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Abstract

The notion that cooperation can aid a group of agents to solve problems more efficiently than if those agents worked in
isolation is prevalent in computer science and business circles. Here we consider a primordial form of cooperation –
imitative learning – that allows an effective exchange of information between agents, which are viewed as the processing
units of a social intelligence system or collective brain. In particular, we use agent-based simulations to study the
performance of a group of agents in solving a cryptarithmetic problem. An agent can either perform local random moves to
explore the solution space of the problem or imitate a model agent – the best performing agent in its influence network.
There is a trade-off between the number of agents N and the imitation probability p, and for the optimal balance between
these parameters we observe a thirtyfold diminution in the computational cost to find the solution of the cryptarithmetic
problem as compared with the independent search. If those parameters are chosen far from the optimal setting, however,
then imitative learning can impair greatly the performance of the group.

Citation: Fontanari JF (2014) Imitative Learning as a Connector of Collective Brains. PLoS ONE 9(10): e110517. doi:10.1371/journal.pone.0110517

Editor: Long Wang, Peking University, China

Received August 4, 2014; Accepted September 15, 2014; Published October 16, 2014
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Introduction

Imitative learning or, more generally, social learning offers a

means whereby information can be transferred between biological

or artificial agents, thus being a crucial factor for the emergence of

social intelligence or collective brains [1]. Its relevance in this

context is neatly expressed by Bloom: ‘‘Imitative learning acts like

a synapse, allowing information to leap the gap from one creature

to another’’ [2]. Not surprisingly, the advantages of this learning

strategy were perceived and exploited by nature well before the

advent of the human species as attested by its widespread use in

the animal kingdom [3–6]. Regarding human behavior, we note

that imitation as a mechanism of social learning was extensively

studied by Bandura in the 1960s [7,8] and that the sociocognitive

approach to mental processing holds that all mental activity

involves either representations of other people or the use of

artifacts that have a social history [9,10].

Social learning has inspired the design of several optimization

techniques, such as the particle swarm optimization algorithm

[11,12] and the adaptive culture heuristic [13,14]. Despite the

success of these heuristics in producing optimal or near optimal

solutions to combinatorial optimization problems, we know little

about the factors that make cooperation effective, as well as about

the universal character (if any) of the quantitative improvements

that results from it [15]. The reason is probably that those

heuristics and the problems they are set to solve are too complex to

yield to a first-principle analysis. In this contribution we address

these issues by tackling a simple combinatorial problem and by

endowing the agents with straightforward search strategies in

which the strength of collaboration is controlled by a single

parameter of the model.

The combinatorial problem we consider here is a cryptarith-

metic puzzle, i.e., a code in which the digits of the integer numbers

in a sum are replaced by letters of the alphabet [16,17]. The

challenge is to find an assignment between letters and digits that

satisfies the constraints of arithmetics as well as the condition that

two different letters cannot be assigned to the same digit. In this

sense, cryptarithmetic puzzles are typical of constraint satisfaction

problems which play a central role in our understanding of human

and computer problem solving competencies [18,19].

We solve the cryptarithmetic problem using a group of N agents

which, in addition to the capacity to carry out random local

searches, can learn from (or imitate) a model agent – the best

performing agent in their influence networks at a given trial. The

influence network of each agent is obtained by picking

1ƒMƒN{1 agents at random and without replacement from

the N{1 remaining agents in the group. The fully connected

system corresponds to the case M~N{1. The frequency of the

imitative or cooperative behavior is determined by the imitation

probability parameter p§0. Hence our model exhibits two critical

ingredients of a collective brain, namely, imitative learning and a

dynamic hierarchy among the agents [2].

Our agent-based model conforms to the particle swarm

paradigm in that the agents show a tendency to move towards

the low cost regions of the solution space which were visited by

members of their influence networks [11]. This tendency is a result

of the imitation procedure that occurs with probability p.

However, we relax the requirement that the agents are more

likely to change if the move leads them to a region of lower cost,

the so-called Law of Effect [10]. In particular, we allow the agents

to move randomly in the solution space with probability 1{p and

it is this procedure that guarantees that, eventually, one agent will

hit the solution of the cryptarithmetic problem [15]. We stress
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that, whereas the particle swarm algorithm or the adaptive culture

heuristic may fail to find the solution of the puzzle because the

search can get stuck in a local minimum of the cost landscape, our

search procedure, which combines imitation and random changes,

always finds the solution. Of course, the issue is how long it takes

to do so.

