded) are not. Note that this is a
different set of receptor activations, synergisms and antagonisms from those illustrated for coronaviruses in Figure 3A or
for the influenza A virus in Figure 3B. The net result is five pairs of receptor synergies with only a single known antagonism
on any of the activated receptors (the rest of the antagonisms acting upon receptors that are not upregulated or do not
have increased expression in sepsis). These five synergies may explain how the cytokine storm is driven in sepsis and,
also, why the details of the cytokine storms associated with sepsis differ in their details from those for influenza-associated
ALI/ARDS (Figure 3B) or severe COVID-19 (Figure 3A). See Table 1 for abbreviations.

The figure for influenza-associated ALI/ARDS is shown in Figure 3B and is identical
to that for COVID-19, except that TLR9 is not activated, so its synergism with TLR4 is
absent, as is its antagonism of TLR4. Again, the significant number of innate receptor
synergisms suggests the cause of cytokine overproduction in this syndrome, while the
large number of antagonisms suggest why some TLR and NLR that might be expected to
be activated are not.

Finally, the IRAP for sepsis is illustrated in Figure 3C, which has very similar numbers
of synergisms and antagonisms as ALI/ARDS but differs significantly in which TLR and
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NLR participate in these interactions. There are great uncertainties attending to the innate
receptor activation in sepsis cases, so the synergy/antagonism profile provided here must
be taken as tentative. Still, it should be obvious that if TLR2, TLR4, TLR7 and NLRP3
are all activated, as they appear to be in most human patients and in animal models
such as murine polymicrobial sepsis (Table 1), then the sepsis profile will differ from
that of severe COVID-19 and ALI/ARDS, since it is lacking activations, and attendant
synergisms/antagonisms, involving TLR3 and TLR9, possibly substituting these with
activation of TLR5 or TLR6. These differences might argue for an essential role of virus
PAMPs in COVID-19 and influenza-associated ALI-ARDS, as would be expected, but no or
a minor role for viral PAMPs in the etiologies of most cases of sepsis. So, once again, the
pattern is such that it suggests the cause of the cytokine storm associated with sepsis but
also helps to explain why such cytokine storms differ in their details from those associated
with COVID-19 and ALI/ARDS.

One message to take home from this section is that all types of cytokine release
syndromes share the task of activating multiple TLR and NLR that results in multiple
synergistic interactions well in excess of the number of antagonisms. The excess of multiple
synergisms may account for the supranormal release of cytokines. The second message
to take home from this section is that the specific sets of TLR and NLR activated in
severe COVID-19, influenza-associated ALI/ARDS and sepsis differ in ways that may
consequentially alter the specific nature and magnitude of cytokine releases.

2.7. Varied Receptor Activation by PAMP Produced by Different Pathogens

The previous Section 2.6 raises the question of how to explain the activation of the
particular sets of innate immune system receptors that participate in the numerous syner-
gistic and antagonistic interactions present in severe COVID-19, ALI/ARDS and sepsis.
The hypothesis outlined in Section 2.4 proposes that the mechanism may involve multiple,
concurrent infections. One way to test this proposition is by examining an alternative
hypothesis, which is that individual causative agents suffice to activate the sets of receptor
networks associated with COVID-9, ALI/ARDS and sepsis. Thus, perhaps SARS-CoV-2,
influenza A virus and individual bacteria can each account for the innate receptor ac-
tivation patterns found in their respective cytokine release syndromes. Therefore, the
question becomes whether the activation profile in severe COVID-19 is simply a reflec-
tion of the effects of SARS-CoV-2 PAMP expression or are other factors (e.g., bacterial or
fungal activation) needed to explain the profile? Similarly, is the innate activation profile
of influenza-associated ALI-ARDS a result of the influenza A virus or coinfections with
bacteria such as Streptococcus pneumonia or Haemophilus influenzae? Can sepsis profiles be
explained by individual bacterial infections, or are they better explained by combinations
of bacteria or bacteria working in conjunction with viruses or fungi? Comparing the in-
nate activation profiles (IRAP) of the various viruses, bacteria and fungi associated with
COVID-19, ALI/ARDS and sepsis permits these possibilities to be evaluated.

Table 2 summarizes the known TLR, NLR, NLRP3 and RIG1 activation patterns of
several respiratory viruses: human coronavirus type 229 (CoV-229) (which causes cold
symptoms), severe acute respiratory syndrome coronavirus type 1 (SARS-CoV-1), severe
acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), Middle East respiratory
syndrome virus (MERS), influenza type A (InfA), respiratory syncytial virus (RSV), rhi-
noviruses, adenoviruses and coxsackieviruses. The vast majority of the data summarized
in this table come from clinical data from human patients or experiments performed on
macrophages, monocytes or dendritic cells isolated from human patients, although some
animal-derived data were also consulted where human data were lacking [110–126].

A number of patterns emerge from Table 2. Most respiratory viruses activate TLR3,
TLR7 and/or TLR8, TLR9, NLRP3, RIG1 and, sometimes, NOD2. This pattern holds, for
example, for the influenza A virus [110–114], which notably also downregulated TLR2
and TLR4 expression [111]. Respiratory syncytial virus (RSV) activates TLRs 3 and 7
in both mice and humans [114–117], and there are some reports of TLR4 activation by
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RSV in both species [114,118], but these have been contradicted [119] and demonstrated
to be due to environmental exposure to bacterial LPS [120]. There is no evidence in
humans for the activation or increased expression of TLRs 1, 2 or 6 in RSV infection,
and the evidence for the activation of TLRs 8 and 9 in humans is weak [117,118]. RIG1,
NOD2 and NLRP3 are, however, clearly activated [121,122]. Adenoviruses [114,123] and
coxsackieviruses [124–126] have similar receptor activation patterns.

Rhinoviruses and coronaviruses, however, exhibit some notable differences from
the general innate receptor activation pattern for the respiratory viruses just described.
Rhinoviruses upregulate TLR3 [127–129] and TLR7 [129] but not TLR8 [129] or any other
TLR. There is currently no evidence of activation of NLRP3, NOD1 or NOD2 and conflicting
reports as to whether RIG1 is activated [128,129]. In consequence, cytokine releases in
rhinovirus infections are very limited, especially compared with other respiratory viruses.

Coronaviruses are also notably different from many other respiratory viruses. While
SARS-CoV-2 activates TLR3, TLR7 and NLRP3 like the other viruses [78,130–133]—as do
all coronaviruses [134–141]—coronaviruses express a protein (papain-like protease 1) that
strongly antagonizes RIG1 [135,142]. TLR9 is antagonized in SARS-CoV-1 infections and not
activated in CoV-229 infections, so it is also unlikely to be activated by SARS-CoV-2 [135].
TLR2, TLR4 and TLR5 are not activated by most coronaviruses [135] and TLR4 is downreg-
ulated in MERS [143], but conflicting data exist for whether TLR2 and TLR4 are activated
by SARS-CoV-1 in some types of monocytes [144,145]. No coronavirus is known to activate
NOD1, but some do activate NOD2 [139,146]; however, data are limited, and more research
is needed in this matter, and there appear to be no relevant studies of SARS-CoV-2 yet.
Thus, unlike most respiratory viruses, coronaviruses antagonize RIG1 and may not activate,
or may even antagonize, TLR9.

