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Elżbieta K. Jagusztyn-Krynicka

kjkryn@biol.uw.edu.pl

†
Present Address:

Anna M. Łasica,

Department of Oral Immunology and

Infectious Diseases, University of

Louisville School of Dentistry,

Louisville, USA

Specialty section:

This article was submitted to

Microbial Physiology and Metabolism,

a section of the journal

Frontiers in Microbiology

Received: 10 May 2016

Accepted: 12 July 2016

Published: 26 July 2016

Citation:

Bocian-Ostrzycka KM,

Grzeszczuk MJ, Banaś AM,
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The formation of disulfide bonds that are catalyzed by proteins of the Dsb (disulfide

bond) family is crucial for the correct folding of many extracytoplasmic proteins. Thus,

this formation plays an essential, pivotal role in the assembly of many virulence factors.

The Helicobacter pylori disulfide bond-forming system is uncomplicated compared

to the best-characterized Escherichia coli Dsb pathways. It possesses only two

extracytoplasmic Dsb proteins named HP0377 and HP0231. As previously shown,

HP0377 is a reductase involved in the process of cytochrome c maturation. Additionally,

it also possesses disulfide isomerase activity. HP0231 was the first periplasmic dimeric

oxidoreductase involved in disulfide generation to be described. Although HP0231

function is critical for oxidative protein folding, its structure resembles that of dimeric

EcDsbG, which does not confer this activity. However, the HP0231 catalytic motifs (CXXC

and the so-called cis-Pro loop) are identical to that of monomeric EcDsbA. To understand

the functioning of HP0231, we decided to study the relations between its sequence,

structure and activity through an extensive analysis of various HP0231 point mutants,

using in vivo and in vitro strategies. Our work shows the crucial role of the cis-Pro loop,

as changing valine to threonine in this motif completely abolishes the protein function in

vivo. Functioning of HP0231 is conditioned by the combination of CXXC and the cis-Pro

loop, as replacing the HP0231 CXXC motif by the motif from EcDsbG or EcDsbC results

in bifunctional protein, at least in E. coli. We also showed that the dimerization domain

of HP0231 ensures contact with its substrates. Moreover, the activity of this oxidase is

independent on the structure of the catalytic domain. Finally, we showed that HP0231

chaperone activity is independent of its redox function.

Keywords: Helicobacter pylori, disulfide bonds, Dsb proteins, oxidoreductases, chaperone activity, site-directed

mutagenesis, protein engineering

INTRODUCTION

The ability of proteins to fold into their correct three-dimensional structure is vital for cell growth
and survival. Cysteine—an amino acid containing a thiol (-SH) group—often plays a crucial role
in protein folding. The oxidation reaction between thiol groups of two cysteine residues results
in the formation of a disulfide bond. Disulfide bond formation is a rate-limiting step in the
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protein-folding process, and it is catalyzed by oxidoreductases. In
Gram-negative bacteria, disulfide bond formation takes place in
the oxidative environment of the periplasm, where it is catalyzed
by a set of soluble and membrane-bound Dsb (disulfide bond)
proteins. This process is critical for the correct folding and
structural stability of many secreted and membrane proteins.
Therefore, it plays an essential role in the assembly of many
virulence factors (Godlewska et al., 2006; Lasica and Jagusztyn-
Krynicka, 2007; Heras et al., 2009; Bocian-Ostrzycka et al.,
2015a). Two periplasmic proteins are of great importance for
disulfide formation: DsbA and DsbC. The mechanism of their
action has been studied in great detail for Escherichia coli
(Shouldice et al., 2011; Denoncin andCollet, 2013). EcDsbA is the
main periplasmic oxidase involved in disulfide bond formation.
However, it acts in a non-selective way, introducing disulfides
between consecutive cysteine residues that are present in the
polypeptide chain just after it enters the periplasm, or even during
its transfer throughout the inner membrane. So, in the case of
proteins whose correct folding requires the presence of disulfide
bonds between non-consecutive cysteine residues, DsbA activity
results in their improper, mis-oxidized conformation. The
isomerase DsbC is responsible for reshuffling these incorrectly
introduced disulfides (Berkmen, 2012; Cho and Collet, 2013).
DsbC is kept in the reduced form by an integral membrane
protein, DsbD, that catalyzes the transfer of electrons from the
cytoplasm to the periplasm. Another membrane protein, DsbB,
provides disulfides to DsbA by generating them from quinone
reduction (Inaba and Ito, 2008; Cho and Collet, 2013).

