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Reinforcement learning from demonstration (RLfD) is considered to be a promising approach to improve reinforcement learning
(RL) by leveraging expert demonstrations as the additional decision-making guidance. However, most existing RLfD methods
only regard demonstrations as low-level knowledge instances under a certain task. Demonstrations are generally used to either
provide additional rewards or pretrain the neural network-based RL policy in a supervised manner, usually resulting in poor
generalization capability and weak robustness performance. Considering that human knowledge is not only interpretable but also
suitable for generalization, we propose to exploit the potential of demonstrations by extracting knowledge from them via Bayesian
networks and develop a novel RLfD method called Reinforcement Learning from demonstration via Bayesian Network-based
Knowledge (RLBNK). The proposed RLBNK method takes advantage of node influence with the Wasserstein distance metric
(NIW) algorithm to obtain abstract concepts from demonstrations and then a Bayesian network conducts knowledge learning and
inference based on the abstract data set, which will yield the coarse policy with corresponding confidence. Once the coarse policy’s
confidence is low, another RL-based refine module will further optimize and fine-tune the policy to form a (near) optimal hybrid
policy. Experimental results show that the proposed RLBNK method improves the learning efficiency of corresponding baseline
RL algorithms under both normal and sparse reward settings. Furthermore, we demonstrate that our RLBNK method delivers

better generalization capability and robustness than baseline methods.

1. Introduction

Recent research on reinforcement learning (RL) has made
impressive achievements in various domains, including video
gaming [1], stock trading [2], and recommendation systems
[3]. However, the resource-exhausting training seriously
hinders the deployment of RL in real-world scenarios. One of
the most important reasons for this issue is that RL agents
have no background knowledge and have to learn from
scratch, which is neither efficient nor realistic. In contrast,
during the human learning process, we expect to learn new
tasks by watching demonstrations first, and this inspires the
research on reinforcement learning from demonstration
(RL{D) [4], which has been proved to be promising in robot
grasping [5] and unmanned vehicle driving [6], etc.
However, most previous RLfD methods do not take full
advantage of expert demonstrations, limited by treating

them as the accurate behavioral templates without providing
insight into the reasons of performing such actions. Dem-
onstrations in these RLfD methods are regarded as the low-
level representation of human knowledge, which restrains
their generalization capability [7]. Moreover, neural net-
work-based RLfD methods aforementioned have limited
interpretability, and they also lack the ability of acting ro-
bustly to the observation disturbance.

Considering that obtaining expert demonstrations is
costly, it is essential to explore how these demonstrations can
be used effectively. Therefore, a superior RLfD method
should be able to extract knowledge from demonstrations
that not only improves the algorithm performance for the
same task but also provides explanations of the demon-
strator’s actions, which facilitates the generalization of the
final learned behavioral policy. Here, following the defini-
tion proposed in [8], we treat “knowledge” as validated
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information about the relationships between entities in a
certain context and the theoretical definition will be in-
troduced in Section 4.2. Although such knowledge is gen-
erally efficient and concise, it is usually uncertain, coarse,
and difficult to be expressed or quantified, which indicates
that it needs to be further fine-tuned and adjusted to fully
accomplish the target task.

As a probabilistic graphical model, Bayesian networks
[9] can be used as an appropriate pattern to exploit task-
agnostic knowledge from demonstrations since they have
multiple advantages. Firstly, as a kind of probabilistic model,
Bayesian networks can learn and represent uncertain and
coarse knowledge to accomplish probabilistic reasoning.
Besides, Bayesian networks have directed graph structures in
which the nodes represent real-world observations and
actions and the weights between nodes are conditional
probability values used to quantify causal relationships
between nodes. Thus, Bayesian networks are easy to be
interpreted, which provides transparent insight into the
extracted knowledge. Moreover, Bayesian networks can
provide confidence in decision-making process compared to
commonly used methods.

Inspired by the aforementioned ideas, we propose a
novel RLfD method called Reinforcement Learning from
demonstration via Bayesian Network-based Knowledge
(RLBNK) that extracts probabilistic knowledge from expert
demonstrations via Bayesian networks and combines the
knowledge with RL. The RLBNK method aims to learn a
hybrid policy that consists of a fixed knowledge module
represented by a Bayesian network and a trainable refine
module represented by a neural network, where the refine
module undertakes the role of refining the probabilistic
coarse knowledge represented by the Bayesian network. By
leveraging Bayesian networks as the knowledge represen-
tation pattern, the agent can quantify the uncertainty of the
prior knowledge extracted from demonstrations, which
guides the employment of the probabilistic knowledge. More
specifically, we propose two variant RLBNK methods called
RLBNK-concat and RLBNK-switch. For RLBNK-concat, the
agent concatenates the decision confidence vector provided
by the Bayesian network to the current state vector as input
and optimizes the whole policy by RL. In this method, the
decision confidence vector implicitly provides instruction to
the agent. As for RLBNK-switch, it divides the state space
according to the decision confidence vector provided by the
pretrained Bayesian network knowledge module: if the
decision confidence is high, the decision will be made by the
Bayesian network; otherwise, the decision will be made by
the neural network-based refinement module. Note that for
both variants, the knowledge module represented by the
Bayesian network is fixed during the RL process. Simulation
results illustrate that our RLBNK outperforms the well-
established baselines in terms of data efficiency, general-
ization capability, and robustness.

In summary, the main contributions of this paper are
threefold:

(1) An influence-based state abstraction algorithm NIW
is proposed to obtain conceptional abstract states
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from original expert demonstrations. And Bayesian
networks then extract probabilistic coarse knowledge
from these abstract demonstrations.

(2) A novel RLfD method called RLBNK is proposed,
which composes of a Bayesian network that repre-
sents probabilistic coarse knowledge and a neural
network-based refine module that refines the prior
knowledge. And the advantages of RLBNK are also
analysed and discussed.

(3) Extensive experiments are conducted to verify the
effectiveness of the RLBNK method. The results
show that the RLBNK method can achieve better
performance in data efficiency, generalization ca-
pability, and robustness than the baseline methods.

The remainder of this paper is structured as follows.
Section 2 and Section 3 introduce the related works and
preliminaries of this paper. The methodology of the RLBNK
and the corresponding analysis and discussion are presented
in Section 4. Finally, the experimental results are illustrated
and analysed in Section 5. Section 6 concludes this paper and
envisions the future work.

