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Abstract
Individuals with cystic fibrosis (CF) often acquire chronic lung infections that lead to irrevers-

ible damage. We sought to examine regional variation in the microbial communities in the

lungs of individuals with mild-to-moderate CF lung disease, to examine the relationship

between the local microbiota and local damage, and to determine the relationships between

microbiota in samples taken directly from the lung and the microbiota in spontaneously

expectorated sputum. In this initial study, nine stable, adult CF patients with an FEV1>50%

underwent regional sampling of different lobes of the right lung by bronchoalveolar lavage

(BAL) and protected brush (PB) sampling of mucus plugs. Sputum samples were obtained

from six of the nine subjects immediately prior to the procedure. Microbial community analy-

sis was performed on DNA extracted from these samples and the extent of damage in each

lobe was quantified from a recent CT scan. The extent of damage observed in regions of

the right lung did not correlate with specific microbial genera, levels of community diversity

or composition, or bacterial genome copies per ml of BAL fluid. In all subjects, BAL fluid

from different regions of the lung contained similar microbial communities. In eight out of

nine subjects, PB samples from different regions of the lung were also similar in microbial

community composition, and were similar to microbial communities in BAL fluid from the

same lobe. Microbial communities in PB samples were more diverse than those in BAL

samples, suggesting enrichment of some taxa in mucus plugs. To our knowledge, this study

is the first to examine the microbiota in different regions of the CF lung in clinically stable

individuals with mild-to-moderate CF-related lung disease.
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Introduction
Chronic lung infections associated with cystic fibrosis (CF) cause progressive lung damage con-
comitant with decreased lung function. CF-related bronchiectasis often develops in localized
regions of the lung [1–3], and these regions of bronchiectasis worsen over time [1]. In addition,
damage is often more prominent in the upper lobes of the lung, pathology is often more severe
in the right lung, and disease is primarily observed in the proximal airways rather than the alve-
oli [4,5]. It is not yet known if the regional variation in CF-related lung disease, particularly
during the early stages of disease, is due to regional differences in microbial pathogens, varia-
tion in the host response to infection, or a combination of the two. An increased understanding
of the regional variation has the potential to guide the discovery of interventions that will slow
the progression of lung disease.

Several studies have analyzed the regional microbiota in CF. A comparison of bronchoal-
veolar lavage fluid (BAL) from the right middle lobe and the lingula of the left lung in children
under age 6 found interlobar differences in the presence or levels of microbes by culture [6].
Another study in children with CF (median age of 8.5 years) found that in subjects with focal
lung disease, culture analysis of BAL fluid from the lobe with the most damage identified all of
the pathogens that were present in BAL fluid from all five lobes. However, when lung damage
was more diffuse, interlobar heterogeneity in the cultured pathogens was observed in 11 of the
33 subjects [6]. A study of ten explanted CF lungs with severe damage found that in seven sub-
jects, all five lobes had the same microbe with the highest relative abundance indicating that
one bacterium (either Pseudomonas aeruginosa, Burkholderia cepacia complex, or Achromo-
bacter) was strongly predominant in all regions of the lung [7]. The remaining three sample
sets contained two different bacteria in the lobar samples, and there was regional variation in
their relative abundance [7]. While the studies above provide information on the regional
microbiota in children, and on the distribution of pathogens in the lungs of individuals with
severe disease, little is known about the regional heterogeneity in CF adults with mild-to-mod-
erate lung damage. This information is needed to determine how best to treat individuals in
order to halt the progressive bronchiectasis that is often more rapid in particular lobes [8].

The analysis of sputum samples by culture-dependent methods, which is the most common
way to clinically evaluate the lung microbiome in CF, and culture-independent methods has
revealed many important aspects of CF lung disease. For example, certain species or genera
have been correlated with better or worse health [9–11], and there is an indication of an inverse
relationship between disease status and diversity of the microbial communities in the lung;
increased diversity is associated with better disease status [12,13]. Because of the heavy reliance
on the characterization of the microbiome of sputum to inform clinical practice, it is critical to
understand how the composition of the lung microbiota compares to that in sputum. Sputum
is collected after travel through the upper respiratory tract. In addition, sputum is enriched in
mucus plugs, which may have communities that differ from those in the open airways. In God-
dard et al. [7], it was found that the microbial communities in severely compromised lungs
were less diverse than the communities in sputum from the same subject collected on the day
of lung explantation and regional analysis [7]. However, it is not yet known how well the
microbiota in sputum reflects the microbial communities in the lungs (BAL fluid and sputum
plugs) in individuals with mild or moderate lung disease.

In this study, we aimed to address three questions. First, is there regional variation in micro-
biota in the lungs of adults with mild-to-moderate CF lung disease? Second, is there a relation-
ship between the local microbiota and extent of lung damage? Third, is the microbiota in
sputum, BAL fluid and protected brush (PB) samples of mucus plugs similar or different? We
collected expectorated sputum, regional BAL fluid and PB samples by bronchoscopy of the

Regional Variation in Mild-To-Moderate CF Lung Disease

PLOS ONE | DOI:10.1371/journal.pone.0149998 March 4, 2016 2 / 23

Health to DAH (R01 AI091702 to DAH) and the
American Asthma Foundation Scholars Award and
CFFT-ASHARE15A0 and R01HL122372 to AA and
R01 HL074175 (BAS). The Dartmouth Lung Biology
Center and CF Translational Research Core was
supported by an Institutional Development Award
(IDeA) from the National Institute of General Medical
Sciences of the National Institutes of Health under
grant number P30GM106394 and by the CFF RDP
(CFRDP STANTO11R0). The work presented is
solely the responsibility of the authors and does not
necessarily represent the official views of the National
Institutes of Health. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



right lung, and information on regional damage by CT scan from nine individuals with an
FEV1>50%. Analysis of the microbial communities within these samples was obtained using
DNA-based methods.

Materials and Methods

Human Subjects
Subjects with CF (n = 9) were enrolled if they had an FEV1 (forced expiratory volume in 1 sec-
ond)> 50% predicted in an exam within 4 weeks of the procedure. All subjects were clinically
stable and in their baseline state of health, and had not had an exacerbation within the preced-
ing four weeks. All subjects were non-smokers. Enrolled subjects had a chest CT scan within 6
months of enrollment in order to assess damage in different regions of the lung. All female sub-
jects underwent a pregnancy test and were excluded if positive. This study was approved by
Committee for the Protection of Human Subjects (CPHS) of the Geisel School of Medicine at
Dartmouth (CPHS #22781).