DsbA, the first Dsb protein discovered, has attracted the most
scientific interest. From the first description of EcDsbA in 1991
by Bardwell et al., numerous studies using a combination of
biochemical, genetic and structural methods have characterized
EcDsbA in great detail (Bardwell et al., 1991; Shouldice et al.,
2011; Berkmen, 2012). Recently, many homologs of EcDsbA
from other bacterial species, both Gram-negative and Gram-
positive, have also been analyzed, using in vivo and in vitro
strategies (Heras et al., 2009; Hatahet et al., 2014). Although these
homologs share some common properties, such as a monomeric
structure and a thioredoxin fold that has two essential catalytic
motifs (CXXC and cis-Pro), they differ significantly in their
structures and biochemical properties (McMahon et al., 2014).

Our understanding of dimeric Dsb oxidoreductases is less
extensive than our knowledge about the monomeric homologs
of EcDsbA. Most of periplasmic dimeric oxidoreductases exhibit
disulfide isomerase activity, as they are involved in proofreading
and repairing/shuffling of incorrectly generated disulfide bonds
in proteins containing multiple cysteine residues (Rietsch et al.,
1996). A second group of periplasmic dimeric oxidoreductases,
on the other hand, protect single cysteine residues from oxidation
to sulfenic acid (Shao et al., 2000; Depuydt et al., 2009). The
intensely studied member of the first group is EcDsbC, and
the best-characterized prototypical representative of the second
group is EcDsbG. Both EcDsbC and EcDsbG are homodimers
possessing a V-shaped structure that is composed of an N-
terminal dimerization domain connected to a C-terminal TRX-
fold catalytic domain by a linker region (Haebel et al., 2002; Heras
et al., 2004). Although the structures of EcDsbC and EcDsbG

are architecturally similar, they differ in several properties that
determine the differences in their functioning, such as the size
of the substrate binding cleft and the surface charge (McCarthy
et al., 2000; Heras et al., 2004).

Some (though not many) bacteria possess dimeric, periplasm-
located oxidoreductases involved in disulfide generation, similar
to monomeric DsbA. So far, these forms of Dsb proteins have
been identified in Legionella pneumophila, Francisella tulariensis,
Corynebacterium glutamicum, and Helicobacter pylori (Daniels
et al., 2010; Jameson-Lee et al., 2011; Qin et al., 2011, 2014).
Besides their oxidative function, conditioned by a thioredoxin
fold with a CXXC motif, all the above-mentioned proteins differ
significantly in many details of their structures and phylogenetic
origins (Schmidt et al., 2013; Bocian-Ostrzycka et al., 2015b;
Lester et al., 2015). It has been shown that at least two of
them, LpDsbA2 and FtDsbA, are bifunctional proteins that are
simultaneously active in both the oxidizing and isomerization
pathways (Qin et al., 2014; Kpadeh et al., 2015).

In the present study, we report the functional and biochemical
characterization of HP0231 and its mutated variants. The
H. pylori disulfide bond-forming system is rather simple.
This bacterium does not encode classical DsbA/DsbB, nor
DsbC/DsbD. It possesses only two extracytoplasmic Dsb
proteins, HP0231 and HP0377. We have previously shown that
HP0377 is a reductase involved in the process of cytochrome c
maturation, and it also possesses disulfide isomerase activity in
vitro. In H. pylori cells HP0377 is present in a reduced form and
the absence of the main periplasmic oxidase HP0231 influences
its redox state. Taking into account that there is no classical
DsbC protein in theH. pylori proteome, it is highly probable that
HP0377 is in vivo a multifunctional protein, in contrast to most
CcmGs that are involved only in the cytochrome c biogenesis
process (Roszczenko et al., 2015).