2. Related Work

2.1.  Reinforcement  Learning from  Demonstration.
Reinforcement learning from demonstration (RLfD) is
considered as an important branch of learning from dem-
onstration (LfD) method that combines demonstrations
with conventional RL to improve the sample efficiency [10]
in the training process. Existing RLfD methods are basically
rooted in the following three ideas: (1) policy pretraining; (2)
reward shaping; (3) providing auxiliary loss.

Policy pretraining [6] is the most commonly used RL{D
method in practice. It pretrains the RL policy with dem-
onstrations in a supervised manner via behavior cloning
[11], then proceeding with regular RL. The typical work
following this idea is the AlphaGo algorithm [12]. However,
this approach cannot guarantee the exploration quality
during the proceeding policy optimization process, which
usually results in “catastrophic forgetting” [13]. Moreover,
neural networks are often apt to overfit the demonstrations,
which impedes the generalization of the pretrained policy.

Reward shaping aims to instruct the agent’s learning by
constructing additional reward signals from expert dem-
onstrations [14, 15]. With additional rewards, RL agents can
learn more effectively by obtaining heuristic feedback from
both the environment and the introduced rewards. For
example, the soft Q imitation learning (SQIL) algorithm [15]
stores demonstrations in the replay buffer and assigns a
positive reward to them. The study [14] trains a supervised
neural network from demonstration to act as a shaping
function. However, this idea remains in the tendency of
implicitly replicating the expert’s action by encouraging the
agent to explore the state space that is covered by the
demonstrations.

Providing extra loss terms derived from demonstrations
for RL policy function or value function optimization is the
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third mainstream idea of RLfD. For instance, deep
Q-learning from demonstration (DQfD) [16] introduces
demonstrations into deep Q-network (DQN) [1] by storing
demonstration data into the experience replay buffer to
pretrain the Q-network with different loss terms. Then, in
the RL process, a prioritized sampling mechanism is
employed to select experience data from the replay buffer for
Q-network optimization. Likewise, the deep deterministic
policy gradient from demonstration (DDPG{D) algorithm
[5] inherits this idea and takes deep deterministic policy
gradient (DDPG) [17] as the basic algorithm to extend
DQfD to robot control tasks with continuous actions.
Similar to the reward shaping idea, this approach also aims
to encourage the agent to copy the expert’s actions by
constraining the objective of the optimization.

2.2. Imitation Learning. Imitation learning (IL) also uti-
lizes demonstrations to acquire expert-like policies, and it
can be broadly classified into behavioral cloning (BC) and
inverse reinforcement learning (IRL). BC [11, 12, 18] is
the most common imitation learning paradigm as the
expert policy is extracted through supervised learning.
However, the policies learned via BC suffer from the
compounding error caused by covariate shift [19] in se-
quential decision-making tasks. Thus, the agent may easily
drift away from the demonstrated states. The other IL
paradigm is IRL, which tries to recover the reward
function of the task by regarding the expert demonstra-
tions are optimal and then learns policies within the RL
framework. Thus, this IRL method can avoid com-
pounding error occurs in BC. Combining the idea of
generative adversarial networks (GANs) [20] and IRL, the
generative adversarial imitation learning (GAIL) [21]
method leverages adversarial training to learn the policy
from demonstrations directly.

However, it is important to note that even though IL
and RLfD are similar, there are fundamental differences
between them. RLfD methods still assume access to the
reward feedbacks from the environment even though they
have the assistance from expert demonstrations, while IL
methods do not rely on any reward signal [11, 18] or it
constructs the reward function from demonstrations itself
[21].

2.3. Knowledge Representation and Integration. Various
typical patterns have been explored to represent prior
knowledge, such as fuzzy methods [22, 23], rules [24-26],
decision trees [27, 28], neural networks [11], and graphs
[29, 30]. The advantage of fuzzy methods and rules is that
they are naturally interpretable. However, it requires con-
siderable human efforts to manually define the forms of rules
and they are limited to represent complex relationships. In
contrast, neural networks have powerful representation
ability, but the lack of interpretability impedes their adop-
tion. Graphs and decision trees are ideal tools for inter-
pretable knowledge extraction and representation which can
automatically extract knowledge from data. Compared to
trees, Bayesian networks provide a more concise

probabilistic representation as graph models, which are
more in line with the human form of learning and reasoning.

There is also some research on the integration of
knowledge into RL in different forms. The knowledge
guided policy network (KoGuN) method [26] employs
fuzzy rules as the knowledge controller. Fuzzy rules are
difficult to extract knowledge from the data, and the
membership function must be defined manually. Com-
pared with fuzzy rules, Bayesian networks can extract the
probabilistic knowledge with minimal human efforts. The
requesting confidence-moderated policy advice (RCMP)
algorithm [31] also utilizes uncertainty to guide the RL,
where the uncertainty used in this algorithm is obtained by
computing the variance of multiple Q-value vectors pro-
vided by a multiheaded Q-network. Then, the RCMP al-
gorithm requires action advices from the online expert
when it has high decision uncertainty. Therefore, this al-
gorithm requires continuous instructions from an online
expert.

3. Preliminary

3.1. Reinforcement Learning. RL aims to solve a sequential
decision-making problem, where an RL agent optimizes its
policy by interacting with the environment following a
Markov decision process (MDP) [32]. A standard MDP ./ is
defined by a tuple (&, o/, R, P, y). Particularly, & and o/ are
the state space and action space with sizes are || and |/,
respectively; & represents the reward distribution function,
with r, = r(s;, a,) is the immediate reward for taking action
a, in state s, at timestep t; 9 denotes the transition prob-
ability function, with Pr(s,,,[s,,a,) indicates the probability
of transitioning from s, to s,.; upon action a,; y € (0,1]
denotes the discount factor.