Sample Collection
Following written informed consent, subjects were asked to produce a sputum sample and six
of the nine subjects were able to do so. Subjects then underwent flexible bronchoscopy with a
two-bronchoscope methodology that has been described in detail [14]. Briefly, after local anes-
thesia with viscous lidocaine to the posterior pharynx and intravenous sedation, a broncho-
scope was inserted transorally and advanced to just above the vocal cords. In two subjects, this
bronchoscope was removed and the channel was washed with normal saline (20 ml) to collect
a scope wash, which analyzed for microbes. Subsequently, in these two patients, a second bron-
choscope was passed through the vocal cords. The remaining seven subjects underwent only a
single bronchoscope procedure with no scope wash. BAL fluid and PB samples were obtained
from tertiary airways in the right upper, middle and/or lower lobes (RUL, RML and RLL,
respectively). The right lung was sampled as most subjects had more CT evidence of lung dis-
ease on the right based on Brody Scores. In all but one subject, visible mucus was present at the
tertiary airway orifice of at least two lobes and this mucus was obtained in the PB sample. If
mucus was present in only two airways, then we limited our sampling to those airways and
obtained only two PB samples. After obtaining PB samples, BAL was performed sequentially in
the RUL, RML, and RLL with 20 ml of sterile saline followed by 10 ml of air. In all subjects
BAL fluid return was between 12 ml and 15 ml from the RUL and RML and between 10 ml and
12 ml from the RLL. Following the procedure, subjects were monitored until they were stable
for discharge. An aliquot of the BAL fluid from the RUL was sent to the DHMC clinical micro-
biology laboratory for routine culture analysis. Ten microliter aliquots were also spread plated
on YPD (20 g peptone, 10 g yeast extract, 20 g dextrose, and 20 g agar in 1 L of water) to assess
the levels of fungi in subjects 6 and 9.

Brody Score Assignment
All enrolled subjects had a CT scan within 6 months of enrollment. CT scans were scored by a
thoracic radiologist for severity of lung damage in all of the lobes. The thoracic radiologist who
viewed the scan was blinded to all other patient data. The extent of damage was quantified
using the modified Brody scoring method that assesses bronchiectasis, peribronchial wall
thickness, mucus plugging, air trapping, and parenchymal infiltrates [15]. The original Brody
Score was modified to include hyperinflation of the lung rather than air trapping, as expiratory
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images were not routinely obtained. This modification of the Brody score has been validated
previously [16,17]. Brody score assignments were as follows:

• Bronchiectasis = (extent in central lung + extent in peripheral lung) x average size multiplier

• Mucus plugging = extent in central lung + extent in peripheral lung

• Peribronchial wall thickening = (extent in central lung + extent in peripheral lung) x severity

• Parenchymal score = extent of dense opacity + extent of ground glass opacity + extent of
cysts or bullae

• Hyperinflation score = extent of hyperinflation x appearance of hyperinflation

DNA Recovery from BAL, PB and Sputum Samples
For BAL and sputum samples used for nucleic acid extraction, an aliquot of the sample was
either removed for DNA extraction (described below) or the sample was stored in the original
sputum cup used for collection. For the PB samples, the brush was cut to a length of approxi-
mately 1–1.5 cm then placed in a 2 ml tube. Samples were immediately frozen and stored at
-80°C. Within 30 days of freezing, the frozen samples were placed directly into a lyophilization
chamber for freeze drying (Labconco FreeZone Benchtop Freeze Dry System) which generally
took 12–24 h for samples to completely dry. For samples dried in the sputum cup, the sample
was gently disrupted and transferred into a 2 ml tube prior to bead beating. Cells within the
sample were lysed in a Biospec Mini-Beadbeater-16™ (Biospec Products, Bartlesville, OK, USA)
with five one-minute rounds with two minutes on ice between rounds. The beads used were
equal amounts of 0.1 mm, 0.5 mm and 1 mm beads (Biospec Products, Bartlesville, OK, USA).
For the PB samples, the brush remained in the tube during bead beating. The DNA was isolated
as described in Willger et al. [18]. Briefly, the bead beaten samples were resuspended in 300 μl
of TE+DTT (TE amended with DTT at a final concentration of 0.08% added from a 2% stock
solution) containing lysozyme (3 mg/ml), and incubated for 30 min at 37°C. Cell Lysis buffer
(500 μl) (Qiagen Puregene Core Kit B, Qiagen, Valencia, CA, USA) was added, and the mixture
was incubated for 15 min at 80°C. To remove RNA, RNase (1.5 μl) (Qiagen, Valencia, CA,
USA) was added and the samples were incubated for 30 min at 37°C. Lysates were chilled on
ice for 1 min, 200 μl of Protein Precipitation Solution (Qiagen Puregene Core Kit B, Qiagen,
Valencia, CA, USA) was added, and the solutions were mixed vigorously for 20 sec. Cell debris
was sedimented by centrifugation at 13,000 rpm for 3 min, and the supernatant was transferred
to a new 1.5 ml tube prior to addition of 600 μl of 100% isopropanol. After mixing by inversion,
the DNA was precipitated by centrifugation at 13,000 rpm for 20 min. The DNA pellet was
washed with 300 μl of 70% ethanol and air dried before resuspension in 100–200 μl of DNA
Hydration Solution (Qiagen Puregene Core Kit B, Qiagen, Valencia, CA, USA). The DNA con-
centrations were measured using a Nanodrop 2000 (Thermo Scientific, Wilmington, DE,
USA).