The subject of this study, HP0231, was previously described
by our research group as a major dimeric oxidoreductase of
H. pylori that catalyzes disulfide bond formation in the periplasm
(Roszczenko et al., 2012). Lack of HP0231 affects H. pylori
resistance to oxidative stress (Lester et al., 2015). Additionally,
HP0231 activity ensures correct functioning of some virulence
factors related to bacterial gastric pathology (Zhong et al.,
2016). HP0231 structure has been solved and it resembles
that of dimeric EcDsbG (Yoon et al., 2011). Although the
solved structure of the HP0231 catalytic domain is similar in
structure to class II DsbA proteins, it contains CXXC and cis-
Pro motifs characteristic of class I DsbA proteins (McMahon
et al., 2014). HP0231 is crucial for oxidative protein folding like
EcDsbA, and at the same time, exhibits high chaperone activity
similar to EcDsbC or EcDsbG. It lacks isomerization activity
and interacts with HP0377 (Bocian-Ostrzycka et al., 2015b;
Roszczenko et al., 2015). Thus, we asked this question: which
elements of its structure determine these atypical properties? To
evaluate the role of the catalytic motifs, we carried out extensive
analysis of HP0231 point-mutated versions using in vivo and
in vitro strategies. To differentiate the impact of the HP0231
dimerization domain and its linker on protein function, three
fusion proteins were constructed and then analyzed for their
biochemical properties and in vivo functioning.
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MATERIALS AND METHODS

Bacterial Strains, Primers, Plasmids,
Media, and Growth Conditions
Bacterial strains, plasmids and primers used in this study are
listed in Table 1 and Supplementary Tables S1, S2. Helicobacter
pylori strains (26695 and N6) were grown on Blood Agar
base no. 2 (BA) plates (Merck) supplemented with 10%
(v/v) horse blood and Helicobacter Selective Supplement-Dent
(ThermoFisher Scientific), or on Mueller Hinton Broth (MH)
supplemented with 10% (v/v) Fetal Bovine Serum (FBS) (Lonza),
at 37◦C under microaerobic conditions that were provided
by Anoxomat Mark II OP (MART R© Microbiology B.V) or
CampyGen (ThermoFisher Scientific). For the selection of
H. pylori N6 hp0231::cat complemented strains, kanamycin (25
µg ml−1) or/and chloramphenicol (10 µg ml−1) was added to
the growth media. The H. pylori N6 hp0231::cat was employed
for complementation experiments by HP0231 and its mutated
forms. E. coli strains were grown at 37◦C on solid or liquid Luria-
Bertani (LB)medium or onM63minimal medium (Hiniker et al.,
2005). When needed, media were supplemented with antibiotics
at the following concentrations: 100 µg ml−1 ampicillin, 30 µg
ml−1 kanamycin and 20 µg ml−1 chloramphenicol. The E. coli
strains JCB817 (dsbA::kan) and JCB818 (dsbAB::kan) (Bardwell
et al., 1991), PL263 (mdoGdsbC::kan) (Leverrier et al., 2011) were
employed for complementation experiments by HP0231 and its
mutated forms.

General DNA Manipulations
Standard DNA manipulations were carried out as described in
the Sambrook manual (Sambrook and Russel, 2001) or according
to the manufacturer’s instructions (A&A Biotechnology,
ThermoFisher Scientific). Polymerase chain reactions (PCR)
were performed with PrimeStar HS DNA Polymerase (Takara)
under standard conditions, according to the manufacturer’s
instructions. Synthetic oligonucleotides synthesis and DNA
sequencing were performed by Genomed S.A., Warsaw, Poland.

Construction of HP0231 Plasmids with Site Directed

Mutations for Complementation Experiments
To analyze the complementation of the hp0231− mutation
in H. pylori N6, and to analyze the dsbA/dsbAB mutants in
E. coli JCB816 (strains JCB817 and JCB818, respectively)
and the dsbC mutant in E. coli MC1000 (strain PL283) by
mutated forms of HP0231, several recombinant plasmids were
constructed, based on shuttle E. coli/H. pylori plasmids pHel3
and pHel2. Because the H. pylori hp0231 mutant and the
E. coli dsbA/dsbAB mutants carry different genes responsible
for antibiotic resistance, we used two different plasmids as a
starting point for these experiments. However, both plasmids
have the same replication system, and thus were present
at a similar copy number. Site-directed mutagenesis was
performed according to the QuickChange R© Site-Directed
Mutagenesis Kit Protocol with minor modifications. Briefly, the
reactions were performed with PrimeStar HS DNA Polymerase
(Takara) using pUWM389 as a template, applying appropriate
primer pairs for site-directed mutations (Supplementary

Table S1). The resulting plasmids were verified by sequencing.
The purified plasmids carrying point mutated versions of
HP0231, as well as the shuttle plasmids, were digested
with XhoI/BamHI and ligated together to form appropriate
plasmids (Supplementary Table S2, positions 9–26). For
the complementation tests, the plasmids based on pHel3
were introduced into H. pylori N6 lacking hp0231, and the
plasmids based on pHel2 were used for the E. coli lacking
dsbA/dsbAB/dsbC (Table 1).