As shown in Figure 1, given a policy 7, the RL agent
chooses an action a, according to 7 (s,) and then transits to
the next state s,,, following Pr(s,,,|s;»a,) and receives an
instant reward r,. We define R, = Y12, "7, as the total
discounted reward at s, with discounted factor y. The ob-
jective of an RL agent is to obtain the (near) optimal policy
n* that maximizes the expectation of R,. Assuming that the
policy network is parameterized by ¢, the value function
V7 (s) is usually used to evaluate the policy Mg where V7 (s)
can be defined as

V7™ (s) = E™[R,ls, = s], (1)
and the action value function Q™ (s,a) is defined as
Q" (s,a) = E™[R,|s, = s,a, = a], (2)

where E™[-] denotes the expectation with respect to 7.
The policy-based RL methods update the policy pa-
rameter ¢ via gradient ascent given by

p—¢+avVj(¢), (3)

where « is the learning rate and J(¢) is the total expected
reward that can be estimated by

VI () = Eqg 0| Vglog my (als)A™ (s,@)].  (4)
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FIGURE 1: The standard reinforcement learning setup.

Subtracting Q™ by V™ gives the advantage function A™
used in equation (4):

A" (s,a) = Q™ (s,a) = V™ (s), (5)

where A™ (s,a) reflects the expected additional reward that
the agent will receive after taking action a at state s.

To evaluate the generalization capability of demon-
strations [7], we should firstly define different MDPs within
the RLfD paradigm, where the source MDP ./,
(S s R, P, yy is used to collect the expert demon-
strations and A ,: (S8, o, R, P, p) is the target MDP that
needs to be solved. In RLfD, an RL agent interacts with the
environment following the target MDP ./, and is also
provided with expert demonstrations generated by the ex-
pert policy 7y from source MDP .. In RL, the general-
ization settings can be various, where ./ and ./, can differ
by state space &, action space &, reward function &, or
system dynamics 2.

As a generalization of the standard MDP, the partial
observable Markov decision process (POMDP) [33] extends
MDP to the partial observable environment settings. In
POMDP, the agent only receives an observation o, with
distribution p(o,s,) at each time step t. Similar to the
standard MDP, the aim of the POMDP is to maximize the
expected total reward that the RL agent receives. Moreover,
the other core issue in POMDP is to improve the robustness
of the trained policy to the stochastic disturbance of the
environment.

3.2. Bayesian Networks. Bayesian networks [9] belong to
probabilistic graphical models (PGMs) that can be defined
as (G, 0) where & = (7, &) is the directed acyclic graph,
with 7" is the set of nodes (variables) and edges &, and O is
the probability function. Depending on whether the var-
iables are discrete or continuous, Bayesian networks can be
classified into discrete Bayesian networks and Gaussian
Bayesian networks. In addition to Gaussian distribution,
alternative techniques such as modified exponential dis-
tribution and Rayleigh distribution can also be used to deal
with continuous attributes [34]. Since only discrete
Bayesian networks are employed in this paper, we use
Bayesian networks to represent discrete Bayesian networks
in the following paper for convenience. To utilize a
Bayesian network, both the structure & and probability
function O of the Bayesian network should be obtained,
where O is quantified by a conditional probability table
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(CPT) that can be parameterized by 6. Depending on the
characteristics of the task to be solved, the topology & can
either be defined based on the causality of nodes or learned
from data. For most RL tasks, since the state inputs and
action outputs are known, the causal relationship between
states and actions can be directly described by a Bayesian
network structure (see also Figure 2). Thus, we focus on
estimating the optimal parameter 6" of the probability
function and the probabilistic inference of Bayesian
networks.

3.2.1. Parameter Estimation. The parameter estimation
process of Bayesian networks aims to learn the probability
function O of all the nodes, where each node in Bayesian
networks denotes a variable [35]. Providing the structure &
of a Bayesian network, the conditional independence of all
the nodes can be learned from data. Given a dataset 9
consists of fully observed samples of a Bayesian network, the
maximum likelihood estimation (MLE) method is usually
used to accomplish the parameter estimation process.
Suppose a Bayesian network has n nodes X ={X|,
X,,...,X,} and its probability function O is parameterized
by 6. For the node X; in X, we assume that it has r; candidate
values and its parent nodes parent(X;) have g; candidate
combinations. Each parameter 6% that represents the con-
ditional probability between node X; and its parent nodes
parent (X;) when X; = k and parent(X;) = j can be written
as

ij = P(X; = klparent (X;) = j), (6)

wherei=1,2,...,m j=1,2,...,q5 k=1,2,...,1;
According to the property of probability, the accumu-
lated sum of ij over candidate values of X; satisfies

kz o = kz P(X; = klparent(X;) = j) = 1. (7)
=1 =1

The MLE method aims at learning the optimal parameter
0" by maximizing the likelihood between the parameter 0
and the dataset 9, which can be written as

0" =arg m;le(GI@E) = arg mkaxii imffjlog ij,

ij i=1 j=1k=1
(8)

where L(6|9) is the likelihood function of 6 and mf-‘j is the
number of samples that satisfies parent(X;) when X; =k
and parent(X;) = j in the dataset 9.

By using the Lagrange multiplier method, the (near)
optimal 6" can be obtained as follows:

1 &
— if Y m; =0,
7 J
i k=1
fk
Gij =4 9)
mk i
k=1 "ij k=1
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FIGURE 2: Structure of the Bayesian network defined for the
CartPole task.

Recently, some advanced Bayesian network parameter
estimation methods are also proposed for limited data [36]
or uncertain data [37]. As we have enough deterministic data
and the MLE method has high estimation accuracy and wide
application, we choose MLE as the method for parameter
estimation in this paper.

3.2.2. Probabilistic Inference. The probabilistic inference of
Bayesian networks is to estimate the posterior probability on
target variables by giving the learned CPTs and observed
variables (also called evidence variables), which can be di-
vided into approximate inference and exact inference. Exact
inference methods aim to precisely calculate the probability
distribution of variables and are suitable for Bayesian net-
works with simple structures. Approximate inference
methods improve the computational efficiency at precision,
which is suitable for Bayesian networks with complex
structures.

Given the structure of a Bayesian network example
shown in Figure 2, its joint probability distribution can be
written as

P(x, %, y,y,a) = P(x) - P(x) - P(y) - P(¥) - P(alx, X, v, ¥)s
(10)

where P (-) denotes the probability distribution function.