Analysis of the Bacterial 16S rRNA and Fungal ITS1 Sequences
The bacterial communities in the BAL, PB and sputum samples were characterized by Illumina
MiSeq 16S rRNA v4v5 amplicon sequencing as previously described in detail [19,20]. Briefly,
we amplified the bacterial v4v5 region from each sample in triplicate 33 μl reactions using
fusion primers to barcode each sample in a multiplexing strategy. We pooled the triplicates
and verified successful amplification on a Caliper LabChip GX (Perkin Elmer, Waltham, MA,
USA). We cleaned amplicon products with Agencourt Ampure XP PCR Purification Beads
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(Beckman Coulter, Brea, CA, USA). Barcoded products were pooled in equimolar concentra-
tions according to the target size and quantification from Caliper LabChip GX. All PCR reac-
tions contained 1x HiFi Buffer, 2 mMMgSO4, 0.02 U/μl Platinum Taq polymerase
(Invitrogen), 0.2 mM each dNTPs (ThermoFisher Scientific, Milwaukee, WI, USA), and up to
5 ng template. The final pool was size selected to remove primer dimers and contaminating
human 18S products (Pippin Prep, SageScience, Beverly, MA, USA), quantitated (Kapa Biosys-
tems, Woburn, MA, USA) and sequenced on a MiSeq 2x250 nt sequencing run. Quality filter-
ing and chimera checks were performed as described [19]. For the analysis of fungi in samples
6 and 9, the ITS1 region was amplified using the same PCR settings as described above, but
using the ITS1_F, ITS_R and ITS1_mblb_Bar primers published in Willger et al. [18]. The
sequencing of the barcoded ITS1 products was performed with the identical settings as for the
bacterial 16S rRNA.

The raw sequencing data for both the bacterial v4v5 and fungal ITS1 are deposited in the
Sequence Read Archive (National Center for Biotechnology Information BioProject
PRJNA288589, Study SRP060025; US National Library of Medicine, Bethesda, MD, USA).

Quantification of Bacterial 16S rRNA Gene Copy Number
For quantification of total bacterial copies of the 16S rRNA gene in BAL fluid, 100 ng of the
total DNA recovered from 1 ml of fluid was used as template. A region of the 16S rRNA locus
was amplified by qPCR, using the universal bacterial primers “total bacteria_F” (5’-GTGSTG
CAYGGYTGTCGTCA-3’) and “total bacteria_R” (5’-ACGTCRTCCMCACCTTCCTC-3’)
which were added to the amplification reaction at a final concentration of 0.2 μM [21,22].
qPCR was conducted in 10 μl reaction volumes with the SsoFast EvaGreen Supermix (Bio-Rad
Laboratories, Hercules, CA, USA) in a CFX96 Real-Time PCR Detection System combined
with a C1000 thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). All PCRs were done
in duplicate, and data were analyzed with the CFX96 System gene expression software. Stan-
dard curves containing a known numbers of genome equivalents were used to calculate total
genome numbers using a standard curve prepared from Pseudomonas aeruginosa genomic
DNA.

Bioinformatics, Processing and Statistical Analyses
Taxonomy was assigned to amplicon sequences with GAST [23] against a curated SILVA data-
base [24]. To compare operational taxonomic unit (OTU) clustering performance, the default
UCLUST method was used [25] at a 97% similarity threshold with minimum cluster size of 2
using quantitative insights into microbial ecology (QIIME) (v1.5) [26]. Visualization and Anal-
ysis of Microbial Population Structures (VAMPs) tool (vamps.mbl.edu) was used to visualize
the data. To identify the most abundant genera for presentation, an algorithm was used to cal-
culate the smallest number of genera needed to represent 85% of all genera in all BAL and PB
samples from bacteria- dominated subjects (Subjects 1–5 and 7, 8). This calculation resulted in
10 the genera Stenotrophomonas, Staphylococcus, Pseudomonas, Streptococcus, Prevotella, Veil-
lonella, Achromobacter,Herbaspirillum,Hydrogenophaga and Arenimonas.Hydrogenophaga
and Arenimonas, were the least abundant of these species and were omitted from the legend.
The remaining eight genera were then used in all bar plots. The subsequent analysis of diversity
in PB and BAL samples was performed utilizing the “diversity” function with the “Simpson
diversity” setting in the “vegan” package (v 2.2–1) [27], the Bray-Curtis distances were calcu-
lated using the “distance” function with “bray-curtis” setting, and the PCA analysis was per-
formed using the “pco” function with default “euclidean” distance setting in the “ecodist”
package (v 1.2.9) [28] in RStudio (v 0.98.994) using R (v 3.1.1). For a deeper analysis of the PB
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samples, we identified the taxa which represented 99% of total reads (the remaining 1% of
reads corresponded to ~400 taxa with each present in miniscule read numbers), then deleted
the ten most abundant genera to allow for a focus on the minor members of each community.
Heat maps were created in R using rank-based scoring as well as z-scored means of read counts
for different bacterial genera across all subjects utilizing the “heatmap.2” function in the
“gplots” package (v2.14.2) [29]. The program Prism 6 (GraphPad, San Diego, CA, USA) was
used for all statistical tests.

Results
The goal of this study was to determine: 1) if the lung microbiota varied in consistent ways
across lobes of the right lung in individuals with mild-to-moderate CF lung disease, 2) if the
extent of local lung damage correlated with specific microbial community properties, and 3)
how the microbiota in sputum reflected the lung microbiota in BAL and PB samples from the
lower airways. Nine clinically stable CF subjects, who had not experienced a period of disease
exacerbation within the previous four weeks, underwent regional bronchoscopic sampling of
the right lung. All subjects had mild-to-moderate lung disease with lung functions ranging
from FEV1 50–92% predicted (Table 1).

All subjects had been colonized with the major pathogens seen in BAL culture for at least 6
months. For each individual, two PB samples of mucus were collected from the tertiary bronchi
of two different lobes, followed by BAL of two or three lobes of the right lung (Fig 1).

If the subject was able to provide an expectorated sputum sample, this was collected prior to
the bronchoscopic procedure. We also obtained data on the damage in the upper, middle and
lower lobes in both lungs from each subject using a modified Brody score analysis of a recent
computed tomography (CT) scan acquired less than 6 months prior to the bronchoscopy pro-
cedure [15–17,30] (Table 1). The pattern of damage as measured by Brody score analysis of the

Table 1. Patient Characteristics. Gender, lung function, parenchymal lung damage, and clinical microbiology results in study subjects.