Construction of the Vectors Carrying EcdsbG-hp0231

and hp0231-EcdsbA Chimeras for Complementation

Assays
“Hybrid” proteins designed in this study are listed in Table 2.
All genes coding hybrid proteins were cloned under the
promoter of the hp0231 gene, with its native signal sequence.
Briefly, primers listed in Supplementary Table S1 (positions
3–13) were used to amplify the DNA regions encoding the
promoter, signal sequence, dimerization domain, α-linker
and catalytic domain regions of the hp0231 gene from the
chromosome of H. pylori 26695 or the EcdsbG/EcdsbA genes
from the chromosome of E. coli TG1. The inner primers
contained 5′ leader nucleotide sequences complementary
to each other. Each PCR product was purified by a Gel-
Out Concentrator extraction kit (A&A Biotechnology).
Next, a mixture of the intermediate purified products (in
equal amounts) was used as a template in a single PCR
reaction, using the primers HP231_BamL/HP231His_XhoR3
or HP231_BamL/DsbAkat_HisXho for the EcdsbG-hp0231
and hp0231-EcdsbA chimeras, respectively (Table 2 and
Supplementary Table S1). Subsequently, the resulting PCR
products were purified and cloned into pJET1.2 using
CloneJET PCR Cloning Kit (ThermoFisher Scientific) to
generate intermediate plasmids. Finally, using BamHI and
XhoI restriction enzymes, the 1.3–1.5 kb DNA regions
encoding hybrid proteins were transferred into pHel2 and
pHel3, generating the plasmids listed in Supplementary Table
S2, positions 27–32. Correct construction of the resulting
plasmids was verified by sequencing. Production of the
proper proteins was confirmed by Western-blot, using
anti-HP0231 serum or anti-His antibodies (Ni-NTA HRP
Conjugate; QIAGEN). Anti-HP0231 serum was previously
produced by rabbit immunization in the Animal Facility,
Faculty of Biology, University of Warsaw (Roszczenko et al.,
2012).

Natural Transformation of H. pylori
The naturally competentH. pyloriN6 hp0231::cat wasmixed with
appropriate plasmid DNA and grown on BA plates supplemented
with chloramphenicol or kanamycin as previously described
(Roszczenko et al., 2012; Bocian-Ostrzycka et al., 2015b).

Protein Analysis and Biochemical Assays
Overexpression and Purification of Proteins for

Biochemical Experiments
All the proteins used for biochemical experiments were
overexpressed from E. coli BL21 or Rosetta strains harboring
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TABLE 1 | Strains used in this study.