Since the structures of Bayesian networks used in this
paper are relatively uncomplicated, we can choose exact
inference methods without having to sacrifice the accuracy
for computational efficiency. As one of the representative
exact inference methods, variable elimination (VE) can
decompose the joint probability distribution, and the
Bayesian network represents into a series of conditional
probability products and accomplishes the inference process
by integration. Therefore, giving the goal of obtaining the
marginal probability P(a), the VE method eliminates var-
iables x, X, ¥, and ¥ in equation (10) as follows:

P(a)=) Y Y Y P(x%y,V,a)

VoY X x
=YY Y D P(x) PPy P{)-Plal x %y, 1),
vy X x
(11)
4. Methodology

In this section, firstly a novel state abstraction algorithm
called node influence with Wasserstein distance (NIW) is
proposed. Given the learned abstract states, the probabilistic

knowledge extraction method with Bayesian networks is
introduced in Section 4.1. Then, our RLBNK method that
incorporates such probabilistic knowledge into RL is pre-
sented in Section 4.2. More specificity, two variant exten-
sions of the RLBNK method, RLBNK-concat and RLBNK-
switch, are designed for different knowledge integration
approaches. Finally, we analyse and discuss the advantages
of our RLBNK method in Section 4.3.

4.1. Extracting Probabilistic Knowledge by Bayesian Networks.
In previous RLfD methods, demonstrations are certain in-
stances of human knowledge for a specific task. In order to
improve their generalization capability and robustness,
higher-level knowledge should be extracted from demon-
strations first. Since the number of demonstrations is usually
insufficient to cover the entire statespace of a task, and
human knowledge is naturally coarse and probabilistic,
providing uncertainty in instructions is essential to utilize
demonstrations well. As Bayesian networks have the ad-
vantages of extracting and representing probabilistic
knowledge and are interpretable, we choose this pattern for
the knowledge representation.

4.1.1. State Abstraction via NIW Algorithm. Since Bayesian
networks only take discrete variables as input and output,
the state abstraction should be obtained before the proba-
bilistic knowledge extraction process, which can be done by
discretization. In addition to being used to build Bayesian
networks, discrete states have the advantage of being easier
to understand and closer to conceptual and semantic rep-
resentations than continuous states. Furthermore, the dis-
crete state can contribute to the robustness of the learned
policy compared to the original continuous state.

For convenience, we take the CartPole task as an ex-
ample here and other tasks used in this paper are similar. The
state vector of the CartPole task is [x, X, y, ], which rep-
resents the position and the velocity of the cart, and the angle
and the angular velocity of the pole, respectively. In order to
acquire the state abstraction, each state element is seman-
tically divided into Negative, Small, and Positive. The dis-
cretization process follows equation (12), where §; denotes
the parameter of discretization for each state element s; in
state vector. For example, ., &, 0, and §;, indicates the
discretization parameter for each state element in [x, X, y, /]
for the CartPole task:

Small, if |s;| < 8
S; =4 Positive, ifs; >0, (12)
Negative, ifs;< -6,

Different §; for discretization would result in different
representations of states, which can significantly affect the
learning and inference process of Bayesian networks. Pre-
vious work has shown that abstract concepts can be learned
from similarity-based approach [38], where the §; is de-
termined by the similarity. Oller et al. [39] proposes a
concept learning method via clustering to implicitly find.



However, this unsupervised approach does not consider the
causal relationships between variables.

In Bayesian networks, the optimal state abstraction
parameter §; should enable the most efficient prediction and
inference capacity, which can be measured by the node
influence [40, 41]. The node influence value stands for the
discrepancy of conditional and marginal probabilities of the
target probability distribution, which indicates the inference
ability between variables. Based on this idea, we propose a
novel state abstraction algorithm called node influence with
Wasserstein distance (NIW) to find the optimal §;. NIW
quantifies the relationship between two causal variables by
describing the variability of the target probability distri-
bution. A larger NIW value indicates a stronger inference
capability between variables. We calculate the NIW value as
follows:

1 u
NIW = ;;1 Dy (P(Y),tPn(Y|X = x;)),  (13)

where X is the parent node of Y (See Figure 3), u is the
number of discretized states, Dq, (-,-) is the Wasserstein
distance metric, and # is the ratio of the samples that satisfy
X = x;.

The Wasserstein distance can be calculated by

Dy, (p,q) = inf ”V(x, »)d(x, y)dxdy, (14)
yell[p.q)

where y(x, y) satisfies

[ vy = peo
(15)

Jy(x, y)dx = q(y),

and d(x, y) satisfies

Z(xi - 7). (16)

i=1

d(x, y) =lx-yl, =

In contrast to the Kullback-Leibler divergence metric
and the Jensen-Shannon divergence metric, the Wasserstein
distance [42] metric can measure not only the distance
between two overlapping distributions, but also the distance
between two nonoverlapping distributions, which provides
more useful information for evaluating the relationships of
variables in Bayesian networks. By calculating the NIW
values corresponding to a series of different §;, we can
determine that the one corresponding to the maximum NIW
value is the optimal 6.

4.1.2. Knowledge Extraction via Bayesian Networks. After
determining §; by calculating the NIW value for dis-
cretization, the probabilistic knowledge can be extracted
from data via Bayesian networks, where the knowledge
extraction process is also referred to as the parameter es-
timating of Bayesian networks. The workflow of probabilistic
knowledge extraction is shown in Figure 4. Given the
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FIGURE 3: An example for the NIW value calculation.

discretization parameters and the original dataset 2% which
contains continuous state variables, the original state should
be firstly abstracted to @5 . following equation (12). As
the structure of the Bayesian network is known, the pa-
rameter of Bayesian network can be estimated according to
equation (9) with abstract dataset 2% .

The pseudocode of the knowledge extraction process for
this section is shown in Algorithm 1.

Remark 1. According to equation (11) and equation (13), the
computational complexity of Algorithm 1 can be estimated
as O (n?2F), where  is the number of nodes in the Bayesian
network and k is the maximum number of parent nodes.

4.2. Incorporating Probabilistic Knowledge into Reinforcement
Learning. As the Bayesian network represents the knowl-
edge extracted from demonstrations, we use the knowledge
module K- to refer to it for convenience, where 0 is learned
following Algorithm 1. The knowledge module Ky outputs
the decision confidence vector p that indicates the uncer-
tainty estimation of the decisions, therefore to determine the
extent to which the decision should be trusted. Formally, the
output vector p of the probabilistic knowledge module [Kg4- is
based on the current state s following equation (11) and it
can be written as

P =Kg () =|Pap Pay---»Pay, |» (17)

where p, is the decision confidence over action a; and the
;

sum of all the p, satisfies: Zlfl‘ Pa, =1

Definition 1. In RL paradigm, the knowledge extracted by
Bayesian networks can be formally defined by a tuple
{8k, Kgy, where & €& is the state space that the knowledge
module Ky works and K is a mapping from & to action
space & with high decision confidence.