Subject Brody Score RUL BAL Clinical

ID Gender FEV1 RUL RML RLL Microbiology

#1 M 90% 18.0 9.0 9.0 Pa, MSSA, MAC

#2 M 72% 24.5 17.3 18.5 Pa

#3 F 85% 22.0 18.3 12.5 Achromobacter

#4 F 56% 18.8 12.5 8.3 Pa

#5 M 92% 20.8 10.5 10.8 MSSA

#6 M 66% 27.0 18.0 16.0 Candida lusitaniae

#7 F 63% 17.8 15.5 11.3 Stenotrophomonas

#8 M 50% 21.3 11.0 7.0 N/A

#9 M 84% 33.0 21.0 20.8 Candida lusitaniae

The Brody score, a composite assessment of bronchiectasis, peribronchial thickening, parenchymal disease, air trapping and mucus plugging (detailed

information in S1 Table), was used to assess the level of lung damage in the right upper, middle and lower lobes (RUL, RML and RLL, respectively) in a

CT scan taken within six months of the bronchoscopy procedure.

FEV1, forced expiratory volume in 1 second (% predicted) measured within four weeks of the bronchoscopy procedure. Clinical Microbiology Report

results from analysis of RUL BAL are shown.

PA; Pseudomonas aeruginosa;

MSSA, methicillin-sensitive Staphylococcus aureus;

MAC, Mycobacterium avium complex;

N/A, not analyzed.

doi:10.1371/journal.pone.0149998.t001
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most recent CT scan (see Methods for details) was similar to previously published reports with
the most extensive parenchymal lung damage in the RUL of the CF lung (P< 0.0001)
[4,5,30,31], (Table 1 and S1 Table). This is discussed further below. The different components
of the Brody score are discussed further below.

Regional Uniformity of Microbiota in BAL Fluid and PB Samples within
an Individual
To determine if there was regional heterogeneity in the microbiota in the BAL fluid from the
lungs of individuals with CF with mild-to-moderate lung disease, microbial communities in
lavage samples from two or three of the lobes of the right lung were compared. The bacterial
microbiota in all samples was analyzed using Illumina-based sequencing of bacterial 16S rRNA
gene amplicons; sequencing of amplified fungal ITS1 sequences was also performed for sample

Fig 1. Regional sampling of the cystic fibrosis lung. PB samples were obtained from two or three tertiary bronchi of the right lung followed by sequential
BAL sampling of the right upper lobe (RUL), right middle lobe (RML), and/or the right lower lobe (RLL). Specific sampling sites for each subject are shown
within the Fig. For two subjects, a scope wash was also obtained prior to the lavage using a separate bronchoscope that was advanced to the glottis,
removed, then washed through the suction channel to recover microbes for analysis.

doi:10.1371/journal.pone.0149998.g001
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sets from two subjects. For seven of the nine patients analyzed (subjects 1, 3–5, 7, 8), the major-
ity of BAL samples had one bacterial genus that made up more than 75% of total reads, and,
within a subject, this dominant bacterial genus was the same in each lobe sampled (Fig 2A and
S2 Table). Based on the high abundance of bacteria and the presence of a dominant bacterial
genus we considered these samples “bacteria dominated” (Fig 2A). The most abundant genera
detected in BAL of these seven subjects were common CF-related respiratory pathogens
including Pseudomonas (2 subjects), Stenotrophomonas (2 subjects), Achromobacter (1 sub-
ject), and Staphylococcus (1 subject) (Fig 2A). The most abundant genera detected by 16S
sequencing of DNA extracted from BAL matched the microbes found in the clinical microbiol-
ogy analysis of RUL BAL fluid (Table 1) with one exception. In subject 1, RUL BAL cultured
positive for P. aeruginosa andMycobacterium avium complex, but had a very high relative
abundance of Stenotrophomonas in the 16S rRNA sequence analysis of the RUL BAL. This dis-
crepancy is discussed further below.

Fig 2. Analysis of the relative abundance of bacteria and fungi in BAL and PB samples from different lobes of the right lung. A. Relative abundance
of bacterial genera in BAL samples from the upper (U), middle (M) and lower (L) lobes of the right lung in all subjects except for subject 2. Clinical
microbiology reports found bacterial pathogens in the RUL BAL in subjects 1, 2, 3, 4, 5, 7 and 8 (listed in Table 1), and these are considered to be “bacteria
dominated”. Clinical microbiology analysis of all subjects found predominantly Candida lusitaniae in the BAL fluid of subjects 6 and 9 and few if any bacteria,
and these are therefore considered to be “fungi dominated”. The legend indicating the colors used to indicate the different genera in panelsA andC is shown
on the lower right. The taxa that made up 85% of all reads across all BAL and PB samples from “bacteria dominated” subjects are shown (data in S2 Table).
B. Relative abundance of the fungal taxa in a subset of samples from subjects 6 and 9. Candida lusitaniae accounted for >99% of reads in these samples.C.
Relative abundance of bacterial genera in PB samples from the upper (U), middle (M) and lower (L) lobes of the right lung.

doi:10.1371/journal.pone.0149998.g002
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Two of the nine subjects (6 and 9) yielded BAL samples that by clinical culture on blood
agar contained high levels of Candida lusitaniae, sometimes described under its teleomorph
name Clavispora lusitaniae (Table 1), and few or no bacteria were detected in the clinical
microbiology analysis (Table 1). Our laboratory cultures on YPD indicated that the C. lusita-
niae abundance was between 1,000–10,000 colony forming units per ml of BAL from all sam-
pled lobes from both subjects. These subjects were thus considered “fungi dominated”.

Analysis of the 16S rRNA gene sequences of the bacteria in BAL samples from subjects 6
and 9 found diverse bacterial genera without a predominant bacterial genus. Consistent with
the microbiology analysis, none of the commonly encountered bacterial CF pathogens were
abundant (Fig 2A). For samples from only the fungi dominated subjects, analysis of the myco-
biome (fungal microbiota) was performed by amplification and sequencing of fungal ITS1
sequences. ITS1 sequence analysis found that C. lusitaniae was the most abundant genus mak-
ing up>99% of all reads in both BAL and PB samples from both subjects (Fig 2B and S3
Table). C. lusitaniae is only rarely associated with CF lung disease [32,33], but is known as an
opportunistic pathogen [34–36]. Together, these data suggest that a single bacterial (subjects 1,
2, 3, 4, 5, 7 and 8) or fungal (subjects 6 and 9) pathogen was the most abundant microbe in
BAL samples from different lobes of the right lung in individuals with mild-to-moderate lung
disease, and that the dominant microbe varied between subjects.