The main performance indicator for the cooperative system is

the total number of agent updates necessary to find the solution of

the cryptarithmetic problem, which we define as the computa-

tional cost of the search. The baseline performance corresponds to

the case p~0 where the N agents explore the solution space

independently, resulting in a computational cost that does not

depend on the value of N , provided that this value is not too large

compared to the size of the solution space. We find that, for a fixed

value of the imitation probability p, increasing the number of

agents N beyond a certain value impairs the group operation

which can then perform much worse than in the case of the

independent search. The following of a bad model is the culprit for

the poor performance in this case. This harmful effect can be

mitigated somewhat by reducing the size M of the influence

networks, so as to limit the influence of a model agent to only a

fraction of the group. Most significantly, this finding implies that,

for fixed p and M, there is a value of group size N that minimizes

the computational cost of the search. For instance, in such an

optimal setting, say a fully connected system of N~7 agents

(hence M~6) with imitation probability p~0:6, we find a

thirtyfold decrease of the mean computational cost as compared

with the baseline cost.

Methods

First we will describe the particular cryptarithmetic problem the

agents must solve, explain how the digit-to-letter identifications are

encoded in strings and introduce the cost value associated to those

strings. We will present also the elementary move that transforms

any valid string into an adjacent valid string and so allows the full

exploration of the solution space. Once these basic elements are

introduced we will describe the mechanism of imitation between

agents, thus completing the specification of the agent-based model

we use to evaluate the efficacy of imitative learning in solving a

complex task.

The cryptarithmetic problem
Cryptarithmetic problems such as

DONALDzGERALD~ROBERT ð1Þ

are constraint satisfaction problems in which the task is to find

unique digit assignments to each of the letters so that the numbers

represented by the words add up correctly [16]. In the

cryptarithmetic problem (1), there are 10! different digit-to-letter

assignments, of which only one is the solution to the problem,

namely, A~4, B~3, D~5, E~9, G~1, L~8, N~6, O~2,
R~7, T~0: In fact, with this assignment the cryptarithmetic

problem (1) is rewritten as the sum 526485z197485~723970
which accords with the arithmetic rules. We note that any other

one-to-one correspondence between the 10 letters that appear in

(1) and the 10 digits would violate those rules. This type of

cryptarithmetic problem, in which the letters form meaningful

words, are also termed alphametics [17] and were popularized in

the 1930s by the Sphinx, a Belgian journal of recreational

mathematics [16]. Of course, from the perspective of evaluating

the performance of search heuristics on solving cryptarithmetic

problems, the meaningfulness of the words is inconsequential, but

in this contribution we will focus mainly on the alphametic

problem (1). Nonetheless, we will offer evidence to support the

validity of our conclusions by considering a few randomly

generated cryptarithmetic problems as well.

A non-random search heuristics to solve cryptarithmetic

problems requires the introduction of some arbitrary quality

measure or cost value to each possible digit-to-letter assignment.

For the alphametic problem (1) we encode a digit-to-letter

assignment by the string i~ i1,i2, . . . ,i10ð Þ where in~0, . . . ,9
represent the 10 digits and the subscripts n~1, . . . ,10 label the

letters according to the convention

1?A

2?B

3?D

4?E

5?G

6?L

7?N

8?O

9?R

10?T : ð2Þ

For example, the string 0,2,9,4,8,1,7,6,3,5ð Þ corresponds the

the digit-to-letter assignment A~0, B~2, D~9, E~4,
G~8, L~1, N~7, O~6, R~3, T~5: A somewhat natural

way to associate a cost to a string i is through the expression [20]

C ið Þ~DR{ FzSð ÞD ð3Þ

where R is the result of the operation (ROBERT ), F is the first

operand (DONALD) and S is the second operand (GERALD). In

our example we have R~362435, F~967019 and S~843019 so

that the cost associated to string 0,2,9,4,8,1,7,6,3,5ð Þ is

C~1447603. If the cost of a string is C~0 then the digit-to-

letter assignment coded by that string is the solution of the

cryptarithmetic problem. We must note that the cost value defined

in eq. (3) applies to all strings except those for which i3~0
corresponding to the assignment D~0, i5~0 corresponding to the

assignment G~0 and i9~0 corresponding to the assignment

R~0. In principle, those are invalid strings because they violate

the rule of the cryptarithmetic puzzles that an integer should not

have the digit 0 at its leftmost position. For those strings we assign

an arbitrary large cost value, namely, C~108, so that they can be

considered valid strings and hence part of the solution space.