Even though the knowledge module K4 plays the role of
probabilistic knowledge extraction and representation, the
knowledge extracted from demonstrations is still coarse and
needs to be further extended and refined. Therefore, a
knowledge refine module Iy should be introduced, which
should at least take the decision confidence vector p as the
input and outputs the refined decision confidence vector p'.
As a flexible universal approximator, a neural network can
be combined with other patterns, including Bayesian net-
works, to form hybrid policies 7,14 Thus, we use a neural
network-based refine module [ here to undertake the role
of knowledge refinement and propose two alternative
RLBNK methods: RLBNK-concat and RLBNK-switch to
approximate the refine module.
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(3) for each state-action pair in 2% do
(4
(5
©
(7
(8

Store discretized data into D
end

: : E
Parameter learning with 9 ... .

NN NG NSNS

Input: original demonstration dataset 2%, Structure & of the Bayesian network
Output: probabilistic knowledge represented by the Bayesian network

(1) Calculate the NIW value for each discrete parameter §; following equation (13)

(2) Choose the optimal discrete parameter §; corresponding to the maximum NIW value

Data discretization based on equation (12) with discrete parameter &;

abstract

following equation (9)
Save the learned parameter 8" as a conditional probability table (CPT)

ALGORITHM 1: Probabilistic knowledge extraction via Bayesian networks.

4.2.1. RLBNK-Concat. With the decision confidence vector
p provided by the knowledge module K, the first idea of
incorporating knowledge into the RL process is to directly
concatenate the vector p to the current state s as the input
of the refine module Fy. This idea indiscriminately con-
siders both the current state and the decision confidence.
By concatenating these two vectors as the input of the
refine module, the output refined action preference vector
p’ can be obtained from the output of the refine module
following

P =Fs(P.S) =|PupPay-- > Pa, |- (18)

For this RLBNK-concat method, we define its whole
policy can be represented as 7.4 = Kg ® Fy, where the
policy Thybrid will be optimized within the RL paradigm.
Since the parameter 8 is learned via Algorithm 1, only the
parameter ¢ of the refine module will be optimized during
the policy optimization process. Although the RLBNK-
concat method is straightforward and feasible, it does not
fully leverage the decision confidence p provided by the
knowledge module, which results in the refine module F,
having to function in the domain with size |§'| + ||, while
the original size of the state space is |§'|. However, when the
RL agent encounters states in which it has a high decision
confidence based on prior knowledge, it can rely solely on
the prior knowledge to complete the decision-making
process without further learning.

4.2.2. RLBNK-Switch. As shown in Figure 5, to better utilize
the decision confidence provided by the knowledge module
g+, we propose RLBNK-switch by comparing the action
confidence p, with the threshold A to determine the source
of decisions fbllowing equation (19). More specifically, we
can choose whether the action should be taken from the
knowledge module or from the refine module according to
decision confidence values p,, . If the decision confidence is
high, the decision will be made based on the prior knowledge
module 4. Otherwise, the agent can switch to the refine
module F, to make the decision, where the refine module
will be further optimized by RL. Therefore, comparing to
RLBNK-concat, the RL agent only learns the policy in states
that are uncovered by the knowledge module. The switching
process can be expressed as

!

p:

{ ps if max (p) > A,
(19)

Fy (s), else,

where max (-) is used to return the maximum element of the
input vector.

For RLBNK-switch, we define its whole hybrid policy
can be represented as 7}, ;4 = Kg- © Fy. After obtaining the
refined action preference vector, the action a; should be
taken if the corresponding decision confidence P,a,- is the
maximum element in the output vector p’. Then, the whole
policy 7}, .4 will be optimized. Since the parameter 0" is
fixed, oni’y the neural network refine module [F¢ will be
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Neural Network Refine Module

FIGURE 5: Architecture of the RLBNK-switch method. The knowledge module represented by the Bayesian network is combined with neural
network-based refine module according to the decision confidence p over the current state.

optimized following the policy optimization procedure in
RL based on equation (3).

Remark 2. Assuming that the learned knowledge module
[Kg- is the optimal policy in state space (domain) &', because
of the switch mechanism of the RLBNK-switch method, the
hybrid policy 73,4 is optimal in state space &y but is
nonoptimal in state space & — &. From a holistic point of
view, the hybrid policy 7} , .; has an optimal initialization
for partial state space, which makes this RLBNK-switch
method have the same feasibility as the normal neural
network-based RL algorithms.

As the proposed RLBNK method can be regarded as a
general policy framework where it can be represented by
Thybria = Ko ®F4 (for RLBNK-concat) or ;.4 = K- OF,
(for RLBNK-switch), the RLBNK method is able to combine
with any policy-based RL algorithm to optimize the pa-
rameter ¢ of the refine module Fy. As the proximal policy
optimization (PPO) [43] algorithm is considered as a
baseline RL algorithm, we apply it as the base algorithm in
this paper to demonstrate the effectiveness of RLBNK.

The PPO algorithm has two variant versions and the
most commonly used version is the one with clipped
surrogate objective, which forms the policy gradient using
the advantage function A™ as introduced in equation (5)
and minimizes the clipped-ratio loss L?*© (¢) over sam-
ples collected by 7y . The clipped-ratio loss can be written
as

177 (¢) = [E(s,a)~7l%ld [min(p(fp)Afv’,chp (p(¢),1—&1+ s)Afv’)],
(20)

where the clipping coefficient € aims to prevent large up-
dates. The probability ratio p, (¢) used in equation (20) is

introduced to measure the changed probability of the chosen
action a in state s under the updated policy 74 and the old
policy 7y, which can be written as

p(g) = oL (21)

B g (als)

For the policy network in PPO, the overall loss function
at time step ¢ is defined by the combination of the surrogate
loss LPPO (¢), the value loss LY (¢), and the entropy K. The
weights of these items are adjusted by coefficients c¢; and c,:

L(®) = E L7 (@) + oL (§) - oK [my] (9] (22)

The weights of neural networks can be updated as
follows:

oL, (¢)
¢

The pseudocode of RLBNK is shown in Algorithm 2.

pe—d+a (23)

4.3. Performance Analysis and Discussion. The RLBNK
method can be regarded as the neurosymbolic AI where the
Bayesian network is the symbolic representation of
knowledge while the refine module is represented by the
neural network. Symbolism is expected to provide extra
knowledge constrains for the learning process to help im-
prove the learning efficiency, which can also prevent the
well-known catastrophic forgetting of neural networks and
the difficulty of extrapolation nondistributed data to im-
prove the robustness of the algorithm [26, 44].