To complement the analysis of BAL samples from different regions of the lung, we per-
formed a similar analysis of regional PB samples. In all subjects other than subject 1, the most
abundant microbe in the PB samples (Fig 2C) was the same as in the BAL (Fig 2A).

In subject 1, the RUL BAL and RUL PB had different predominant microbes in terms of rel-
ative abundance of amplified 16S rRNA gene sequences, with Stenotrophomonas dominating
the BAL and Pseudomonas as the most abundant genus in the PB sample (Fig 2C). We found
Pseudomonas at low relative abundance in the RUL BAL from subject 1 (0.01% of raw reads)
and Stenotrophomonas at low relative abundance in the subject 1 RUL PB (0.9% of raw reads)
indicating that both genera were present in both samples, but in strikingly different ratios. In
addition, a member of theM. avium complex was detected in the RUL BAL by culture, while
Illumina reads from theMycobacterium genus were at low relative abundance in all samples
from subject 1 (<0.01%, see Table 1 and S2 Table). In light of the concordance between the
microbes with the highest relative abundance in all other matched BAL and PB samples
obtained (compare Fig 2A and 2C), the difference between RUL BAL and PB samples from
subject 1 was unexpected. To better understand the difference in relative abundances of Steno-
trophomonas and Pseudomonas found in the RUL BAL and PB samples from Subject 1, we per-
formed an analysis of the non-CF pathogens of the microbiota from the regional PBs by rank
abundance (Fig 3). Despite the differences in the microbes with the highest relative abundance
in the regional PBs from Subject 1 (Fig 2C), we found a consistent pattern for the non-patho-
genic taxa in the PB samples from this subject (Fig 3). This provides strong confirmation of the
fact that these samples did indeed originate from the same subject, and indicates that the differ-
ences were limited to most abundant species and not the minor members. While the rank
abundance pattern for the minor taxa in terms of relative abundance was characteristic for sub-
ject 1, there was more variability among the minor taxa in the PBs from other subjects.

To better assess whether the minor members of the microflora reflect microbes or microbial
DNA in the lung, or if its origin is oral contamination of the lung-derived BAL samples, we
performed a “two bronchoscope”method on two subjects [37–40]. In this procedure, a bron-
choscope that was passaged transorally to the glottis (Fig 1), immediately removed, and rinsed
by suctioning sterile saline with the same volume of fluid used in a lavage procedure. This sam-
ple is referred to as a “scope wash” [14], and this sample represents the microbiome of the oral
flora. A second bronchoscope was then used to collect PB and regional BAL samples. In this
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Fig 3. Rank abundance analysis of the less abundant taxa in PB samples. In this analysis, the known CF associated pathogens Stenotrophomonas,
Staphylococcus, Pseudomonas, Haemophilus and Achromobacter were removed from the PB sample data to allow for a focus on the minor taxa (as
described in the Methods). Rank abundance of the remaining taxa in those samples from the upper (U), middle (M) and lower (L) lobes of the right lungs of
different subjects is shown. More abundant taxa are in yellow and less abundant taxa are in red as shown in the legend. Not all taxa are present in all samples
and ranking all taxa across all samples resulted in the assignment of a rank within a sample even if a taxon is not present. This could lead to a visual effect,
which suggest that some taxa are more abundant in a sample compared to others, even if they were undetected. For detailed information see S2 Table.

doi:10.1371/journal.pone.0149998.g003
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analysis of the taxa minus the known CF associated pathogens (Stenotrophomonas, Staphylo-
coccus, Pseudomonas,Haemophilus and Achromobacter), we compared the scope wash micro-
biota to the microbial profiles in PBs and BALs, and found no visible similarity in patterns
between the two (S1 Fig). Similarity between the BALs and the PBs also suggested that the BAL
was not contaminated by oral flora as the protected brush samples were sheathed upon
removal from the lung.

Analysis of Microbiological Patterns across Lobes of the Right Lung
within Subjects
Focusing on taxa that represented more than 5% of the reads in any one BAL sample, we ana-
lyzed the microbiota by region in more detail. The relative abundances of taxa that comprised
more than 5% of total reads were standardized by z-score for the purposes of data visualization.
The z-score represents the relative abundance data in terms of the distance from the mean rela-
tive abundance for that taxon across all samples (Fig 4A). Samples were then clustered using
Euclidian distance measurements. Samples clustered mainly by subject, and not by the region
sampled, with the exception of clustering of the UL and LL samples from subjects 4 and 8, two
subjects who were both colonized by Pseudomonas (Fig 4A). These data suggest that there was
no evidence for enrichment for particular communities in different lobes of the lung across
individuals. Visual analysis of the heat map also shows that no taxon was limited to one lobe of
the lung across subjects. A Bray-Curtis distance analysis of the relatedness of BAL samples fur-
ther confirmed that samples from the same subject were significantly more related to one
another than samples from the same location in different subjects (Fig 4B, P< 0.001, Wilcoxon
Rank Sum Test). Lastly, diversity, as measured by the Simpsons Diversity Index (SDI), was not
significantly different from between lobes, though there was a slight, but not significant
(P = 0.05554, Kruskal-Wallis test), trend towards increased diversity in the upper lobe relative
to the middle and lower lobes (analysis not shown).

The PB samples were also used to determine if specific aspects of the microbiota were con-
sistent across subjects in a specific region of the lung. Again, z-scored relative abundance data
clustered by subject and not lobe (Fig 4C) and microbiome samples from different lobes within
the subject were significantly more similar to each other than samples from the same location
in different subjects in terms of Bray-Curtis distance (Fig 4D). Together, these data suggest
that there is not a consistent pattern differentiating the different lobes, and this information is
important to consider in light of the fact that CF lung disease progresses most rapidly in the
RUL [5].