Lp. Name Relevant characteristics Source/References

Helicobacter pylori STRAINS

1 N6 H. pylori wild-type Behrens et al., 2012

2 PR378 N6 hp0231::cat Roszczenko et al., 2012

3 PR397 N6 hp0231::cat/pUWM397 (hp0231+ in trans) Roszczenko et al., 2012

4 KBO513 N6 hp0231::cat/pUWM513 (hp0231CPHS
+ in trans) This study

5 KBO517 N6 hp0231::cat/pUWM517 (hp0231CPHA
+ in trans) This study

6 KBO2031 N6 hp0231::cat/pUWM2031 (hp0231APHC
+ in trans) This study

7 KBO2032 N6 hp0231::cat/pUWM2032 (hp0231APHA
+ in trans) This study

8 KBO545 N6 hp0231::cat/pUWM545 (hp0231CPYC
+ in trans) This study

9 KBO572 N6 hp0231::cat/pUWM572 (hp0231CGYC
+ in trans) This study

10 KBO573 N6 hp0231::cat/pUWM573 (hp0231CPYC/TcP
+ in trans) This study

11 KBO580 N6 hp0231::cat/pUWM580 (hp0231CGYC/TcP
+ in trans) This study

12 KBO546 N6 hp0231::cat/pUWM546 (hp0231TcP
+ in trans) This study

13 KBO2115 N6 hp0231::cat/pUWM2115 (hybrid dimG_αK_catK+ in trans) This study

14 KBO2116 N6 hp0231::cat/pUWM2116 (hybrid dimG_αG_catK+ in trans) This study

15 KBO2117 N6 hp0231::cat/pUWM2117 (hybrid dimK_αK_catA+ in trans) This study

Escherichia coli STRAINS

16 TG1 supE44 hsd∆ 5 thi ∆(lac− proAB) F’ [traD36 proAB+ lacIq lacZ∆M15] Sambrook and Russel, 2001

17 BL21 (DE3) F− ompT hsdSB(r
−
B
m−
B
) gal dcm lon Novagen

18 BL21/EcdsbA+ BL21 carrying pET28a/EcdsbA JFC Collection

19 BL21/EcdsbC+ BL21 carrying pET28a/EcdsbC JFC Collection

20 BL21/EcdsbG+ BL21 carrying pET28a/EcdsbG JFC Collection

21 Rosetta (DE3)pLacI F−ompThsdSB (rB- mB-) gal dcmpLacIRARE (Cmr) Novagen

22 KBO2044 Rosetta carrying pUWM525 (hp0231 in pET28a) Bocian-Ostrzycka et al., 2015b

23 KBO2068 Rosetta carrying pUWM2062 (hp0231CPHS in pET28a) This study

24 KBO2067 Rosetta carrying pUWM2061 (hp0231CPHA in pET28a) This study

25 KBO2104 Rosetta carrying pUWM2103 (hp0231CPYC in pET28a) This study

26 KBO2085 Rosetta carrying pUWM2084 (hp0231CGYC in pET28a) This study

27 KBO2042 Rosetta carrying pUWM2039 (hp0231CPYC/TcP in pET28a) This study

28 KBO2041 Rosetta carrying pUWM2038 (hp0231CGYC/TcP in pET28a) This study

29 KBO2043 Rosetta carrying pUWM2040 (hp0231TcP in pET28a) This study

30 JCB816 MC1000 phoR λ102 Bardwell et al., 1991

31 JCB817 JCB 816 dsbA::kan1 Bardwell et al., 1991

32 JCB818 JCB 816 dsbB::kan2 Bardwell et al., 1991

33 KBO519 JCB816 carrying pHel2 Bocian-Ostrzycka et al., 2015b

34 PR501 JCB817 carrying pHel2 Roszczenko et al., 2012

35 PR503 JCB817 carrying pUWM500 (HP0231+ in trans) Roszczenko et al., 2012

36 PR522 JCB818 carrying pUWM500 (HP0231+ in trans) Roszczenko et al., 2012

37 KBO533 JCB817 carrying pUWM531 (hp0231CPHS
+ in trans) This study

38 KBO532 JCB817 carrying pUWM530 (hp0231CPHA
+ in trans) This study

39 KBO2059 JCB817 carrying pUWM2058 (hp0231APHC
+ in trans) This study

40 KBO2063 JCB817 carrying pUWM2060 (hp0231APHA
+ in trans) This study

41 KBO563 JCB817 carrying pUWM560 (hp0231CPYC
+ in trans) This study

42 KBO565 JCB817 carrying pUWM558 (hp0231CGYC
+ in trans) This study

43 KBO566 JCB817 carrying pUWM559 (hp0231CPYC/TcP
+ in trans) This study

44 KBO581 JCB817 carrying pUWM579(hp0231CGYC/TcP
+ in trans) This study

45 KBO564 JCB817 carrying pUWM557 (hp0231TcP
+ in trans) This study

46 KBO2133 JCB817 carrying pUWM2130 (hybrid dimG_αK_catK+ in trans) This study

47 KBO2134 JCB817 carrying pUWM2131 (hybrid dimG_αG_catK+ in trans) This study

48 KBO2135 JCB817 carrying pUWM2132 (hybrid dimK_αK_catA+ in trans) This study

(Continued)
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TABLE 1 | Continued