In addition to the assignment of the cost values to all 10! strings

that code the possible digit-to-letter mappings for the alphametic

problem (1), we introduce also an elementary move that connects

two valid digit-to-letter mappings. We define the elementary move

as follows. Starting from a particular digit-to-letter mapping, say

0,2,9,4,8,1,7,6,3,5ð Þ, we choose two letter labels at random and

then interchange the digits assigned to them. For example, say we

pick letter labels 1 and 5, then the mapping that results from the

application of the elementary move is 8,2,9,4,0,1,7,6,3,5ð Þ.
Clearly, the repeated application of our elementary move is

capable of producing all 10! strings starting from any valid digit-to-

letter mapping.

Imitative learning
The system is composed of N agents or strings which represent

valid digit-to-letter assignments as described before. Each agent is

connected unidirectionally to exactly M~1, . . . ,N{1 distinct,
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randomly chosen agents in the system. We will refer to those

agents as the ‘influencers’ of the target agent. More specifically, for

each agent we sample M influencers from the N{1 remaining

agents without replacement. The extreme case M~N{1
corresponds to the fully connected network. An agent has a

probability p[ 0,1½ Þ of copying a digit-to-letter assignment from a

model string in its group of influencers, and probability 1{p of

performing the elementary move. We choose the model string as

the lowest cost string among the M influencers of the target agent.

If the cost associated to the target string is lower than the cost of

the model string then the copying process is aborted.

To illustrate the copying process let us assume for the sake of

concreteness that the target agent is our already familiar example

string 0,2,9,4,8,1,7,6,3,5ð Þ, whose cost is C~1447603, and that

the model string is 5,3,9,4,8,1,6,2,7,0ð Þ whose cost is

C~1050568. In the copying process the target agent selects at

random one of the distinct digit-to-letter assignments in the model

string and assimilates it. In our example, the distinct assignments

occur at the letter labels n~1,2,7,8,9,10. Say that the letter label

n~1, which corresponds to the assignment A~5 according to our

convention (2), is chosen. To assimilate this assignment the target

agent needs to reassign the digit 0 to the letter label which was

previously assigned to digit 5 so that the resulting string becomes

5,2,9,4,8,1,7,6,3,0ð Þ, whose cost is C~1448608. As expected, a

result of the imitative learning process is the increase of the

similarity between the target and the model strings. The case p~0
corresponds to the baseline limit where the N agents perform

independent searches. The specific copying procedure proposed

here was inspired by the mechanism used to model the influence of

an external media [21–23] in Axelrod’s model of culture

dissemination [24]. It is important to note that in the case the

target string is identical to the model string, as well as in the case

the cost of the target string is lower than the cost of the model

string, the opportunity of update is wasted.

We may interpret the imitation (or copying) process of a model

string as a blackboard cooperation system where a central control

exhibits hints (i.e., the lowest cost string) in a public space [15,25],

but here we prefer to use the interpretation of learning by

imitation in a social context. Nevertheless, since the process of

imitation results in an effective collaboration among agents, in the

sense that there is an exchange of information between them, we

refer to this search strategy as collaborative search to contrast with

the independent search which occurs when the copying process is

turned off, i.e, the imitation probability p is set to zero.

Search dynamics
We begin by generating the N influence networks, i.e., a group

of M influencers for each agent. These networks are kept fixed

during the entire search. In this initial stage, at trial number t~0,

we also associate a random digit-to-letter assignment (a valid

string) to each agent and determine its corresponding model string

by evaluating and comparing the cost values of its M influencers.

A new trial begins with the choice of the update order of the N

agents, so that at the end of the trial all N agents are updated. The

agent to be updated – the target agent – has the possibility to

imitate its model string or perform the elementary move with

probabilities p and 1{p, respectively. After update, we must re-

evaluate the model string status in all groups of influencers to

which the target agent belongs. After all N agents are updated we

increment the trial number t by one unit and check whether any

string has cost zero, in which case the search is halted. The trial

number at which the search ends or, alternatively, the number of

trial to success is denoted by t�.