We further analyzed the relationship between the microbiota detected in BAL fluid, which
samples both proximal and distal airways, and the microbiota detected in mucus plugs sampled
by PB from a proximal airway segment in the same lobe (Fig 1). With the exception of the sam-
ples from the RUL from subject 1 (Fig 2A and 2C), PB and BAL samples had the same microbe
in highest relative abundance. In addition, some of the less abundant microbes were consis-
tently present at higher relative levels in PB samples than in BAL samples. Focusing on genera
present in more than half of the samples, we found that Streptococcus, Rothia, Peptostreptococ-
cus, and Gemella had higher relative abundances in the PB samples compared to the BAL sam-
ples when paired samples from the same lobe of the same subject were compared (P< 0.05,
n = 17, paired t-test; analysis performed on data in S2 Table). In contrast, Prevotella, Veillo-
nella, Actinobacteria, and Fusobacteria, were not significantly higher in relative abundance in
PB samples when compared to BAL samples. A t-test of all pairs of samples for which there
was both a BAL and a corresponding PB from the same lobe of the same subject shows that PB
samples were more diverse, with a Simpson Diversity that is on average 0.23 greater in PB
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samples (Fig 5, P< 0.001). Together these data suggest that the microbiota within mucus plugs
or in the proximal airways may be enriched in certain genera compared to the BAL. There
were no genera that were only detected in one sample type.

Relationship between the SputumMicrobiota and BAL and PB samples
and Clinical Microbiology Data
Sputum, which is believed to be comprised of lower airway-derived mucus plugs, is routinely
expectorated, collected, and analyzed to gain insight into the microbes in the lung for the pur-
poses of research and to guide clinical care. We determined how the microbial composition of
sputum compared to that in BAL fluid and PB. Six subjects were capable of providing an

Fig 4. Analysis of relationships between the microbiota and location within the right lung. A. Cluster analysis of the relative abundance of BAL-
associated taxa that accounted for more than 5% in any one sample. The numbers and colors indicate the subject. Genus was assigned in VAMPS except
for taxa in the family Comamonadaceae for which a single genus could not be assigned (NA). B. Bray-Curtis distance analysis of BAL samples from the
same location in different subjects (Same location), and samples from the different locations in the same subject (Same Subject) demonstrated that samples
from the same subject are less different than samples from the same lobe in different subjects (*** P < 0.001, Wilcoxon Rank Sum Test). A Bray-Curtis
Distance of 1 indicates essentially no relatedness, and a value of 0 indicates completely related.C. Cluster analysis of the relative abundance of PB-
associated taxa that accounted for more than 5% in any one sample. The numbers and colors represent subject number. Taxonomic assignments were
made using VAMPS. “NA” indicates that the indicated taxonomic level was not assigned.D. Bray-Curtis distance analysis found that PB samples from the
same location in different subjects (Same Location) were more distant than samples from the different locations in the same subject (Same Subject)
(*** P < 0.001, Wilcoxon Rank Sum Test). In B andD, the center line is the median, the box is interquartile range, and the whisker is 1.5 times the
interquartile range from the median.

doi:10.1371/journal.pone.0149998.g004
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expectorated sputum sample on the day of the bronchoscopic procedure for this analysis. In
five out of six subjects, the sputum microbiota contained more genera at greater than 2% rela-
tive abundance than either the BAL or PB samples from the same subject (Friedman test,
P< 0.01) (Fig 6A). These data suggest the community structure in sputum does not necessarily
accurately represent the communities in the lung. The species that were notably higher in their
relative abundance in sputum included Streptococcus, Veillonella, and Prevotella. Streptococcus
was the only one of these species that was also significantly more abundant in PB samples of
mucus plugs in comparison to BAL fluid from the same region.

For two of the six subjects who produced a sputum sample on the day of the bronchoscopic
procedure, the microbe with the highest relative abundance in sputum was the same as that
found in the BAL by both culture and DNA based methods (subject 5 with S. aureus and sub-
ject 9 with C. lusitaniae) (Fig 6A). For the other subjects (subjects 2, 3, 4 and 8), the organism
with the highest relative abundance (>75% of total reads) in BAL samples was present in spu-
tum, but was not the taxon at the highest relative abundance. When the sputum microbiota
data were filtered to consider only the typical CF pathogens (P. aeruginosa, Stenotrophomonas,
Achromobacter, Burkholderia, Staphylococcus and Haemophilus) (previously defined in [41–
43]), the most abundant pathogen was the same in both sputum and lavage samples.

We used a principal component analysis (PCA) to compare sputum microbiota to those
found by BAL and PB samples from the same subject (Fig 6B) and found that communities
from sputum samples generally cluster together and are independent from the subject, whereas
BAL and PB samples cluster together by subject. The exception are the samples from subject 5
that all cluster together, but that was not surprising since, as S. aureus was the most abundant
organism in BAL, PB and sputum (Fig 6A). Interestingly, the samples of the fungi dominated
subject 9 all cluster together with the sputum samples from all other subjects, indicating that in
this subject there is no dominant bacterial genus and that highly diverse samples form their
own cluster. Together, these data suggest that while sputum contains important information

Fig 5. Bacterial Simpson Diversity Index for BAL- and PB-associated microbiota in the different lobes
of the right lung. The diversity, as measured by Simpson Diversity Index, was calculated for each sample.
When both a BAL (labeled BL) and PB sample was available from the lobe of a subject, their diversity values
are connected with a line. The data used in this analysis are in S2 Table.

doi:10.1371/journal.pone.0149998.g005
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about lower airway infections, the community structure in sputum is not necessarily an accu-
rate representation of the communities in the lung, due to the fact that sputum is a composite
of mucus plugs from the lung and watery contribution from the oral flora when passing
through the upper respiratory tract.