In short, respiratory viruses share a very limited innate receptor activation pattern
(IRAP) focused on TLR3, TLR7 and NLRP3 but such viruses can vary considerably in the
activation or suppression of TLR2, TLR4, TLR9, RIG1 and NOD2 (Table 2). Notably, none
of these activation patterns are identical to, nor are they as diverse as, those summarized in
Table 1 for severe COVID-19 or influenza-associated ALI/ARDS patients.

As in the previous section, the data summarized in Table 2 can be integrated into
the template provided by Figure 2A,B to provide insight into the sets of synergies and
antagonisms that result. As can be seen in Figure 4, coronaviruses, including SARS-CoV-2,
activate only a couple of synergistic receptor networks and no (as of the current literature)
antagonistic networks. In contrast, Figure 5 illustrates the fact that other respiratory viruses,
with the notable exception of rhinoviruses, are likely to activate up to four synergistic
receptor networks but, also, one or two antagonistic ones as well. Rhinoviruses activate
the least number of innate receptors, resulting in a single synergistic interaction between
TLR3 and TLR7. Since rhinoviruses have never been associated with cytokine storms, and
most uncomplicated coronavirus and influenza virus infections do not result in cytokine
storms, it seems likely that cytokine overproduction requires some minimum number
of synergistic PAMP activations that are in excess of three or four. The upshot of these
figures is to suggest that there is nothing in the regulatory networks of innate immune
system receptors that would lead one to expect the overproduction of cytokines due to an
uncomplicated respiratory virus infection, especially one due to a coronaviruses or other
uncomplicated viral infections.
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As in the previous section, the data summarized in Table 2 can be integrated into the 
template provided by Figure 2A,B to provide insight into the sets of synergies and antag-
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Figure 4. Innate receptor activation pattern for rhinoviruses (from Table 2) based on the model in Figure 2A,B and data
summarized in Table 2. Only TLR3, TLR7 and possibly RIG1 are activated, while the other receptors are not (faded),
resulting in a single synergistic interaction and no known antagonistic ones. Cytokine release should, according to this
model, be minimal following rhinovirus infection, perhaps explaining its mild symptoms. Note the differences in this
activation pattern compared with Figure 3A–C and Figures 5 and 6 below). See Tables 1 and 2 for abbreviations.
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Figure 5. Consensus innate activation profile for coronavirus PAMPs based on the model in Figure 2A,B and data
summarized in Table 2. TLR3, TLR7, TLR8, NOD2 and NLRP3 are activated, while the other receptors (faded) are not.
The result is two pairs of synergistic interactions (arrows) be Table 3. and TLR7/8 and between NOD2 and NLRP3.
No known antagonistic interactions are activated. Cytokine activation should be greater from coronaviruses than from
rhinoviruses (Figure 4) but not significantly so, perhaps explaining why most coronavirus infections are asymptomatic or
mildly symptomatic and associated with a cold or mild flu symptoms. See Tables 1 and 2 for abbreviations.
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Table 3. Summary of studies quantifying the increased activation or protein expression of TLR and NLR for innate immune system cells following bacterial infections associated with
severe COVID-19, ALI/ARDS and/or sepsis. Blank squares indicate that no data were found regarding the activity or expression pattern of the receptor. GRAM POS = Gram-positive
bacterium, GRAM AMBI = bacterium that yields ambiguous Gram staining, GRAM NEG = Gram-negative bacterium and NO GRAM means that Gram staining is irrelevant.
– indicates no change, ˆ indicates increased activation or protein expression, V indicates downregulation or decreased protein expression, +/- indicates conflicting reports about
whether there is increased activity or protein expression, -/V indicates conflicting reports about whether there is no change or downregulation and a blank square indicates no
available information. PGN = peptidoglycan; LTA = lymphotoxin alpha; HSP = heat shock protein; HMGB1 = High Mobility Group Box 1 protein; dsRNA = double-stranded
ribonucleic acid; polyI:C = polymer composed of inosine and cytosine; DAMP = damage-associated proteins; Gram+ = expressed by Gram-positive bacteria; lipopeps = lipopolypeptides;
ssRNA = single-stranded ribonucleic acids; CpG DNA = deoxyribonucleic acid high in cytosine and guanine, typifying a microbial genomic origin; mtDNA = deoxyribonucleic acid
derived from mitochondria; DAP = diaminopimelic acid, a bacterial cell wall component; MDP = muramyl dipeptide, a bacterial cell wall component and ? = activators not presently known.
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and data summarized in Table 2. TLR3, TLR7, TLR8, TLR9, RIG1, NOD2 and NLRP3 are all activated, while the other
receptors (faded) are not. Note that the antagonism of NOD2 and TLR7 on TLR9 probably outweighs the synergism
between NOD2 and TLR9 so that this synergism is not actually observed. Thus, according to this model, the influenza A
virus and other respiratory viruses are likely to induce a greater amount of cytokine releases than rhinovirus (Figure 4) or
coronavirus (Figure 5) infections, perhaps explaining why influenza often presents with fevers, chills, joint pain and/or
muscle aches—all results of increases in cytokine release—while rhinovirus and coronavirus infections often do not. See
Tables 1 and 2 for abbreviations.

Most importantly, in terms of testing the hypothesis laid out in this paper, Figure 5
(coronavirus IRAP) does not correspond to the synergies and antagonisms present in the
severe COVID-19 activation pattern (Figure 3A), nor does Figure 6 (respiratory virus IRAP)
correspond to the activation pattern for influenza-associated ALI-ARDS in Figure 3B. Both
Figures 5 and 6 differ significantly from that for sepsis patients, as well (Figure 3C). Severe
COVID-19, ALI/ARDS and sepsis patients are all characterized by the activation and
increased expression of TLR2, TLR4 and NOD2 (and sometimes NOD1, as well) and their
associated synergisms (which are quite numerous; see Figure 2A,B and Figure 3A–C). These
TLR activations and their associated synergisms are absent from uncomplicated respiratory
viral infections of all kinds (Figures 4–6).

Respiratory viruses, in short, do not present the range of PAMPs to the innate immune
system necessary to activate the range of receptors characterizing cytokine release syn-
dromes, nor do they result in the sets of synergistic receptor interactions that characterize
the TLR–NLR synergy profiles of cytokine release syndromes. It is therefore unlikely that
virus infections on their own are responsible for the dysregulation of innate immunity
leading to cytokine overproduction syndromes.

2.8. Innate Receptor Activation by Bacterial and Fungal Infections Associated with Coronavirus,
Influenza and Other ALI/ARDS Syndromes

As noted in Section 2.1 above, severe COVID-19 is highly associated with bacterial and
fungal infections, which is also true of influenza-associated ALI-ARDS and polymicrobial
sepsis [22–24,40–45]. The most common bacteria associated with COVID-19 are Streptococci,
Klebsiella pneumoniae, Haemophilus influenzae and Mycoplasma pneumoniae, which are also
very common among influenza-associated ALI/ARDS patients [40–45]. Fungal infections
also occur frequently in severe COVID-19, the most common being the Aspergillus, Candida
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and Cryptococcus species [40–45]. These clinical findings raise the question of whether
bacterial or fungal infections might, in and of themselves, be responsible for the cytokine
storms found in COVID-19, influenza-associated ALI-ARDS and sepsis.