Except for the independent search (p~0), the update of the N
agents is not strictly a parallel process since the model strings may

change several times within a given trial. Nonetheless, since in a

single trial all agents are updated, the total number of agent

updates at trial t is given by the product Nt.

Results

The efficiency of a search strategy is measured by the total

number of agent updates necessary to find the solution of the

cryptarithmetic problem (i.e., Nt�) and in the following we will

refer to this measure as the computational cost of the search. Since

we expect that the typical number of trials to success t� scales with

the size of the solution space (i.e., 10!), we will present the results in

terms of the rescaled variable t~t�=10!. For the purpose of

comparison we will consider first the independent search strategy

where the agents can perform the elementary move only (p~0)

and then the general cooperative search (pw0) where the agents

are also allowed to imitate their models.

Independent search
In this case there is no imitation and so the influence networks

have no role in the outcome of the search. The main results of the

independent search are summarized in Figure 1, which shows the

probability distribution P Ntð Þ of the rescaled computational cost

Nt of the search for several system sizes. The data is very well

fitted by the exponential distribution P Ntð Þ~a exp {aNtð Þ with

a~1=1:14 which is shown by the solid straight line in the figure.

As expected, the mean rescaled computational cost

SNtT&1:14 is insensitive to the system size provided that

N%10!, but the finding that it does not equal 1 is somewhat

surprising. In fact, if we replace our elementary move by a global

move in which the entire string is generated randomly at each

update then we find that this mean equals 1, as expected. The

reason that our elementary move is slightly less efficient than the

global move in exploring the solution space is because it is not too

unlikely to reverse a change made by the elementary move. For

example, the probability to reverse a change in a subsequent trial

is 2=10|1=9~2=90 for the the elementary move, whereas it is

1=10! for the global move.

Cooperative search
As pointed out before, the cooperation among agents stems

from the possibility that they copy potentially relevant digit-to-

letter assignments from the model strings in their influence

networks. We will consider first the fully connected system where

M~N{1 and then the partially connected systems where

1ƒMvN{1.

Fully connected system. Figure 2 shows how the mean

rescaled computational cost is affected by varying the imitation

probability p while the number of agents N is kept at a fixed value.

For N~20 and p~0:5 we observe a twentyfold decrease of the

mean cost in comparison with the cost of the independent search,

which corresponds to p~0 and yields SNtT&1:14. This is a

remarkable evidence of the power of imitative learning to speed up

the search on the solution space of the cryptarithmetic problem. In

the limit p?1 one expects the computational cost to diverge since

the solution space cannot be fully explored as the option for the

elementary move is never made in this limit. This harmful effect of

learning by imitation becomes more pronounced as the number of

agents increases.

In the region where the mean computational cost decreases

monotonically with increasing p (e.g., pv0:5 for N~20) we found

that the probability distribution of the computational cost is well
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described by an exponential distribution, in the sense that the ratio

between the standard deviation and the mean is always very close

to 1. (We recall that this ratio equals 1 for an exponential

distribution.) However, in the region where SNtT increases with

increasing p we found that in the low cost regime P Ntð Þ gives

values significantly greater than those predicted by an exponential

distribution, as illustrated in Figure 3, though those values are not

greater than those obtained in the case of the independent search

(see Figure 1).

The effect of increasing the number of agents N for a fixed

value of the imitation probability p is summarized in Figure 4. The

mean computational cost of the cooperative system exhibits a non-

monotonic dependence on N, except in the case of the

independent search (p~0) when it takes on a constant value.

The benefit of cooperation is seen in this figure by the initial

decrease of the computational cost as the number of agents

increases. However, for all pw0 we find that the presence of too

many agents greatly harms the performance of the system and that

for a fixed pw0 there exists an optimum value of N that

maximizes the search efficiency of the cooperative system. For

instance, although not shown in the scale of Figure 4, the

minimum computational cost for p~0:3 occurs at N&270. The

efficiency at this optimum, however, is not affected significantly by

the choice of the parameters N and p. In other words, the costs

corresponding to the minima shown in Figures 2 and 4 are not

very sensitive to changes in N and p, respectively. In particular, for

the parameter settings we have explored, the best efficiency

SNtT&0:041 is achieved for N~7 and p~0:6 and amounts to a

thirtyfold speed up with respect to the independent search.