Lp. Name Relevant characteristics Source/References

49 PR521 JCB818 carrying pHel2 Roszczenko et al., 2012

50 KBO2149 JCB818 carrying pUWM560 (hp0231CPYC
+ in trans) This study

51 KBO2147 JCB818 carrying pUWM558 (hp0231CGYC
+ in trans) This study

52 KBO2148 JCB818 carrying pUWM559 (hp0231CPYC/TcP
+ in trans) This study

53 KBO2150 JCB818 carrying pUWM579(hp0231CGYC/TcP
+ in trans) This study

54 KBO2146 JCB818 carrying pUWM557 (hp0231TcP
+ in trans) This study

55 KBO2142 JCB818 carrying pUWM2130 (hybrid dimG_αK_catK+ in trans) This study

56 KBO2143 JCB818 carrying pUWM2131 (hybrid dimG_αG_catK+ in trans) This study

57 KBO2144 JCB818 carrying pUWM2132 (hybrid dimK_αK_catA+ in trans) This study

58 PL263 MC1000 mdoG::kan1; dsbC::kan2 Leverrier et al., 2011

59 PL284 PL263 (mdoGdsbC::kan) carrying pBAD33 Leverrier et al., 2011

60 PL285 PL263 carrying JFC355 (dsbC+ in trans) Leverrier et al., 2011

61 KBO2087 PL263 carrying pUWM500 (HP0231+ in trans) Bocian-Ostrzycka et al., 2015b

62 KBO2111 PL263 carrying pUWM531 (hp0231CPHS
+ in trans) This study

63 KBO2110 PL263 carrying pUWM530 (hp0231CPHA
+ in trans) This study

64 KBO2108 PL263 carrying pUWM560 (hp0231CPYC
+ in trans) This study

65 KBO2106 PL263 carrying pUWM558 (hp0231CGYC
+ in trans) This study

66 KBO2107 PL263 carrying pUWM559 (hp0231CPYC/TcP
+ in trans) This study

67 KBO2109 PL263 carrying pUWM579 (hp0231CGYC/TcP
+ in trans) This study

68 KBO2105 PL263 carrying pUWM557 (hp0231TcP
+ in trans) This study

69 KBO2136 PL263 carrying pUWM2130 (hybrid dimG_αK_catK+ in trans) This study

70 KBO2137 PL263 carrying pUWM2131 (hybrid dimG_αG_catK+ in trans) This study

71 KBO2138 PL263 carrying pUWM2132 (hybrid dimK_αK_catA+ in trans) This study

TABLE 2 | Design of protein chimeras.

Hybrid protein Signal sequence Dimerization

domain

α-linker Catalytic domain Primer pairs (numbers in Supplementary Table S1)

Promoter

region

Dimerization

domain/α-linker

Catalytic

domain

Ligation

PCR

1 dimGαKcatK aa 1–28 HP0231 aa 20–58 EcDsbG aa 97–130 HP0231 aa 131–265 HP0231 6,7 8,9 10,13 6,13

2 dimGαGcatK aa 1–28 HP0231 aa 20–58 EcDsbG aa 79–104 EcDsbG aa 131–265 HP0231 6,7 8,11 12,13 6,13

3 dimKαKcatA aa 1–28 HP0231 aa 29–97 HP0231 aa 97–130 HP0231 aa 20–208 EcDsbA 6,14 15,16 6,16

the appropriate plasmids (Supplementary Table S2, positions
33–43) by autoinduction (Studier, 2005) or IPTG induction
(Roszczenko et al., 2012). The expression vectors carrying
HP0231-mutated forms (Supplementary Table S2, positions 34–
40) were constructed by amplifying the region encoding the
mature catalytic domain of tested proteins with primers 231expI
and 231expII. For cloning the insert into pET28a and to create
the HP0231mut-His6 recombinant proteins, NcoI and XhoI
restriction enzymes were used to yield plasmids. For biochemical
experiments, proteins were expressed and purified from E. coli
Rosetta that harbored appropriate plasmids (strains listed in
Table 1, positions 22–29). EcDsbA, EcDsbC or EcDsbG E.
coli proteins were overexpressed from E. coli BL21 harboring
pET28a/EcDsbA, EcDsbC or EcDsbG (JFC lab, Table 1, positions
18–20). All proteins were purified as described earlier (Bocian-
Ostrzycka et al., 2015b).