Table 3 summarizes studies of innate immune system receptor activation caused by the
bacterial pathogens most commonly associated with COVID-19 and influenza-ALI/ARDS.
Table 4 summarizes similar data for the most common fungal infections associated with
these syndromes. Bacteria generally activate TLR1, TLR2, TLR4, TLR9, NLRP3 and NOD2
(Table 3) (reviewed in [147], Group A Streptococcal activation [148–156], Group B Strepto-
coccal activation [68,147,157–159], Staphylococci [147,151,160,161], Mycobacteria [147,162,163],
Klebsiella [164–169], Haemophilus [147,149,150,170–174], Legionella [147,163,175,176], Chlamy-
dia [147,163,177–180], Neisseria [147,149,181,182], Pseudomonas [147,163,183–185] and My-
coplasma [98,147,186–188]). Gram-negative bacteria activate NOD1 as well, because they
express meso-DAP as part of their cell walls, which Gram-positive bacteria do not, because
they lack this molecular constituent. Mycobacteria tend to be ambiguous on Gram testing
due to unusual cell wall structures [147], and Mycoplasmas have no cell walls and, therefore,
express no PAMPs capable of activating either NOD1 or NOD2. Not surprisingly, the main
virus-activated receptors TLR3, TLR7, TLR8 and RIG1 are not activated by bacteria, but, notably,
most respiratory bacteria do activate TLR9 by means of the release of mitochondrial DNA [147].
Some individual species of bacteria vary the common theme by also activating TLR5, TLR6,
TLR7 or TLR8 (e.g., [157,183] (Table 3), but these TLR are rarely studied in the bacterial activation
of the innate immune system, so it is not known how common such activation may be.

The activation of innate immune receptors by fungi (reviewed in [189–192]) generally
follows the same pattern as bacteria, with TLR2, TLR4, TLR9 and NLRP3 being common
to the fungi (Aspergillus, Candida and Cryptococcus species) most often associated with
COVID-19, ALI/ARDS and sepsis. Again, like bacteria, individual species of fungi can
also activate a range of other TLR and NOD.

As before, integrating the data from Tables 3 and 4 into Figure 2A,B yields a consensus
diagram (Figure 7) of the activation patterns of bacteria and some fungi (particularly
Aspergillus species). Figure 7 demonstrates that bacterial and fungal PAMPs are likely
to activate up to six synergistic receptor interactions balanced by up to six antagonisms
that may moderate receptor activity. This activation pattern would explain how systemic
bacterial infections induce significant cytokine release, leading to fever, chills and joint
soreness, among other symptoms.

It must again be asked whether the pathways illustrated in Figure 7 correspond to
those characterizing severe COVID-19, influenza-associated ALI/ARDS or sepsis. The
reference to Figure 3A–C demonstrates that the set of TLR and NLR activated by bacteria
do not match those activated in severe COVID-19, influenza-associated ALI-ARD or sepsis
(compare also Tables 3 and 4 (bacterial and fungal activations) with Table 1 (cytokine release
syndrome activations)). In particular, severe COVID-19 patients (as well as influenza-
associated ALI/ARDS) are characterized by the activation and increased expression of
TLR3 and TLR7—two virus-activated receptors—while NOD2 does not appear to play a
major role. Thus, as with viral infections, simple mono-infections with bacteria or fungi do
not appear to be able to account for the IRAP that characterize cytokine release syndromes.
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Table 4. Innate immune receptor activation by fungi associated with severe COVID-19. Spp. = species, – indicates no change, ˆ indicates increased activation or protein expression, V
indicates downregulation or decreased protein expression, +/- indicates conflicting reports about whether there is increased activity or protein expression and a blank square indicated
no available information. PGN = peptidoglycan; LTA = lymphotoxin alpha; HSP = heat shock protein; HMGB1 = High Mobility Group Box 1 protein; dsRNA = double-stranded
ribonucleic acid; polyI:C = polymer composed of inosine and cytosine; DAMP = damage-associated proteins; Gram+ = expressed by Gram-positive bacteria; lipopeps = lipopolypeptides;
ssRNA = single-stranded ribonucleic acids; CpG DNA = deoxyribonucleic acid high in cytosine and guanine, typifying a microbial genomic origin; mtDNA = deoxyribonucleic acid derived
from mitochondria; DAP = diaminopimelic acid, a bacterial cell wall component; MDP = muramyl dipeptide, a bacterial cell wall component and ? = activators not presently known.
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Figure 7. Consensus bacterial innate receptor activation network figure, which also applies well to Aspergillus fungal infections.

2.9. Do Combinations of Viruses and Bacteria Explain Innate Receptor Activation Patterns in
Severe COVID-19 and ALI/ARDS?

If neither viral activation patterns of innate immunity (Section 2.7) nor bacterial/fungal
activation patterns of innate immunity (Section 2.7) display the range of activated TLR
and NLR to reflect the innate immunity activation patterns of either severe COVID-19 or
influenza-associated ALI/ARDS, do combinations of viruses with bacteria or fungi do so,
as postulated in the hypothesis above (Hypothesis, Section 2.4)?