4.3.1. Efficiency Analysis. Formally, for the MDP defined b?r
(8,9, R, P,yy, the size of its policy space is |o|1ST.
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Input: knowledge module [Ks+ with parameter 0 learned from Algorithm 1, randomly initialized refine module Fy with
parameter ¢, buffer &, update interval T' 4y, threshold A, and clipping parameter e.
Output: learned (near) optimal hybrid policy 7y ;q.
(1) timestep t =0
(2) for Episode E=1: E,_, do
(3) Initialize the state s,
(4) while s,is not the terminal state do
(5) timestep t =t + 1
(6) Compute the decision confidence vector p, = Kg- (s,)
(7) Refine the decision confidence p; to get p; based on equation (18) (for RLBNK-concat)
(8) a, = arg max (p;)
9) Execute the action a,, then receive the instant reward r, and transit to the next state s,
(10) if the action a, is derived from Fy then
1) Store (s;, a1, Fy..s (a,ls;)) in the &
12) end
(13) St St
(14) if t mod T e =0 then
@15) Train ¢ of the refine module Fy following equation (21)-(23)
(16) Clear buffer &
17) timestep t = 0
(18) end
19) end
(20) end

ALGORITHM 2: Pseudocode of the RLBNK method.

Assuming that the knowledge module provides high de-
cision confidence values in state set &, where &' € &, the
policy space of the refine module F for RLBNK-switch is
reduced from ||'S! to |#|'*~ %I, Therefore, the uncer-
tainty-based state space partitioning can make RLBNK-
switch theoretically enjoy better data efficiency perfor-
mance. Additionally, the knowledge module can cover the
policy space |#/|I*%!, which is fixed to prevent the cata-
strophic forgetting as well as reducing the overall policy
space that needs to be learn. And the knowledge repre-
sented by Bayesian networks provides better generalization
and robustness over the neural network-based method
because of the state abstraction and the probabilistic
property of Bayesian networks. For RLBNK-switch, the RL
algorithm is employed to learn a policy for the state space
S8 — 8. Therefore, the gradient estimator also turns from
equation (4) into

V(@) = By (s5-5,)a-~ 4| Vglog 74 (als)A™ (s,a)],  (24)

which also avoids an integral over the full state space to make
the learning more efficient. Moreover, for RLBNK-concat,
because of the concatenation operation, the policy space is
increased from |/|'®! to |/|'*™*!!, Therefore, we expect that
RLBNK-switch method demonstrates a better data efficiency
performance than RLBNK-concat.

4.3.2. Robustness Analysis. Conditional independence used
in Bayesian networks is the basic and robust form of
knowledge. The Bayesian network classifier is robust, and we
can learn the parameters of conditional distribution even
with relatively few training examples [35]. Also, the variance

that Bayesian networks provide makes them act robust.
Besides, in our paper, the knowledge are constrained by the
threshold A, which also improves the robustness. The state
abstraction (discretization) NIW method also plays an
important role to improve the robustness. Discrete values
are about intervals of numbers which are more concise to
specify, easier to use, and comprehend as they are closer to
a concept-level representation than continuous ones
[45, 46]. From the perspective of machine learning, state
abstraction reduces the risk of overfitting by minimizing
structural risk and eliminates noisy samples by simplifying
the data, both of which enhance the robustness and gen-
eralization capability.

5. Experiments

In this section, we conduct experiments to evaluate our
RLBNK method. More specifically, for the experiments
below, we aim to evaluate our proposed RLBNK method to
confirm the following:

(i) Our RLBNK method contributes to the data effi-
ciency of RL under the normal reward setting and
even sparse reward settings.

(ii) The knowledge extracted from demonstrations
through Bayesian networks can be generalized to
similar tasks, providing instructive guidance for the
RLBNK method to obtain effective hybrid policies.

(iii) With the help of the knowledge learned by Bayesian
networks, the hybrid policy 7,4 learned by the
RLBNK method can robustly handle noisy obser-
vations from the environment.
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All the experiments in this paper are conducted in the
Ubuntu 16.04 system with PyTorch 1.7. Our algorithms are
based on the open-source PPO-PyTorch [47] implementation
and the probabilistic graphical model toolkit pgmpy [48]. We
test our algorithms on the OpenAl Gym [49] environment
and the PLE [50] environment. Below we briefly describe the
tasks used in our experiments (also see Figure 6).

CartPole. In the CartPole system, a cart moves along a
friction-less track and the pole is attached by an
unactuated joint to the cart. The goal of this task is to
balance the pole vertically upward as long as possible.

Catcher. In the Catcher task, the paddle has to catch the
falling fruit with three different actions (moving left,
moving right, and doing nothing), the RL agent has
access to the position and speed of both the player and
the fruit.

FlappyBird. FlappyBird is a side-scrolling game where
the bird takes actions (flapping or doing nothing) to fly
through gaps between pairs of pipes. The agent receives
the reward once the bird passes through a pipe and the
episode ends when the bird hits pipes or gets out of the
screen.

5.1. Simulation Settings. To ensure the fairness of our ex-
periments, we keep all the hyperparameters the same as the
original implementation as recommended in the corre-
sponding literature. For CartPole and Catcher task, 2000
state-action pairs (s, a) are collected by an expert policy mto
form the original expert demonstration dataset 2, and for
FlappyBird task, 150 state-action pairs are collected via the
same way. Specially, the update interval of networks T'q is
set to 2000, and the clipping parameter e for policy optimi-
zation is set to 0.2. All the neural networks used in this paper
have 2 hidden layers, each containing 64 neurons. The optimal
discretization parameters &; for state abstraction during the
knowledge extraction process are are shown in the tables in
Appendix, where the parameter corresponding to the maxi-
mum NIW value is the optimal parameter for subsequent
experiments. For RLBNK-switch, the knowledge module
threshold parameter A is set to 0.8 as default. For each algo-
rithm and each task, we train 5 policies with different seeds and
the shaded region for each curve in the following results de-
notes the standard deviation of the average evaluation.