Determination of the In vivo Redox State of Proteins
The redox states of HP0231-mutated forms were visualized
by alkylating the free cysteine residues using 4-acetamido-
4′-maleimidylstilbene-2,2′-disulfonic acid (AMS, ThermoFisher
Scientific) (Roszczenko et al., 2012; Bocian-Ostrzycka et al.,
2015b) orMalPEG5000 (Methoxypolyethylene glycol maleimide-
5000 Da; Sigma) (Kpadeh et al., 2013). These agents can only
modify covalently free thiols, resulting in a molecular mass
increase of 490 Da (AMS) or 5 kDa (MalPEG). Briefly, H.
pylori cells were harvested from BA plates after 24 or 48 h
of incubation under microaerobic conditions. E. coli cells were
incubated overnight in LB-medium in standard conditions.
Samples were standardized using OD600 of the culture, and ice-
cold trichloroacetic acid (TCA, final concentration 10% v/v) was
immediately added directly to the culture. Whole-cell proteins
were precipitated and collected by centrifugation, washed with
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ice-cold acetone, and then dissolved in 50 mM Tris-HCl (pH
7.5), 10 mM EDTA, 0.1% (v/v) SDS containing 20 mM AMS
or MalPEG5000 by agitation (1400 rpm) for 60 min at 37◦C.
The proteins in non-reducing Laemmli buffer were resolved by
18% (for AMS) and 12% (for MalPEG5000) SDS-PAGE without
reducing agent. Proteins were then detected by Western-blot
analysis using a specific serum. As controls, we used samples
previously treated with 100 mM DTT for 60 min at 30◦C before
precipitation of the proteins with TCA.

Alkaline Phosphatase (AP) Assay
The ability of HP0231-mutants to restore the activity of alkaline
phosphatase in vivo in E. coli cells was determined in minimal
medium M63 as previously described (Roszczenko et al., 2012;
Bocian-Ostrzycka et al., 2015b).

Insulin Reduction Assay
Reductase activity was assessed by an insulin precipitation assay
(Bardwell et al., 1991; Kpadeh et al., 2013) using human insulin
solution (Sigma) (Bocian-Ostrzycka et al., 2015b). Reactions
(triplicate) were carried out in 200 µl of 100 mM sodium
phosphate buffer, pH 7.0, 133 µM insulin, 1 mM dithiothreitol
(DTT), 2 mM EDTA and 10 µM of HP0231-mutated forms or
EcDsbA; reaction mixtures were incubated in a 96-well plate
format at room temperature in a SunriseTM (Tecan) plate reader.
Reactions were started by adding DTT to a final concentration
of 1 mM. The changes in the absorbance (A650) as a function
of time were measured (Collet et al., 2003; Kpadeh et al., 2013).
The results are presented as the average of three independent
experiments.

Chaperone Activity of HP0231 Mutants
The chaperone activity of HP0231 mutants, in comparison to
EcDsbG and/or HP0231, was determined as described previously
(Shao et al., 2000; Bocian-Ostrzycka et al., 2015b) using thermal
aggregation of citrate synthase (CS, Sigma) as the chaperone
substrate protein. Briefly, reactions (triplicate) were carried out
in 2 ml of 40 mM HEPES, pH 7.5, 0.15 µM CS, and 0.2 µM of
HP0231-mutated forms; using 0.2 µM EcDsbG or HP0231 as a
positive controls and BSA as a negative control; all reactions were
at 43◦C. Protein aggregation was monitored by light scattering
measurements, using a Varian spectrofluorometer. The excitation
and emission wavelengths were set to 500 nm. The excitation
and emission slit widths were set to 2.5 nm. Three independent
experiments were performed.

Determination of the Redox Potential of HP0231

Mutant Proteins
The redox potentials of HP0231 mutant proteins were
determined fluorometrically from the equilibrium constant
with glutathione, as previously described (Roszczenko et al.,
2012; Bocian-Ostrzycka et al., 2015b). The results are presented
as the average of three independent experiments.

Oxidative Folding of Reduced RNaseA and Refolding

of Scrambled RNaseA (scRNase)
In vitro oxidative folding of reduced, unfolded RNaseA
(ruRNaseA) and refolding of scrambled RNaseA were performed

with HP0231, HP0231 mutants and EcDsbA as described earlier
(Bocian-Ostrzycka et al., 2015b).

Phenotype Assays—Spot Titers for
Cadmium Resistance and Motility Assays
Spot titers for cadmium resistance and motility assays were
performed to quantify the relative oxidase activity of HP0231
mutants in vivo as previously described (Ren et al., 2009; Bocian-
Ostrzycka et al., 2015b).