Table 5 presents a summary of the consensus activation patterns of microbes derived
from the previous tables (Tables 1–4). Table 5 emphasizes the point that the activation
patterns found in severe COVID-19 and in influenza-associated ALI/ARDS display charac-
teristics of both viruses and bacteria and/or fungi. TLR3 and TLR7 activation in severe
COVID-19 and influenza-associated ALI/ARDS requires viral activation, while TLR4 and
NOD1 or NOD2 indicate bacterial or fungal activation. Thus, it is very likely that both
severe COVID-19 and influenza-related ALI/ARDS are the results of multiple, concurrent
infections. Adding the virus IRAP in Table 5 to the bacterial and/or fungal IRAP yields
activation patterns in general agreement with severe COVID-19 and influenza-associated
ALI/ARDS. However, Table 5 also illustrates the fact that these activation patterns are not
the simple result of adding bacterial or fungal IRAP to viral IRAP: TLR9 and NOD2 activa-
tion by viruses and bacteria is questionable or absent in severe COVID-19 and influenza
associated ALI/ARDS, as is the activation of TLR2 and RIG1 that would be expected to be
upregulated in influenza-associated ALI/ARDS.
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Table 5. Summary table of the consensus activation patterns of microbes derived from the previous Tables 1–4. TLR and
NLR columns in white are those activated mainly by bacterial and fungal PAMPs; columns in grey are those activated mainly
by virus PAMPs. Only NLRP3 (black boxes with white symbols) is activated by all of the pathogens and is upregulated in
all of the cytokine storm-related diseases listed here. The G+G- symbol under NOD1 for the bacterial consensus represents
the fact that Gram-positive bacteria do not activate NOD1 but Gram-negative bacteria do. – indicates no change, ˆ indicates
increased activation or protein expression, V indicates downregulation or decreased protein expression, +/- indicates
conflicting reports about whether there is increased activity or protein expression, -/V indicates conflicting reports about
whether there is no change or downregulation and a blank square indicates no available information. See Table 1 for the rest
of the abbreviations.
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Consider Figure 8 as an example. Figure 8 describes the synergisms and antagonisms
expected from a combination of SARS-CoV-2 with the consensus IRAP for bacteria (which
includes Aspergillus fungi species). The results reasonably accurately reflect the actual
findings reported for severe COVID-19 patients (Table 1 and Figure 3A) in which TLR2,
TLR3, TLR4, TLR7, TLR9 and NLRP3 are activated. Detailed differences would be expected
to exist among COVID-19 patients depending on what specific bacteria (Gram-negative,
Gram-positive, Mycobacterial or Mycoplasmal) (Table 3) or fungi (Candida, Cryptococcus or
Aspergillus) (Table 4) were present as coinfections. The result is eight sets of TLR/NLR
synergisms but, also, six sets of antagonisms. The two antagonisms of TLR7 and NOD2
acting on TLR9 may, for example, block its activation, resulting in the questionable role
of TLR9 in severe COVID-19 (Tables 1 and 4) through the elimination of two synergisms.
However, most respiratory bacteria (with the exception of Mycoplasmas) and fungi activate
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NOD2, and Gram-negative bacteria activate NOD1, so one would expect to see one or
both of the NOD activated in severe COVID-19, which does not appear to be the case
(Tables 1 and 5). It must be presumed that there exist a set of antagonisms acting upon
NOD1 and NOD2 that negate their activation in the presence of viral infections, probably
through TLR3, TLR7 and or TLR9. The antagonistic actions of NOD2 on TLR2 and TLR4
may also work in reverse given sufficient time for the system of interactions to equilibrate.
For example, bacterial outer membrane protein vesicles protect against H1N1, H5N2
and H5N1 and MERS fatal infections in mice [193–195] and antagonizing TLR4 blocks
the cytokine storm associated with influenza virus infection and improves survival in
mice [196]. Given the paucity of research that has so far been published on the activation
(or lack thereof) of NLR in severe COVID-19, it is also possible that additional studies
will find that NOD1 and/or NOD2 are actually activated or their expression increased
during the development of cytokine storms. Alternatively, various negative feedback loops
missing in Figure 2A,B may exist that are essential for understanding IRAP in cytokine
storm syndromes.
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Figure 8. The innate receptor synergisms and antagonisms resulting from the addition of SARS-CoV-2 and bacterial
consensus activation patterns (from Tables 1 and 3). The two antagonistic actions on TLR9 may account for the uncertainty
about whether TLR9 is activated or not, despite the coronavirus activation of the receptor. For other TLR, the number of
synergisms out-number the antagonisms so that these receptors will presumably continue to be activated. Note the similarity
to Figure 3A (the activation pattern in severe COVID-19), the one major difference being the activation of NOD2 in this
figure. This activation pattern can vary depending on whether the coinfecting bacterium is Gram-positive, Gram-negative
(also activating NOD1) or a mycoplasma (activating neither NOD1 nor NOD2). A very similar pattern would also result
from a virus–fungus coinfection such as SARS-CoV-2 as with fungi and yeast coinfections.

A further reason for thinking that there are likely to be as-yet-unidentified negative
feedback systems antagonizing NOD2 and that the antagonistic effects of NOD2 on TLR4
are important in severe COVID-19 is that the interferon (IFN) function is very severely
impaired [15,16,197–200]. Although some of this impairment is certainly mediated by
the downregulation of RIG1 by coronaviruses [135,142], NOD2, TLR3 and TLR4 can join
RIG-1 in stimulating IFN release (Figure 1). Severe IFN impairment would seem to call
for the impairment of more than just one of these pathways. Such a mechanism would,
not incidentally, address an ongoing criticism of the role of cytokine storms in severe



Int. J. Mol. Sci. 2021, 22, 2108 24 of 44

COVID-19, which is that severe COVID-19 is not actually a cytokine release syndrome,
since IFN is severely impaired, but, actually, an immunosuppressive disease in which the
virus is enabled to spread to, and replicate in, an uncontrolled fashion in multiple organ
systems [198]. In fact, severe COVID-19 may be considered to be characterized simulta-
neously as immunosuppressive with regards to viral immunity and as a cytokine storm
with regards to MyD88-associated cytokine release. Thus, both the immunosuppression
(of MyD88-associated pathways) and immunostimulation (of IFN pathways) might be
needed [200].

One other caveat also needs to be considered in evaluating and comparing Figure 8 to
Figure 3A, which is that Figure 3A is derived from studies of the status of TLR and NLR
activation in the midst of established severe COVID-19 (i.e., from hospitalized patients),
while Figure 8 represents the status of TLR and NLR activation at the onset of infection.
Since antagonistic TLR and NLR interactions tend to be initiated over time measured by
many hours or several days (see Section 2.3), Figure 8 may well explain how the cytokine
storm in severe COVID-19 is initiated and Figure 3A the status of the innate system as it
attempts to moderate its cytokine production. One final complication is that many severe
COVID-19 patients are treated with multiple antibiotics [201–212], which may further
modify the expression of bacterially activated TLR and NOD1/NOD2.

The type of variation just described within severe COVID-19 patients coinfected with
SARS-CoV-2 and various bacteria and/or fungi applies to an even greater extent to under-
standing the etiologies of influenza-associated ALI/ARDS and sepsis. Investigators have
been well-aware since the 1930s that influenza A virus infections can set the stage for a wide
range of bacterial infections with both Gram-positive and Gram-negative bacteria, as well
as mycoplasmas such as Mycoplasma pneumoniae that can lead to ALI/ARDS [22,23,213–216].
Figure 9 illustrates the innate receptor activation pattern (IRAP) that might be expected to
result from a Haemophilus influenzae superinfection of the influenza A virus [22,213,214].
The result is an even more complex set of synergisms and antagonisms than that illustrated
above for severe COVID-19. This increased complexity of synergies may help to explain
why ALI/ARDS is typically characterized by higher levels of cytokine releases than in se-
vere COVID-19 (see Section 2.3). As with the severe COVID-19 case just described, however,
it must again be pointed out that Figure 9 is more complex than the IRAP that is actually
observed in influenza-associated ALI/ARDS (Figure 3B), probably for the same reasons just
discussed for severe COVID-19. Figure 9 represents the initiation of TLR/NLR activation,
while Figure 3B represents the established pattern after antagonistic feedback; antibiotic
treatments undoubtedly modulate bacterial PAMP presentation to TLR and NOD, and
there are likely to be as-yet-uncharacterized negative feedback effects of TLR2, TLR4, etc.
on NOD1/NOD2 [193–196] and, especially, in this case, RIG1, which would otherwise be
predicted to be upregulated by the influenza virus (Table 2).

Finally, Figure 10 illustrates the sets of TLR and NLR synergisms and antagonisms that
might be expected from a combined infection with a Gram-positive and a Gram-negative
bacterium, as might occur during polymicrobial sepsis. Once again, the number of synergisms
and antagonisms is large, the exact homeostatic balance achieved difficult to predict and, in its
details, dependent on the TLR activated by the specific bacteria (and/or fungi) involved, which
might include TLR1, TLR5 and TLR6 (Table 3). In comparing Figure 10 to Figure 3C (known
TLR and NLR activation patterns in human sepsis patients), all of the caveats just stated for
severe COVID-19 and ALI/ARDS patients once again apply; Figure 10 describes the initial
effects of combined bacterial and/or fungal infections on TLR and NLR, whereas Figure 3C
represents the immune status during hospitalization, and there are likely negative feedback
effects that are missing, etc. Nonetheless, Figure 10 certainly suggests why combined infections
would be more likely to result in a cytokine storm during sepsis than would a mono-infection
with a single bacterial or fungal species (Figure 7).
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(severe COVID-19 patients). Note also that there is an antagonistic effect of NOD2 activation on RIG1 and TLR9, an
antagonism of TLR7 for TLR9 and an antagonism of TLR4 on TLR8 that may explain the absence of RIG1, TLR8 and TLR9
activation in influenza-associated ALI/ARDS (Table 1), despite the activation of RIG1, TLR8 and TLR9 by the influenza
A virus (Table 2). It seems likely that other RIG1 and TLR8 antagonisms (e.g., from NOD1) also exist that are yet to be
described. For other TLR, the number of synergisms outnumber the antagonisms, so these receptors will presumably
continue to be activated.