Relationship between Parenchymal Lung Damage and Regional
Microbiota
The Brody score is a composite of the evaluation of the following morphologic changes: bron-
chiectasis, peribronchial wall thickening, mucus plugging, air trapping and parenchymal

Fig 6. Comparison of sputummicrobiota to regional PB and BAL fluid microbiota in samples from the same subject. A. Relative bacterial genus
abundance in BAL and PB in the upper (U), middle (M) and lower (L) lobes of the right lung and in sputum. Data from the six subjects capable of providing a
spontaneously expectorated sputum sample within 2 h of the bronchoscopy procedure are shown.B. Using the complete taxonomic data from the six
subjects that provided a spontaneously expectorated sputum sample, a principal component analysis (PCA) was performed (see Methods for details). The
numbers and colors indicate the subjects and the squares indicate BAL samples, the circles are from PB samples and the triangles show the sputum
samples.

doi:10.1371/journal.pone.0149998.g006
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involvement [15]. When the components of the Brody score are analyzed separately they indi-
cate that bronchiectasis and the peribronchial wall thickening (PB thickening) are the major
drivers of the total Brody score (Fig 7). The most damage can be observed in the upper lobe
(RUL) while the damage in the middle (RML) and lower lobe (RLL) is comparable. The

Fig 7. Scores of the single components for the Brody score to assess lung damage. The total Brody score is a composite of the evaluation of changes
in bronchiectasis, peribronchial wall thickening (PB thickening), mucus plugging (Mucus), air trapping and parenchymal involvement (Parenchyma) in the
lung of CF subjects.

doi:10.1371/journal.pone.0149998.g007
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parenchymal involvement (Parenchyma) score shows a similar trend but the impact on the
total score is smaller. The mucus plugging and air trapping are more general lung phenomena
and they don’t seem to be involved in the increased damage of the RUL in all CF subjects. For
the values that comprise the composite Brody score, see the data in S1 Table. Similarly, the dif-
ferences between some of the components of the Brody score over different regions of the lung
(Fig 7) combined with the similarity in the microbiome in different regions of the lung (Fig 2)
in the different lobes highlights the absence of any specific correlations between any of the
components of the Brody score and community composition.

We were interested if the increased damage in the RUL can be attributed to any microbial
contribution be it the presence of a certain bacterial genus or the degree of diversity that was
observed. When the microbiota in the BAL and PB samples were analyzed in comparison to
the extent of damage (Brody Score), there was no correlation between Brody score and sample
composition as analyzed by Bray-Curtis distance across all samples (Fig 8A). This result was
not surprising in light of the large differences in community composition and predominant
taxa across subjects (Fig 3). To control for intersubject variability, we analyzed the difference in
the Brody score between lobes from the same subject and the differences in the microbiota
within the BAL from those same regions. This analysis found a significant correlation between
interlobar difference in Brody score and Bray-Curtis distance (P� 0.05) suggesting that extent
of lung damage within a subject may influence the bacterial community composition to a mod-
est extent or that different community compositions differentially impact lung damage (Fig
8A). We did not find a correlation between differences in Brody score and differences in micro-
biota diversity measured by Simpson diversity (Fig 8B).

Focusing on the differences between the RUL and the RLL, which show the greatest different
in Brody score, we sought to determine if there was a difference in total bacterial load in BAL
fluid recovered from these lobes. Quantitation of the bacterial burden in the right upper and
lower lobes by P. aeruginosa 16S rRNA gene copies per ml of BAL fluid using quantitative PCR
did not find a pattern in bacterial loads in the RUL in comparison to the RLL (Fig 8C). We are
aware that our quantification approach is not taking into account that there are differences in
the amount of 16S copies per organism [44] and that the metabolic state of the cells is affecting
the copy number [45], but since the dominant genera per patient in the BAL fluid recovered
from the upper and lower lung are the same (Fig 3A) and the metabolic state varies within a
log10 we feel confident to conclude that there is no statistical significant change between the
bacterial loads in the RUL in comparison to the RLL. Together, these data suggest that aspects
of the host-microbe interaction, and not differences in the microbial communities themselves,
drive the more rapid progression of CF lung disease in the RUL, as discussed next.

Discussion
These studies represent the first analysis of the regional microbiota in the lungs of adult CF
patients with mild-to-moderate lung disease during periods of clinical stability. Our data found
that the extent of damage in regions of the right lungs of subjects with CF did not correlate
with specific microbial genera, levels of community diversity or composition, or bacterial
genome copies per ml of BAL fluid. These studies also found that in all cases, BALs from differ-
ent regions contained similar microbial communities, based on a variety of measures. In eight
out of nine subjects, PB samplings from different regions of the same subject’s lung were also
similar in microbial community composition and similar to communities in BAL fluid from
the same lobe. Microbial communities in PB samples were more diverse than those in BAL
samples, with more species with>5% relative abundance, suggesting the enrichment of certain
taxa in mucus plugs.
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Fig 8. Relationship between lung damage andmicrobiota. A. Brody scores, a measure of lung damage,
were calculated by a thoracic radiologist from a recent CT scan (data in S1 Table and Fig 7). The difference in
Brody score between different lobes within a subject was calculated versus the difference in microbiota,
determined as Bray-Curtis distance, is plotted for both BAL (red) or PB (blue) samples. The numbers indicate
the data points from each of the subjects.B. A similar analysis as that shown in A, except that the Brody
score difference between lobes within a subject is plotted against the difference in microbiota diversity,
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Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithe-
lia and other cells has multiple clinical implications including dehydration of the airway surface
liquid [46], hyperinflammation [47], abnormal airway pH [48], impaired immune cell function
[49], impaired activity of antimicrobial factors [50], and chronic infection. The combination of
these effects favors the development of mucus plugging within the airways that is both tran-
sient and diffuse within the proximal airways of the CF lung [51,52]. The microbiota in the PB
samples of mucus plugs differed from BAL samples from the same region in that they were
more diverse using the Simpson Diversity Index metric and there were more taxa with greater
than 5% percent relative abundance in any one sample. These findings are consistent with
those from studies of ventilator-associated pneumonia (VAP), in which there were higher lev-
els of oral flora in more proximal samples, as detected by standard culture [53,54]. Streptococ-
cus spp. were among the microbial genera with significantly higher relative abundance in PB
samples when compared to BAL. Rothia, which was also significantly enriched in PB samples
has been reported to be a common CF opportunist [55]. While higher relative abundances of
Prevotella in PB versus BAL samples was not significant across all sample pairs, several subjects
had notably higher levels of Prevotella in PB samples in comparison to BAL from the same lobe
(Fig 3). The presence of Prevotella in the lung is no indication that this genus is involved caus-
ing disease in CF since Prevotella has been reported in both CF and non-CF samples from the
lower airways, and higher levels of this genus were seen in samples from individuals with CF
[56,57]. Rogers and colleagues also found that anaerobes such as Prevotella were present in the
non-CF bronchiectatic lung [58].