5.2. Data Efficiency of the RLBNK Method. To evaluate the
validity of the proposed RLBNK method, we first conduct
experiments on three tasks mentioned above under the
normal reward setting. To further demonstrate the effec-
tiveness of the proposed RLBNK method, we also set up
CartPole tasks with variant sparse reward settings. The
performance under different reward settings is shown in
Figures 7 and 8, respectively.

5.2.1. Performance Comparison under the Normal Reward
Setting. Curves in Figure 7 illustrate the mean and variance
of the cumulative reward in each episode for the training

Computational Intelligence and Neuroscience

process of RLBNK-switch, RLBNK-concat, baseline PPO
[43], and DQfD [16] in these tasks. The Expert curve denotes
the performance of the expert policy 7, used to collect
demonstrations, and the Imitation curve is the performance
of the policy trained using demonstrations via behavior
cloning [11].

From Figure 7, we can observe that both proposed
RLBNK-switch and RLBNK-concat outperform other
baseline methods in most cases and RLBNK-switch dem-
onstrates a jump-start for all three tasks at the beginning of
each training process. Both proposed algorithms obtain
higher rewards within fewer training episodes. Especially,
the performance of RLBNK-switch in all three tasks learns a
good (even near optimal) policy within 200 episodes.
Compared to the baseline algorithm PPO that explores the
environment from scratch, our method is superior by
leveraging the knowledge extracted from demonstrations. In
contrast, although the DQfD method utilizes the same
demonstration data as RLBNK-switch and RLBNK-concat,
it performs mediocrely in all cases except for the CartPole
task where it outperforms than RLBNK-concat. We assume
this is because the reward setting in Catcher and FlappyBird
is relatively sparser than the CartPole task and this will be
further analysed in the next experiment. This result confirms
that the proposed RLBNK method can effectively utilize the
knowledge and achieve superior performance.

5.2.2. Performance Comparison under Sparse Reward
Settings. We further demonstrate the superiority of
RLBNK-switch and RLBNK-concat under sparse reward
conditions. To facilitate experimental validation, we propose
a sparse reward setup: multistep cumulative rewards are
given at sparse time steps. We choose the CartPole task to
simulate this setup and provide T-step cumulative rewards
at every T time step (the rewards are only provided at T, 2T,
3T,...). Figure 8 shows the experimental results under
different sparse settings.

From Figure 8, we can remark that our RLBNK-switch
converges within around 200 episodes and demonstrates
smaller variance a consistent performance for all three
sparse settings ranging from 25 to 100. The baseline PPO is
hard to learn an effective policy under sparse reward set-
tings since the PPO agent has less chance to obtain reward
signals in the early pure exploration phase of learning. For
DQID, even if it achieves a good preference under normal
reward setting in CartPole task, it acts the worse learning
process in all sparse settings. We believe that one possible
reason is that the priority sampling mechanism used by the
DQfD algorithm hinders the Q-network updates under
sparse reward conditions. This priority sampling mecha-
nism gives more priority to demonstrations during the
Q-network update process. However, due to sparse reward
settings, the DQfD agent has difficulty obtaining positive
samples from the environment itself, so the Q-network in
DQfD may still be optimized with pure demonstrations for
most of the time, even though the agent is interacting with
the environment. Since demonstrations only cover part of
the state space, it cannot optimize the Q-network well
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FIGUre 6: The benchmark tasks used in this paper. The CartPole task is from the OpenAl Gym environment, and the Catcher and

FlappyBird tasks are from the PLE environment. (a) CartPole. (b) Catcher. (c) FlappyBird.

Figure 7: Comparison of RLBNK-switch and RLBNK-concat to the baseline PPO, DQfD, expert policy, and pure imitation learning under
the normal reward setting. Plots show the training performance over the number of episodes. (a) CartPole. (b) Catcher. (c) FlappyBird.

Reward

FIGURE 8: Experimental results for CartPole task under different sparse reward settings, where T' denotes the sparse interval of receiving
rewards for the agent. Plots show the training performance over the number of episodes. (a) T=25. (b) T=50. (c) T=100.
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TaBLE 1:
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The changed system dynamics settings between the source MDP ., and the target MDP /Z,.

The changed item

Item setting in source MDP

Item setting in target MDP

1.0
1.0

Pole length (m)
Cart mass (kg)

3.0
10.0
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Reward
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FIGURE 9: Comparison of RLBNK-switch and RLBNK-concat to the PPO-finetune, baseline PPO, DQfD, and imitation learning in two
generalization settings. Plots show the training performance over the number of episodes. (a) Pole length generalization. (b) Cart mass

generalization.

enough to obtain a well-performed policy. Moreover, from
the learning curves shown in Figure 8, for DQfD and
baseline PPO, the task becomes harder as the sparse factor
T increases, while both RLBNK-switch and RLBNK-concat
are less influenced.

5.3. Evaluation of the Generalization Capability. In this
section, we perform experiments to examine the general-
ization capability of the RLBNK method. Here, we focus on
the generalization settings that .#; and ., share the same
state space &, action space o/, and reward function & but
differ by the system dynamics: P # P,. Specifically, we
adopt the CartPole task here and change the length of the
pole and the mass of the cart for the generalization settings as
shown in Table 1. Note that given the demonstrations
collected in the source MDP ., our aim is to solve the
target MDP /.

In this experiment, we carry out several baselines, in-
cluding PPO [43], PPO-finetune, DQfD [16], and Imitation
(via supervised behavior cloning [11]). The PPO-finetune
curve denotes the performance of the RL policy pretrained
by PPO in the source MDP . and then fine-tuned in the
target MDP .,. The PPO curve illustrates the performance
of the baseline PPO directly trained in the target MDP /Z,.
DQfD utilizes the demonstrations collected in the source

MDP and explores in the target MDP. In the Imitation curve,
the corresponding policy is trained with the expert dem-
onstrations collected from the source MDP ./, via super-
vised behavior cloning. The curve shows its performance in
the target MDP /,.