The most important takeaway from the current section is that the only way to ex-
plain the diversity of TLR and NLR activations found in Figure 3A–C is to consider
them to be the result of varied combinations of infections, as proposed in the hypothesis
(Section 2.4 above). Since SARS-CoV-2 and influenza viruses activate different sets of TLR
and NLR and may synergize with different bacteria, the cytokine release syndromes that
result differ. Sepsis differs as well, probably because viruses do not play a major role in
its initiation; sepsis seems to be explained best by combinations of bacteria and, possibly,
fungi. Synergisms are not, however, the whole story. In order to account for the specific
details of innate immune activation profiles described in Figure 3A–C, it is very likely that
negative or antagonistic feedback systems must come into play as the disease progresses.
Some of these feedback systems must involve the negative regulation of NOD1, NOD2 and
RIG1, since these receptors are known to be activated by the viral and bacterial infections
discussed here, yet they do not appear to be activated during cytokine release syndromes.
At present, this makes no sense from any existing perspective, since RIG1 should be either
upregulated or downregulated by any viral infection (Table 2), and NOD1 and NOD2
should be stimulated by the vast majority of bacterial infections (Table 3). Since there is,
at present, almost no evidence of the negative regulation of these receptors (Figure 2A,B),
the apparent lack of any known role for NOD1, NOD2 and RIG1 in established cytokine
release syndromes therefore represents an important anomaly in need of exploration.
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bacteria from Table 2. Note the several antagonistic interactions on TLR8, which may explain why it is not activated during
sepsis. TLR1 is also antagonized (in this case, by NOD2 and, probably, NOD1 as well) and has no synergisms to offset
these, so it, too, does not appear to be activated during sepsis (Tables 1 and 5). For other TLR, synergisms outnumber the
antagonisms, so these receptors will presumably continue to be activated with TLR8-activating PAMPs (Tables 1 and 5). A
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the distinct differences from Figures 3A and 8 (severe COVID-19) and Figures 3B and 9 (influenza-associated ALI/ARDS),
illustrating the fact that cytokine storms may have distinctly different patterns of innate receptor activation.

2.10. Role of DAMPs in Driving COVID-19 and Other Cytokine Release Syndromes

One additional explanation for the lack of NOD1, NOD2 and RIG1 activation in
cytokine release syndromes may come from consideration of the role that DAMPs play
maintaining a cytokine release following its initiation by viral, bacterial and fungal stim-
ulation. DAMPs, as noted in Section 2.1, are molecules released by host cells as danger
signals following cellular damage from infection or injury. While Figures 8–10 represent
PAMP-induced IRAP, Figure 3A–C may represent DAMP-maintained IRAP that remain af-
ter the immune system, often supported by appropriate hospital treatments, has controlled
or moderated the initial infections and their expression of PAMPs.

DAMPs probably play a significant role in supporting cytokine storms, but compara-
tively little research has been expended in studying DAMPs as compared to PAMPs in this
context, so the details of what roles DAMPs are playing in maintaining cytokine overpro-
duction syndromes and how to intervene in their effects are vague [217,218]. Critically ill
COVID-19 patients, ALI/ARDS patients and sepsis patients all release high levels of extra-
cellular histones (TLR2, TLR4 and NLRP3 activators [219]); neutrophil elastase (a TLR4
activator [220]) and cell-free DNA (a TLR9 activator [221]), each of which correlate with
the probability of the patients being admitted to the intensive care unit and of dying [222].
The nuclear protein high mobility group box 1 protein (HMGB1) is also released during
severe COVID-19, ALI/ARDS and sepsis and drives TLR2 and TLR4 activation [223]. Ad-
ditionally, the heat shock protein HSP5a (also known as GRP78), a marker for endoplasmic
reticulum stress and the TLR2/TLR4 activator, is released at unusually high concentrations
in severe COVID-19 patients [224,225]. Other possible DAMPs that may be playing roles in
COVID-19 include extracellular RNAs [226] that can activate TLR3 and TLR7, as well as
extracellular hemoglobin, which activates NLRP3 and is associated with coagulation dys-
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regulation and microclotting [227,228]. In sum, the activation of TLR2, TLR4, TLR7, TLR9
and NLRP3 are almost certainly maintained by DAMPs in severe COVID-19, ALI/ARDS
and sepsis and may need to be therapeutically addressed [217,218,226]. Notably, DAMPs
are not known to activate NOD1, NOD2 or RIG1, which might help to explain the absence
of their observed activation in established cytokine storm syndromes (Figure 3A–C) as
compared with their initial stimulating conditions (Figures 8–10).

3. Discussion
3.1. Summary of the Synergistic Activation of TLR and NLR in Cytokine Storm Syndromes

The object of this study was to provide a model of why uncomplicated SARS-CoV-
2 infections do not result in the “cytokine storm” that characterizes severe COVID-19
accompanied by ARDS and to explore what differentiates severe COVID-19-associated
cytokine release syndrome from those associated with ALI/ARDS following influenza
A infection and from sepsis. In severe COVID-19, it is proposed that cytokine storms
result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding
oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2
with other microbes, mainly bacterial and fungal. This proposition is based on nine linked
types of evidence and their logical connections: (1) Severe cases of COVID-19 differ from
healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and
NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate only TLR3, TLR7, RIG1
and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation
pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from
its mild form in being characterized by bacterial and fungal infections. (5) Respiratory
bacterial and fungal infections generally activate TLR2, TLR4, TLR9 and NLRP3. (6) A
combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP
found in severe COVID-19 and how it differs from mild cases. (7) Many pairs of TLR and
NLR synergize so that combined infections can greatly enhance the cytokine release. For
example, in severe COVID-19, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9
and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal)
synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2 bacterium/fungus
coinfection produces a synergistic innate activation resulting in the hyperinflammation
characteristic of a cytokine storm. However, different respiratory bacteria or fungi will
activate different sets of synergistic TLR–TLR, TLR–NLR or NLR–NLR pairs, resulting
in different expressions of cytokine overproduction. (9) Since SARS-CoV-2 activates a
different set of TLR and NLR than other respiratory viruses such as influenza A virus or
the respiratory syncytial virus do, the presence of coinfecting bacteria or fungi will result
in different cytokine release profiles than those seen in COVID-19, thereby explaining the
variability observed in cytokine release syndromes.