We conjecture that the reason the efficiency of the cooperative

system deteriorates as N increases beyond its optimum value (e.g.,

in the range Nw7 for p~0:6 as shown in Figure 4) is that for N
not too small there is a good chance that the cost of one of the

strings is significantly lower than the cost of the other N{1 strings.

Provided p is not too small too, this string may remain as the

model string for a few trials thus biasing the search to the vicinity

of the model string. In the (typical) case that the model string is far

from the solution of the cryptarithmetic problem, imitative

learning may lead to the observed impairment of the performance

of the cooperative system. In sum, the following of a bad leader is

likely the culprit of the poor performance of the system.

To check the validity of this conjecture we calculate the mean

number of consecutive trials for which a cost value stays as the

lowest cost among the N strings. The procedure to obtain this

quantity, which we denote by f, is straightforward. At trial t~0 we

evaluate the cost of the N strings and record the minimal cost

among them. Then at the next trial t~1, after the N strings are

updated, we re-evaluate again their costs and record the minimal

cost. If the minimal cost at t~1 is different, i.e., greater or less,

than the minimal cost at t~0 we say that a change event has

occurred. The comparison of the values of the minimal costs at

consecutive trials is repeated and the cumulative number of

change events is recorded until the solution is found at t~t�. The

desired quantity f is given simply by the ratio between the total

number of change events and the total number of trials t�. Hence

for each search we obtain a single value for f, which can then be

interpreted as the mean number of trials between consecutive

change events or as the mean duration of the stases for that search.

In Figure 5 we present the probability distribution Q fð Þ using

105 searches for the imitation probability p~0:6 and two

representative values of N . Figure 5A shows this distribution for

N~6, which corresponds to a regime of low computational cost

according to Figure 4. We observe a pronounced maximum at

f&3:7 so that in most searches the model cost remains unaltered

for 3 to 5 trials. This is an optimum scenario since no string stays

on the top tier long enough to influence the entire system. For

Nv6, we find that Q fð Þ exhibits a similar shape but the

maximum becomes sharper and its location is shifted towards

lower values of f as N decreases. Figure 5B, which shows the

results for N~17, reveals a very different scenario: the distribution

Q fð Þ exhibits a plateau indicating that the model cost remains

unchanged for hundreds to a few thousands trials. For very large

values of f, the distribution Q fð Þ seems to exhibit an exponential

Figure 1. Exponential distribution of the rescaled computa-
tional cost for the independent search. Probability distribution
P Ntð Þ that a search employing N independent agents finds the
solution of the cryptarithmetic problem (1) using a total of Nt� updates
for N~5 (green triangles), N~10 (blue inverted triangles) and N~20
(red circles). Here t~t�=10! is the ratio between number of trials to
success and the size of the solution space. These distributions were
generated using 105 independent searches for each N . The solid
straight line is the exponential distribution P(Nt)~a exp {aNtð Þ with
a~1=1:14. The influence network size M does not affect these results
since imitation is not allowed in this case.
doi:10.1371/journal.pone.0110517.g001

Figure 2. The effect of the imitation probability on the
computational cost of the fully connected system. The symbols
represent the mean rescaled computational cost SNtT for cooperative
systems of size N~20 (red circles), N~5 (green triangles), N~3 (blue
inverted triangles) and N~2 (magenta squares). The independent
variable p is the probability that an agent will copy a digit-to-letter
assignment from the model string, chosen as the lowest cost string in
the entire system. The influence network size is M~N{1. Each symbol
represents an average over 105 searches and the lines are guides to the
eye. The error bars are smaller than the size of the symbols.
doi:10.1371/journal.pone.0110517.g002

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e110517

Imitative Learning as a Connector of Collective Brains



decay to zero, namely, Q fð Þ* exp {0:003fð Þ. We stress that for

the two cases exhibited in Figure 5 the probability that an agent

will imitate the model rather than perform an elementary move is

the same, namely p~0:6, and so the qualitative differences

reported in the figure are due solely to the change on the number

of agents.