From Figure 9, it can be observed that in both gener-
alization settings, directly imitating the demonstrations
collected from the source MDP . cannot achieve a good
performance in the target MDP (as shown in the Imitation
curve). In contrast, RLBNK-switch achieves the best per-
formance and with the help of the knowledge learned from
source MDP, and both RLBNK-switch and RLBNK-concat
outperform the baseline PPO algorithm. Since the policy in
the PPO-finetune method is initialized as a well-trained
policy in the source MDP and fine-tunes in the target MDP,
it is a powerful method that achieves comparable perfor-
mance to RLBNK-concat in the pole length generalization
settings and even surpasses the RLBNK-concat in the cart
mass generalization settings. In contrast, the DQfD method
demonstrates the worse performance in both settings. One
possible reason is that after the pretraining process, the
demonstrations collected from the source MDP, although
not suitable for the target MDP, are still used indiscrim-
inately to update the Q-network, which hinders its opti-
mization process in the target MDP. The empirical results in
both pole length generalization and cart mass generalization
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FiGure 10: The cumulative reward (mean + standard deviation with 500 rollouts) of RLBNK-switch and RLBNK-concat trained policies
versus the trained PPO baseline policy when tested in disturbed CartPole task. Plots show the performance of each policy over the

disturbance strength ©.

TaBLE 2: Discretization parameter comparison for the CartPole task.

Position 5 0.05 0.10 0.15 0.20 0.25
NIW 0.064 0.066 0.068 0.058 0.043
Velocity x N(ix 02)28 o?dél 0?1?8 0?1§9 160
Angle y 5, 0.04 0.05 0.06 0.07 0.08
NIW 0.054 0.067 0.095 0.043 0.065
Angular velocity § 5 0 0.02 0.04 0.06 0.08
NIW 0.272 0.262 0.249 0.172 0.181

TaBLE 3: Discretization parameter comparison for the Catcher task.

Distance x 0 ’ o 11 13 1>
NIW 0.079 0.095 0.117 0.104 0.103
) 34 36 38 40 42
i y
Height y NIW 0.013 0.019 0.022 0.017 0.017
Velocity v S, 3 4 > 6 7
Y NIW 0.101 0.088 0.114 0.105 0
TaBLE 4: Discretization parameter comparison for the FlappyBird task.
Distance 5y 0 5 10 15 20
Y NIW 0.192 0.163 0.090 0.128 0.120
Distance x o, 20 40 60 80 100
NIW 0.028 0.048 0.056 0.030 0.034
Velocity v S, 0 2 4 6 8
Y NIW 0.206 0.235 0.208 0.189 0.020

show the strong evidence that the proposed RLBNK-switch
achieves superior performance in generalization settings and
the RLBNK-concat also demonstrates a comparable result to
the PPO-finetune method. RLBNK-switch and RLBNK-
concat can not only improve the data efficiency but also can
generalize to tasks with different system dynamics.

5.4. Robustness against Stochastic Disturbances. To make the
learned policy achieve robustness against stochastic obser-
vation disturbances is one of the goals of POMDP. We
extensively evaluate the robustness of the RLBNK method in
the CartPole task by injecting stochastic disturbance { to the
state s, and the observation o, satisfies
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o, =58+, (25)

where { is sampled uniformly from the set U: U (0, @) =
{¢: ¢l <@} and the disturbance strength @ denotes the
upper bound of the stochastic disturbance. To evaluate the
robustness, we firstly conduct baseline PPO, RLBNK-switch,
and RLBNK-concat in the CartPole task to obtain their well-
performed policies in the environment without noise fol-
lowing the settings introduced in Section 5.1. Then, 500
rollouts are conducted for each trained policy under the
environment with a specific noise disturbance strength
range from 0.10 to 0.50 to obtain the mean and standard
deviation of the cumulative reward.

Figure 10 shows the performance of these policies
against stochastic disturbance (. We can observe that as the
disturbance strength @ increases, the performance of all the
learned policies becomes progressively worse. However, our
RLBNK method demonstrates better robustness than the
learned baseline neural network-based PPO policy for al-
most all ranges of disturbance strength. Especially, the
RLBNK-concat performs significantly better than the
RLBNK-switch. We argue that the reason for this phe-
nomenon is due to the fact that the Bayesian network in
RLBNK-switch only functions in the state space |§], so its
robustness works only in this part of the state space. For
RLBNK-concat, even though directly concatenating the state
s and decision confidence vector p enlarges the state space
for the policy to search, the Bayesian network can provide
the robustness for the entire state space.

6. Conclusion

In this paper, we develop a novel RLfD method called
RLBNK that employs Bayesian networks to extract prob-
abilistic knowledge from expert demonstrations to assist in
RL, which provides an alternative perspective of exploiting
demonstrations in RLfD. Compared with other RLfD
methods, RLBNK utilizes Bayesian networks to extract
probabilistic knowledge from demonstrations, which not
only enables interpretability of presentation data but also
enhances the generalization of the demonstrations. We
further extend the RLBNK method to RLBNK-concat and
RLBNK-switch and use PPO as the basic policy optimi-
zation paradigm. Extensive experiments are conducted on
different tasks and the results validate that by utilizing the
knowledge module represented by Bayesian networks and
the knowledge refine module, both RLBNK-concat and
RLBNK-switch outperform other baseline methods in
normal reward and sparse reward settings and provides a
jump-start at the beginning of the training. More impor-
tantly, RLBNK demonstrates a superior performance in
generalization settings. Besides, the policy trained by
RLBNK is more robust to the environment noise com-
paring to the policy trained by RL with neural network
function approximators. In future work, we will scale our
RLBNK to pixel-based decision-making tasks by incor-
porating feature dimension reduction methods such as
variational autoencoders (VAEs).

Computational Intelligence and Neuroscience

Appendix

Tables 2-4 list the calculated node influence with Was-
serstein distance metric (NIW) value with different dis-
cretized parameters on datasets collected from three tasks
introduced in 5.1. As NIW value reflects the prediction
capacity, the threshold parameter corresponding to the
maximum NIW value is preferred and will be used in our
experiments.
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