In sum, while there is a natural tendency to ascribe to all symptoms of a new disease
to whatever new agent is discovered to be its cause, it is often the case that variations in the
expression of an infection are due to additional host factors. Even the founders of the germ
theory of disease, Louis Pasteur and Robert Koch, understood that, in Pasteur’s words,
“the terrain is as important as the germ”, by which he meant that the health of the host
at the time of infection can alter significantly the course of a disease and its symptoms.
This “terrain” concept provides an appropriate context for understanding the causes of
cytokine storms and the difficulties that exist in defining and characterizing such “storms”
unambiguously. The proposition that guided this review is that cytokine storms do not
occur in mono-infected individuals but only in those with multiple, concurrent infections,
and furthermore, the specific nature of the cytokine release syndrome is determined by
the particular set of infections that afflict the host. Thus, uncomplicated SARS-CoV-2
infections cannot lead to cytokine release syndrome (Table 2 and Figure 4) any more than
uncomplicated influenza A virus infections can (Table 2 and Figure 5). The sets of TLR–TLR,
TLR–NLR and NLR–NLR synergisms are too few to account for such overproductions,
particularly when antagonistic interactions negatively controlling cytokine production are
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taken into account. It is concluded that SARS-CoV-2 and influenza A virus are not sufficient
causes of these syndromes but require the presence of additional, concurrent bacterial or
fungal infections that enhance their innate activation profiles.

Moreover, an essential part of the model is the principle that different sets of coinfec-
tions will result in different innate activation profiles and, thus, different forms of cytokine
overproduction syndromes. Among COVID-19 ARDS, patients can have different etiolo-
gies due to superinfections with a variety of Gram-positive or Gram-negative bacterial,
mycoplasmal or fungal infections, each resulting in a different cytokine overproduction
profile. Moreover, COVID-19 ARDS patients have different etiologies and cytokine over-
production profiles than influenza-associated ALI/ARDS patients do, who differ as well
from sepsis patients. In this way, the model presented here explains why there is not,
and can never be, a universal definition of a “cytokine storm”, nor a single set of clinical
criteria for diagnosis. Each patient represents a unique set of risk factors for both viral
infection and for bacterial or fungal superinfections, and the consequent mix of risk factors
and infections results in unique innate activation profiles (IRAP). Determining the specific
IRAP for each individual patient may be the key to learning how to best treat the range of
cytokine overproduction syndromes.

3.2. The Role of Pathogen Synergisms in COVID-19

Evidence for the presence of bacterial and fungal coinfections in severe COVID-19
was provided in Section 2.1 above and is consistent with other clinical observations as well,
such as reports that the SARS-CoV-2 viral load is not directly correlated with COVID-19
severity. For example, Zhou et al. [229] demonstrated that, in severe COVID-19 patients
coinfected with S. pneumoniae, Haemophilus parainfluenzae or Neisseria meningitides, the
numbers of SARS-CoV-2 virions were significantly lower than in uncomplicated SARS-
CoV-2 infections. Similarly, Schlesinger et al. [230] reported that, among COVID-19 patients
admitted to the intensive care unit, “No difference of viral load was found in tracheal
or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was
never found in dialysate. Serologic testing revealed significantly lower concentrations of
SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors
(p = 0.009).” These counterintuitive data again argue against SARS-CoV-2 being the sole
driver of the rates of morbidity and mortality among COVID-19 patients and for additional
factors that were not measured, such as the presence or absence of neutralizing IgM and IgA
against bacterial or fungal coinfections. Animal models also support this “terrain” concept.
In murine models of fatal coronavirus (MERS and SARS) and influenza pneumonias, TLR3–
TLR4 synergism is universal, such that antagonizing or deleting TLR4, which is specifically
activated by bacterial lipopolysaccharides, prevents death [231–234]. Indeed, there are
multiple reports that vaccinations against S. pneumonia [235–242] and, possibly, Haemophilus
influenzae as well [239–241] significantly decreases the probability of contracting and dying
from COVID-19. In this context, it is too bad that there are not vaccines against Klebsiella
pneumoniae, Mycoplasma pneumoniae and Aspergillus fungal infections, as well.

However, it must be noted that, against the bacterial and fungal coinfection inter-
pretation of disease severity just presented, Blot et al. [243] and Bitker et al. [244] found
that SARS-CoV-2 viral loads did predict adverse outcomes among severe COVID-19 pa-
tients, perhaps suggesting that, in the absence of synergistic coinfections, other host risk
factors such as obesity, diabetes, heart disease and smoking can also affect the innate
immune system function in such a way as to provide “fertile terrain” for the virus. For
example, it is known that obese individuals have increased susceptibility to serious or fatal
influenza [245]. Clearly, more studies of the virion and antibody prevalence performed in
the context of the “terrain” concept are needed to sort out this question.

The IRAP model also provides a basis for understanding why some viruses are associ-
ated with cytokine storms or release syndromes, such as coronaviruses, influenza viruses
and respiratory syncytial virus, while others, such as rhinoviruses, are not. References to
Table 2 and Figure 4 illustrate the fact that the range of TLR and NLR activated by rhi-



Int. J. Mol. Sci. 2021, 22, 2108 29 of 44

noviruses is so limited as to make it difficult for these viruses to participate in interactions
with other pathogens that could result in the necessary synergistic pathway activation
necessary for the overproduction of cytokines. Thus, not all virus-bacteria coinfections will
necessarily result in cytokine overproduction syndromes.

3.3. Implications of Innate Receptor Activation Profiles for Tretment of COVID-19 and Other
Cytokine Release Syndromes

Perhaps the most important aspect of the IRAP model produced is to provide clues as
to how to treat the variety of cytokine release syndromes more effectively than is currently
possible. To begin with, the model suggests that there is no single set of TLR and NLR
that encompasses the range of TLR and NLR activated in such syndromes. The only set
shared by severe COVID-19, influenza-associated ALI/ARDS and sepsis is that comprised
of TLR4, TLR7 and NLRP3. It would therefore seem that these three receptors would, at a
minimum, need to be addressed concurrently to downregulated cytokine release in any of
these syndromes. There appears to be no standard approach to treating cytokine release
syndromes that currently addresses all three, and the vast majority address none, focusing
instead on antagonizing cytokine functions. However, melatonin (N-acetyl-5-methoxy
tryptamine) has recently emerged as an effective therapy for severe COVID-19 [246–251].
While melatonin is often thought of being mainly a sleep regulator, it also has widespread
effects on the innate immunity—in particular, antagonizing TLR2, TLR4, TLR9, NLRP3
and, possibly, NOD2 [59,252–255]. Melatonin therefore antagonizes five of the seven
TLR and NLR activated in COVID-19, eliminating all but one of the receptor synergisms
(Figure 11). Additionally, all of the pathways resulting in interferon, interleukin and TNF
release are moderated, causing a global decrease in cytokines (Figure 12). The effectiveness
of melatonin for treating COVID-19 cytokine storms is therefore easily explained by the
synergistic activation IRAP model of severe COVID-19 proposed here.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 32 of 47 
 

 

 
Figure 11. Illustration of the antagonistic effects that melatonin has on TLR and NLR functions in severe COVID-19 (from 
Figure 3A). The large red stars indicate the TLR and NLR that are antagonized (the question mark indicating that evidence 
for this antagonism is provisional). The small red stars indicate the synergisms that are eliminated as a result of the recep-
tor antagonisms. By downregulating TLR2, TLR4, TLR9, NLRP3 and, possibly, NOD2 as well, almost all of the innage 
receptor synergisms driving cytokine overproduction are eliminated, effectively returning the system to normal. 