Partially connected system. If the poor performance of

large collaborative systems based on imitative learning is due to

the influence of bad models then a natural way to reduce this

harmful effect is to limit the influence of those models. This was

the motivation to introduce the influence networks scheme where

each agent picks its model among M randomly chosen agents

predetermined at the beginning of the search. In fact, Figure 6

shows that the reduction of the connectivity of the agents increases

somewhat the range of values of the imitation probability p for

which the cooperative system outperforms the system composed of

independent agents. More pointedly, for N~20 this range is

extended from p&0:57 for M~19 to p&0:87 for M~1. In

addition, the value of the optimal mean computational cost does

not seem to vary significantly with M. Figure 7 offers another

perspective on the role of the number of influencers M. It shows

that for small values of the imitation probability the fully

connected system (i.e., M~N{1) exhibits the best performance.

However, as p increases (e.g., pw0:4 for N~40), the optimal

performance is obtained with partially connected systems.

Moreover, we found that for any fixed value of pw0 and M the

performance of the system is always impaired when the number of

agents N is very large. Finally, we note that similarly to our

findings for the fully connected system, the probability distribution

of the computational cost P Ntð Þ departs significantly from an

exponential distribution only in the regions where the mean

computational cost becomes an increasing function of the control

parameters of the model.

Random cryptarithmetic problems. In order to verify the

generality of our findings, which were obtained for the specific

alphametic problem DONALDzGERALD~ROBERT , we

have considered a variety of random cryptarithmetic problems

with 10 letters and a unique solution, so that the sizes of their

solution spaces are the same as that of the alphametic problem.

The comparison between the mean computational costs to solve

four such random problems and our alphametic problem is shown

in Figure 8 for the fully connected system. The results are

qualitatively the same, as expected. The alphametic problem,

however, was somewhat easier to solve by the cooperative system

than the random problems, perhaps because of the coincidence of

the last three letters (‘‘ALD’’) in the first and second operands.

Interestingly, the independent system (p~0) cannot distinguish

between the problems but the cooperative system (pw0) can, and

this distinction is most pronounced when the parameters are set so

as to achieve the optimal performance. It is as if the cooperative

system had adapted to the specific task posed to it. We expect that

our conclusions remain valid, in a qualitative sense of course, for

any constraint satisfaction problem characterized by a rugged cost

landscape.

Discussion

Rather than offer any novel method to solve cryptarithmetic

problems, our aim in this contribution is to assess quantitatively

the potential of imitative learning as the underlying mechanism –

the critical connector – of collective brains [2]. Here imitative

learning is implemented by allowing an agent to copy clues from

the best performing agent – the model agent – in its group of

influencers. More pointedly, at trial t each agent has the

probability p of imitating the model and the probability 1{p of

executing a random rearrangement of the digit-to-letter mapping

which is its guess to the solution of the cryptarithmetic problem. In

an optimal setting, say a fully connected system of N~7 agents

with imitation probability p~0:6, we find a thirtyfold decrease of

the mean number of trials needed to find the solution of the

problem (i.e., of the mean computational cost), as compared with

the case p~0 when the agents search the solution space

independently (see Figure 4).

In the optimal setting, as well as in the regions where the

computational cost is a decreasing function of the control

parameters of the model, the probability distribution of the

computational cost is given by an exponential distribution, rather

Figure 3. Deviation from the exponential distribution for a
large imitation probability. Probability distribution P Ntð Þ of the
rescaled computational cost for a search employing N~20 fully
connected agents with imitation probability p~0:6. The mean of this
distribution is SNtT&8:0. The solid straight line is the fitting function
a exp {bNtð Þ with a~0:03 and b~1=15 in the regime of large cost. The
influence network size is M~N{1. The distribution was generated
using 105 independent searches.
doi:10.1371/journal.pone.0110517.g003

Figure 4. The effect of group size on the computational cost of
the fully connected system. The symbols represent the mean
rescaled computational cost SNtT for the imitation probability p~0
(magenta circles), p~0:3 (red diamonds), p~0:4 (green squares), p~0:5
(blue inverted triangles) and p~0:6 (cyan triangles). The independent
variable N is the number of agents in the system. The influence
network size is M~N{1. Each symbol represents an average over 105

searches and the lines are guides to the eye. The error bars are smaller
than the size of the symbols.
doi:10.1371/journal.pone.0110517.g004
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than by a lognormal distribution as predicted by a general theory

of cooperative processes [15,26]. In fact, the reason the

cooperative scheme implemented in [15] is so efficient is that all

discovered digit-to-letter assignments that add up correctly modulo

10 for at least one column are permanently exposed as hints in a

blackboard for use by all agents, which can pick a hint at each

trial. There is no place for any kind of learning in that scenario

since in the case there are no hints in the blackboard or the agent

has already used the chosen one, the target agent selects at random

a complete digit-to-letter mapping, which is totally uncorrelated to

its previous mapping. The imitative learning interpretation of our

cooperative scheme is only possible because in our case the

elementary random move is local (i.e., solely two digit-to-letter

assignments are changed in the entire mapping) and therefore

preserves the identity of the target agent.