In samples from the RUL of one subject, P. aeruginosa was found to be abundant in the PB
sample but Stenotrophomonas was the highest abundance microbe in the BAL fluid (Fig 2).
This observation was similar to a pattern detected in the analysis of an explanted lung affected
with COPD in which P. aeruginosa was found in the upper middle bronchus, but Stenotropho-
monas was found in the distal bronchus from the same lung [59]. In both our study and the
analysis of regional microbiota in COPD [59], variation in bacterial community composition
among regional samples was only seen in one subject; other subjects had more uniform micro-
bial communities throughout the lung. Interestingly, in a study that analyzed the microbes in
BAL fluid from all six lobes in children with CF, Stenotrophomonas stood out as the microbe
most likely to be localized to only one or two lobes of the lung [6].

This study provides further support for the use of sputum as a useful sample for the diagno-
sis of the most abundant pathogens in CF lung infections in most subjects. However, our
results suggest that sputum diversity may not always reflect the diversity of the lung micro-
biome in the lower airways. In addition, the sputum microbiota contained higher levels of
some taxa that were more abundant in PB samples relative to BAL samples. For example, Strep-
tococcus and Prevotella in subjects 3, 4, and 8 have a higher relative abundance in PB samples
when compared to BAL samples and yet higher relative abundances in sputum (Fig 6A). Our
studies also parallel a study reports by Singh and colleagues [7], which showed that in patients
with end stage disease, the microbial diversity in samples from the lung was lower than in spu-
tum. While our data demonstrate that the most abundant pathogen in sputum generally
reflects the predominant taxa identified in samples from the right lung, a limitation of our
study was that only one lung was sampled. However, in our study the relative uniformity
between the different lobes from the same lung lends support for the use of sputum, which

measured as the difference in Simpsons Diversity Index, in BAL or PB samples in the lobes being compared.
C.Quantification of the amount of bacterial DNA in BAL fluid from the right upper lobe and right lower lobe.
The red lines indicate the mean of all samples including error bars.

doi:10.1371/journal.pone.0149998.g008
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may come from any lobe or multiple lobes, in clinical diagnosis. Furthermore, it provides
important insight into how different methods of sampling the lung (BAL vs. PB) may impact
study interpretation and clinical diagnoses. Bronchoscopy did not yield any new genera beyond
those identified in sputum.

The presence of high levels of C. lusitaniae in the CF lung was surprising. While numerous
studies have documented the presence of Candida spp. in the lung, the most commonly detected
species are Candida albicans, Candida parapsilosis, and Candida dubliniensis [18,33,60,61]. The
lavage samples containing C. lusitaniae had high fungal loads (>105 CFUs per ml of BAL fluid)
suggesting that this species has the potential to thrive in the CF lung. In the two fungus-domi-
nated subjects, the levels of bacteria as measured by plating and by quantitativate PCR of the
16S rRNA gene was lower than for the bacterially dominated subjects, and no single bacterial
genus predominated. C. lusitaniae has been detected in CF samples previously, but is uncom-
mon and/or usually at low levels [18,32,33,62]. As was seen in the regional samples from sub-
jects with predominantly bacterial infections, C. lusitaniae was found in all lobes sampled.

While Dickson et al. [40] found higher bacterial diversity in the upper lobes compared to
the lower lobes in healthy individuals, we did not observe statistically significant differences in
diversity in different lobes of the right lung. The absence of a significant link between regional
lung damage and any of the microbiological parameters measured here suggests that it is the
host-microbe interaction, rather than the nature of the microbial infection itself, that promotes
lung damage. Recent studies on isolates recovered from explanted lungs with late stage disease
suggest that there are geographic differences in microbial genotype and phenotype in the dif-
ferent regions of the lung and this may contribute to the regional variation in damage
[7,63,64]. Future studies will determine if microbial phenotype also varies regionally in individ-
uals with less advanced disease.

To our knowledge, this study is the first to examine the microbiota in different regions of
the CF lung in clinically stable individuals with mild-to-moderate CF-related lung disease. We
report that the extent of damage observed in regions of the right lung did not correlate with
specific microbial parameters and that the microbiota across the right lung was similar when
BAL samples were compared, and only one subject had regional heterogeneity in the micro-
biota of the right lung when PB samples were analyzed. Microbial communities in PB samples
were more diverse than those in BAL samples, suggesting enrichment of some taxa in mucus
plugs. Future studies will focus on determining how the microbiota contributes to the heteroge-
neous progression of lung disease in CF.

Supporting Information
S1 Fig. Rank abundance analysis of the less abundant taxa in BAL, PB and scope wash sam-
ples. In this analysis, the known CF associated pathogens Stenotrophomonas, Staphylococcus,
Pseudomonas,Haemophilus and Achromobacter were removed from the BAL, PB and “scope
wash” sample data to allow for a focus on the minor taxa (as described in the Methods). Rank
abundance of the remaining taxa in those samples from the upper (U), middle (M) and lower
(L) lobes of the right lungs and “scope wash” (W) of different subjects is shown. More abun-
dant taxa are in yellow and less abundant taxa are in red as shown in the legend
(TIF)

S1 Table. Components of the Brody score. Presented are the total Brody scores of the three right
lobes of the study subjects, including the scores for each component of the Brody score that evalu-
ate changes in bronchiectasis, peribronchial wall thickening (PB thickening), mucus plugging
(Mucus), air trapping and parenchymal involvement (Parenchyma) in the lung of CF subjects.
(XLSX)
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S2 Table. Illumina analysis of the bacterial 16S rRNA sequences amplified from total DNA
isolated from lung-derived and scope wash samples. The numbers represent the absolute
number of reads (left) and the relative abundance in percent (right) for each sample. Reads
were given a taxonomic assignment using VAMPS (www.vamps.mbl.edu). The database
selected was limited to the bacteria, and the raw numbers represent the absolute number of
reads. The most abundant genera are color coded based on their representative colors in the
bar plots.
(XLSX)

S3 Table. Illumina analysis of the fungal ITS1 sequences amplified from total DNA isolated
from a subset of lung-derived samples. The numbers represent the absolute number of reads
on the left and the relative abundance in percent on the right from each sample. Reads were
given a taxonomic assignment using VAMPS (www.vamps.mbl.edu). The database selected
was limited to the Eukarya, and the numbers represent the absolute number of reads. The most
abundant species are color coded as the most abundant species in Fig 3B.
(XLSX)
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