 
Figure 12. Figure 1 adapted to illustrate the effects of Anakinra, an IL-1 receptor blocker (purple stars), and Tocilizumab 
and Sarilumab, IL-6 receptor blockers (blue star) that only antagonize one or two cytokines compared with the effects of 
melatonin (red stars), which downregulates NOD2, TLR2, TLR4, TLR9 and NLRP3, resulting in decreases in the produc-
tion of all major cytokines (circled in red). 

The model of innate immunity regulation proposed here may also be useful for eval-
uating the likelihood that other therapies will be useful in treating severe COVID-19 and, 
particularly, the cytokine storm accompanying it. Consider, as examples, Anakinra, a hu-
man IL-1 receptor antagonist, and Tocilizumab and Sarilumab, monoclonal antibodies 
that block the IL-6 receptor and, thus, its signal transduction pathway [256,257]. Each one 
neutralizes only one type of cytokine among the dozen that are released during a cytokine 
storm (Figure 12). Thus, one would expect each one to have a minimal effect on COVID-
19 symptoms and progression, which is, in fact, the case. While a meta-study of Tocili-
zumab found a weak but statistically significant reduction in mortality among ventilated 
patients [258], the largest double-blinded, randomized study for treating COVID-19 pa-
tients found no benefits compared to the standard care [259]. A head-to-head comparison 

Figure 11. Illustration of the antagonistic effects that melatonin has on TLR and NLR functions in severe COVID-19 (from
Figure 3A). The large red stars indicate the TLR and NLR that are antagonized (the question mark indicating that evidence
for this antagonism is provisional). The small red stars indicate the synergisms that are eliminated as a result of the receptor
antagonisms. By downregulating TLR2, TLR4, TLR9, NLRP3 and, possibly, NOD2 as well, almost all of the innage receptor
synergisms driving cytokine overproduction are eliminated, effectively returning the system to normal.



Int. J. Mol. Sci. 2021, 22, 2108 30 of 44

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 32 of 47 
 

 

 
Figure 11. Illustration of the antagonistic effects that melatonin has on TLR and NLR functions in severe COVID-19 (from 
Figure 3A). The large red stars indicate the TLR and NLR that are antagonized (the question mark indicating that evidence 
for this antagonism is provisional). The small red stars indicate the synergisms that are eliminated as a result of the recep-
tor antagonisms. By downregulating TLR2, TLR4, TLR9, NLRP3 and, possibly, NOD2 as well, almost all of the innage 
receptor synergisms driving cytokine overproduction are eliminated, effectively returning the system to normal. 

 
Figure 12. Figure 1 adapted to illustrate the effects of Anakinra, an IL-1 receptor blocker (purple stars), and Tocilizumab 
and Sarilumab, IL-6 receptor blockers (blue star) that only antagonize one or two cytokines compared with the effects of 
melatonin (red stars), which downregulates NOD2, TLR2, TLR4, TLR9 and NLRP3, resulting in decreases in the produc-
tion of all major cytokines (circled in red). 

The model of innate immunity regulation proposed here may also be useful for eval-
uating the likelihood that other therapies will be useful in treating severe COVID-19 and, 
particularly, the cytokine storm accompanying it. Consider, as examples, Anakinra, a hu-
man IL-1 receptor antagonist, and Tocilizumab and Sarilumab, monoclonal antibodies 
that block the IL-6 receptor and, thus, its signal transduction pathway [256,257]. Each one 
neutralizes only one type of cytokine among the dozen that are released during a cytokine 
storm (Figure 12). Thus, one would expect each one to have a minimal effect on COVID-
19 symptoms and progression, which is, in fact, the case. While a meta-study of Tocili-
zumab found a weak but statistically significant reduction in mortality among ventilated 
patients [258], the largest double-blinded, randomized study for treating COVID-19 pa-
tients found no benefits compared to the standard care [259]. A head-to-head comparison 

Figure 12. Figure 1 adapted to illustrate the effects of Anakinra, an IL-1 receptor blocker (purple stars), and Tocilizumab
and Sarilumab, IL-6 receptor blockers (blue star) that only antagonize one or two cytokines compared with the effects of
melatonin (red stars), which downregulates NOD2, TLR2, TLR4, TLR9 and NLRP3, resulting in decreases in the production
of all major cytokines (circled in red).

The model of innate immunity regulation proposed here may also be useful for evalu-
ating the likelihood that other therapies will be useful in treating severe COVID-19 and,
particularly, the cytokine storm accompanying it. Consider, as examples, Anakinra, a
human IL-1 receptor antagonist, and Tocilizumab and Sarilumab, monoclonal antibodies
that block the IL-6 receptor and, thus, its signal transduction pathway [256,257]. Each
one neutralizes only one type of cytokine among the dozen that are released during a
cytokine storm (Figure 12). Thus, one would expect each one to have a minimal effect on
COVID-19 symptoms and progression, which is, in fact, the case. While a meta-study of
Tocilizumab found a weak but statistically significant reduction in mortality among venti-
lated patients [258], the largest double-blinded, randomized study for treating COVID-19
patients found no benefits compared to the standard care [259]. A head-to-head comparison
of Anakinra to Tocilizumab found no difference in patient outcomes [260], which in light
of the lack of Tocilizumab benefits, indicates a lack of Anakinra benefits, as well. Anakinra
plus Tocilizumab, however, reduced the need for ventilation and overall mortality [261],
as might be expected, since the combination addressed two sets of cytokines rather than
just one (Figure 12). Targeting a broader range of cytokines receptors might be more
therapeutically effective but, also, much more difficult to deliver than targeting key TLR
and NLR and, at present, extremely expensive.

Results such as these suggest, in light of the IRAP model presented here, that the most
effective treatments for cytokine storms, whether in COVID-19 or other cytokine release
syndromes, are most likely to be those that target either the key TLR–NLR synergistic sets
that trigger a particular syndrome through broadly acting inhibitors such as melatonin or,
perhaps, colchicine (which has a similar TLR antagonism profile [262–266]) or by means
of TLR and/or antagonist combinations, thereby downregulating all cytokine production.
It does not appear that either of these approaches has been systematically investigated in
COVID-19, ALI-ARDS or sepsis, and even the use of melatonin in COVID-19 was initiated
in apparent ignorance of its multiple TLR/NLR-moderating effects. Since many individual
TLR and NLR antagonists are being investigated, and some are in clinical trials, (reviewed
in [267]), such multipronged therapies are quite feasible.