Most significantly, for fixed values of the imitation probability p

and of the number of influencers M, we find that increasing the

number of agents N beyond a certain quantity impairs the

working of the cooperative system, which then performs much

worse than if the agents had executed independent searches. Our

analysis indicates that the following of a bad model is the culprit of

Figure 5. Probability distribution of the mean duration of the
stases in a search. Probability distribution of the mean number of
trials f for which a cost value stays as the lowest cost among the N

solutions in 105 searches for the imitation probability p~0:6 in a fully
connected system. Panel A: N~6 (low computational cost regime).
Panel B: N~17 (high computational cost regime). The slope of the
straight line shown in the semi-log scale of panel B is 0:003. The
influence network size is M~N{1.
doi:10.1371/journal.pone.0110517.g005

Figure 6. The effect of the imitation probability on the
computational cost of partially connected systems. The symbols
represent the mean rescaled computational cost SNtT for a system
composed of N~20 agents, each one connected to M~19 (red
circles), M~9 (green triangles), M~4 (blue inverted triangles) and
M~1 (magenta squares) influencers. The independent variable p is the
imitation probability. Each symbol represents an average over 105

searches and the lines are guides to the eye. The error bars are smaller
than the size of the symbols.
doi:10.1371/journal.pone.0110517.g006

Figure 7. The effect of the number of influencers on the mean
computational cost. The symbols represent the mean rescaled
computational cost SNtT for a system composed of N~40 agents and
imitation probability p~0:5 (red circles), p~0:45 (green triangles),
p~0:4 (blue inverted triangles) and p~0:3 (magenta squares). The
independent variable M is the size of the group of influencers of each
agent. Each symbol represents an average over 105 searches and the
lines are guides to the eye. The error bars are smaller than the size of
the symbols.
doi:10.1371/journal.pone.0110517.g007

Figure 8. Computational cost of the alphametic problem and of
four random cryptarithmetic problems. The mean rescaled
c o m p u t a t i o n a l c o s t f o r t h e a l p h a m e t i c p r o b l e m
DONALDzGERALD~ROBERT (red circles) and for four ten-letter
random cryptarithmetic problems with a unique solution (blue inverted
triangles, magenta squares, cyan diamonds and green triangles). The
symbols represent the mean rescaled computational cost SNtT for a
system composed of N~20 fully connected agents. The independent
variable p is the imitation probability. The influence network size is
M~N{1. Each symbol represents an average over 105 searches and
the lines are guides to the eye. The error bars are smaller than the size
of the symbols.
doi:10.1371/journal.pone.0110517.g008
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the poor performance of the system in this case. In that sense, the

efficacy of imitative learning could be a factor determinant of

group size [27]. In contrast to the cognitive load that constrains

the number of individuals with whom it is possible to maintain

stable relationships and leads to Dunbar’s number for primates

[28], the group size here (i.e., the value of N corresponding to the

lowest computational cost) does not stem from a limitation of the

neocortical processing capacity of the individuals. Rather, it is a

property of the group of agents as a whole, since for any fixed non-

vanishing value of the imitation probability, which may be seen as

an individual trait, a too large number of agents, which is a group

property, will impair the performance of the cooperative system.

Of course, if p were allowed to decrease with increasing N then

the system could be maintained at the highest level of perform

regardless of the group size (see Figures 2 and 4). In other words,

in order to perform at the optimal level a system based on imitative

learning should decrease the frequency of the interactions among

individuals as its size increases.

To conclude, our findings indicate that imitative learning has a

great potential to improve the task-solving capability of a group of

agents, provided the model parameters – number of agents (N),

imitation probability (p) and number of influencers (M ) – are not

too far from their optimal values. In the cases that N or p are too

large, the imitative learning strategy leads the cooperative system

astray, in a sort of maladaptive behavior that has actually been

observed in fishes [29]. It would be interesting to find out what

ingredients one should add to our model in order to prevent the

catastrophic effect of imitative learning on large populations.
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