It is important to emphasize again that effective therapies need to be tailored to
the specific etiologies of each patient’s syndrome, and therefore, it is essential that every
ALI/ARDS or sepsis patient be tested for the specific set of coinfections that might be
present so that the particular TLR/NLR activation profile can be predicted. The literature
references in Section 2.1 makes it clear that such a diagnosis should not involve attempts
to isolate such coinfections from the blood, sputum or biopsy, which often fail to identify
such infections, but should utilize highly sensitive urine antigen tests and/or polymerase
chain reaction tests.
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One final implication of the present review is that it is not appropriate to attempt
to treat COVID-19-associated cytokine release in the same way as influenza-associated
ALI/ARDS or sepsis-related cytokine storms. As noted in several places above (most
notably in the Introduction and Section 2.8), interferon release is severely impaired in
COVID-19, which facilitates SARS-CoV-2 infectivity and replication. A number of groups
have therefore suggested, correctly in light of the IRAP model, that patients with severe
COVID-19 need interferon supplementation [267–272], a therapeutic approach that would
very likely be harmful in other cytokine release syndromes in which interferon is over-
produced. An alternative suggested by the IRAP model might be to stimulate a natural
interferon release using RIG1, NOD1 and, perhaps, TLR3 agonists (Figure 12). Indeed, a
just-released clinical study demonstrated that COVID-19 patients treated with the hep-
atitis drug peg-interferon are four times more likely to recover quickly and clear their
SARS-CoV-2 infection than equivalently treated patients not given that drug [273].

3.4. Directions for Future Research

There is a great deal that is not known about the innate receptor activation patterns
(IRAP) of the pathogens associated with cytokine overproduction syndromes, as a glance
at any of the blank entries of the tables in this paper makes clear. Each of these blank spots
represents an instance of ignorance that needs to be rectified by future research. While
these blank spots are too numerous to discuss in detail, certain generalizations are possible.

One of the most pressing needs is the further investigation of antagonisms between
TLR and other TLR, TLR and NLR and between NLR and other NLR. For whatever reason,
synergisms have been the focus of many more studies than antagonisms (perhaps because
the latter require chronic stimulation to become apparent), yet one of the key findings of
this paper is that it is difficult to make sense of the IRAP characterizing severe COVID-19,
influenza-associated ALI/ARDS or sepsis in terms of their probable multifactorial etiologies
simply in terms of their known receptor antagonisms. It seems very likely that NLRP3,
NOD1 and RIG1 antagonize several TLR and possibly each other as well, just as is known
for NOD2 (Figure 2B).

Another pressing need is for more complete controls in TLR and NLR studies to
definitively rule out the activation of receptors that are currently assumed to be irrelevant.
An all-too-common approach to TLR and NLR research that became apparent in reviewing
this literature was a habit to choose one or a few TLR or NLR to study in any given system
without employing any controls, negative or positive. The absence of data on the activation
or antagonism of TLRS 1, 5 and 6 across almost all of the types of studies employed in this
paper, as evidenced by the very numerous blanks in almost all of the tables, is particularly
noteworthy.

Yet another major gap in our current understanding of cytokine overproduction
syndromes is the role that DAMPs may play, possibly in initiating, and almost certainly in
maintaining cytokine release. Compared with the number of studies on PAMP activation of
TLR and NLR, the literature on DAMP activation is extremely sparse and there is virtually
no literature on whether DAMP activation of TLR and NLR can result in antagonisms
between these receptors. Such studies may provide clues concerning novel types of DAMP-
derived therapies for limiting or controlling cytokine overproduction.

New types of animal models are suggested by the IRAP model presented here. Among
the possibilities are animal models of COVID-19 employing combinations of SARS-CoV-2
with Streptococci, Klebsiella, Mycoplasmas, Aspergillus or other commonly occurring coinfec-
tions associated with the severe form of the disease. These combinations should, if the
IRAP model presented here is correct, induce a super-additive cytokine release compared
with SARS-CoV-2 alone or the coinfection alone. Additionally, such models could shed
light on the mechanisms of severe complications, such as blood coagulation disorders,
cardiovascular pathologies and respiratory distress that accompany severe COVID-19.

Finally, the IRAP model suggests a very different approach to developing drugs to
treat cytokine overproduction syndromes than is generally used. In the first place, as
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noted above in Section 3.3, not all cytokine overproduction syndromes have the same
etiologies or mechanisms of cytokine release, so a one-size-fits-all approach is unlikely
to be successful. Secondly, most of the current approaches to cytokine control seem to
be targeted at antagonizing individual cytokines, such as IL-6 or the TNFs, and mainly
by means of blocking their receptors, while the IRAP model suggests that a much more
effective approach would be to search for broadly acting TLR or NLR antagonists that will
prevent the release of all or most cytokines. The possibility that melatonin and colchicine
may act in this way provides hope that such an approach is not only possible but likely to
be achievable.

3.5. Limitations and Sources of Bias in This Study

In conclusion, it is important to point out the possible limitations and sources of bias
in this study. As noted above in Section 2.5, no attempt was made to perform a complete
literature search on all aspects of cytokine release syndrome-related studies related to in-
nate receptor activation. The studies reviewed and the data from which were incorporated
into the model presented here were chosen for their relevance to testing the alternative
hypotheses laid out in Section 2.4 and differentiating between their predictions. Thus, the
data incorporated here is limited to studies relevant to TLR–TLR, TLR–NLR and NLR–NLR
synergisms and antagonisms; the activation profiles of the most common pathogens asso-
ciated with COVID-19, influenza-associated ALI/ARDS and sepsis; the actual activation
patterns observed in human patients with those cytokine overproduction syndromes and
what is known about the effects on TLR and NLR activation caused by a very select group
of therapies used for treating COVID-19 and other cytokine overproduction syndromes. It
is quite possible that this focus on testing the particular hypotheses described in Section 2.4
has resulted in overlooking important and relevant studies that could support other expla-
nations for cytokine overproduction and result in different models and predictions about
therapies. Other innate receptors not included in this model and their associated pathways
undoubtedly also play important roles in cytokine overproduction that may nuance or
modify the IRAP model. Such myopia is a risk associated with any type of model-building
or hypothesizing. Finally, it is important to stress the incompleteness of the data used in
this study, as is all-too apparent in the many blank spaces in the tables. There is a great
deal that we still do not know about TLR and NLR activation patterns, synergisms and
antagonisms that could modify or even overturn the IRAP model presented here.

4. Conclusions

Evidence was presented that sepsis, ALI, ARDS and severe COVID-19 are all character-
ized by being polymicrobial infections, which is likely to be true of all instances of cytokine
storms or cytokine release syndromes. These polymicrobial infections express PAMPs
that synergistically activate various sets of TLR, NLR and RIG that produce the particular
expression of cytokines characterizing the overproduction syndromes. The particular
sets of TLR, NLR and RIG that are activated by the particular combination of infectious
agents result in the release of different distributions of cytokines in each instance—most
notably, a significant impairment of interferons in COVID-19 that is not typical of other
cytokine storm syndromes. In other words, there is no single entity that can be defined
as a “cytokine storm” or “cytokine release syndrome”, because different combinations
of pathogens will induce different distributions of cytokines. Consequently, there can
also be no single therapeutic approach to the hyperinflammation that follows from the
overproduction of cytokines; rather, therapies must be tailored to the sets of receptors
activated in any given disease, which requires identifying the etiological factors at work in
each instance and/or the particular IRAP of each individual patient. That said, however, it
will be generally true that effective therapies will be those that antagonize as many of the
receptors activated synergistically in each syndrome as is possible, so that broadly acting
TLR and NLR antagonists are likely to be more effective than specifically targeted ones
or therapies targeted at specific cytokines or their receptors. A better understanding of
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the innate receptor activation patterns characterizing various cytokine release syndromes,
the specific PAMPs and DAMPs driving their activation and the methods for quickly
screening patients for TLR and NLR activation may result in better targeted, individualized
treatments.
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