RESULTS

In vivo Properties of the HP0231 with
Engineered Catalytic Motifs
H. pylori HP0231 was the first-described periplasmic dimeric
oxidoreductase that has the physiological function of catalyzing
disulfide formation (Roszczenko et al., 2012). Despite its
structural resemblance to EcDsbG, the XX dipeptide from the
active CXXC site of HP0231 is identical to that of EcDsbA (i.e.,
CPHC) but different from that of EcDsbC/G (i.e., CGYC/CPYC).
Also, the cis-Pro loop of HP0231 is VcP, as in EcDsbA, where it
is involved in DsbA-substrate(s) interaction. In contrast, there
is a threonine residue found in the cis-Pro loop of EcDsbC and
EcDsbG. It should also be noted that the catalytic domain of
HP0231 is unusual. Structurally, it belongs to a class II DsbA,
although it contains an active site characteristic for a class I
DsbA (McMahon et al., 2014; Bocian-Ostrzycka et al., 2015b).
Both the amino acid sequence of the CXXCmotif and the cis-Pro
loop influence the biochemical features of the Dsb proteins and,
in consequence, determine their mode of action. Thus, we first
investigated the effect of HP0231 catalytic motifs on their redox
activity by generating several HP0231-mutated versions and
analyzing their activity in living cells. Five versions of HP0231
were generated that mimic the EcDsbG and EcDsbC active
sites. Two of them have catalytic motifs (CXXC and cis-Pro)
identical to EcDsbG or EcDsbC (Table 3, positions 4 and 5,
respectively). The CXXC motifs of two next variants correspond
to those present in active sites of E. coli DsbG or DsbC, but are
paired with native VcP instead of TcP motif (Table 3, positions
1 and 2, respectively). Additionally, a fifth HP0231 variant that
has native CPHC motif combined with TcP was also generated
(Table 3, position 3). The rationale for creating this variant was
the observation that all the members of class II DsbAs that have
been characterized so far, contain a TcP motif (McMahon et al.,
2014). To investigate the significance of the cysteine residues
of the CXXC motif, four HP0231 versions having cysteine
residues replaced by alanine or serine were generated (Table 3,
positions 6–9).

The hp0231 gene, together with its own promoter, was cloned
into pGEM-T Easy, and the designed mutations were introduced
by site directed mutagenesis. Next, the DNA fragments encoding
mutated versions of the hp0231 were recloned into shuttle
vectors pHel3 and pHel2 and successfully introduced into H.
pylori and E. coli cells, respectively. The presence of HP0231-
mutated forms in H. pylori and E. coli cells was confirmed
by Western-blot experiments using rabbit specific anti-HP0231
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serum (data not shown). All of the mutated forms, similar
to native HP0231, function as homodimers, as shown by size
exclusion (Supplementary Table S3).

To start, we examined the ability of the HP0231-mutated
forms to complement an hp0231 mutation by motility and
cadmium resistance assays. Previously, we showed that H. pylori
lacking HP0231 is non-motile; the mutated cells are flagellated
as normal and the mechanism for non-motility remains unclear
(Roszczenko et al., 2012). Cadmium is a divalent metal ion that is
toxic, mainly due to its high affinity for thiol groups of proteins
(Chrestensen et al., 2000; Quan et al., 2007).We found that all but
one (CPHC/TcP) of the mutated HP0231 versions were active
in disulfide bond generation in H. pylori to varying degrees, as
shown by both assays. The HP0231 containing the CPYC/VcP
motif presents a slightly lower oxidizing activity than the three
other HP0231-mutated forms (Figures 1A,B).

To shed more light on the impact of the HP0231 catalytic
motif on protein oxidative folding, we also evaluated the
ability of HP0231 variants to complement a DsbA or DsbC
deficiency in E. coli, where a quite different Dsb network is
operating. The E. coli strains lacking a functional DsbA exhibit
a pleiotropic phenotype, including loss of motility and low
alkaline phosphatase (AP) activity (Hatahet et al., 2014). Thus,
we evaluated EcDsbA complementation by analyzing alkaline
phosphatase (AP) activity (Figure 2A) and the recovery of
cell motility (Figure 2B). The E. coli JCB817 (dsbA−) strain
harboring the empty vector pHel2 is completely non-motile, and
it displays only 20% of the AP activity of a wt strain. Similar
to the results in H. pylori cells, all but one (CPHC/TcP) of
the mutated versions of HP0231 were able to complement the
EcdsbA mutation. However, it should be noted that activity of
this mutant was slightly higher than EcdsbA mutant (20% vs.
30%) but still significantly lower than that of native HP0231 (30%
vs. 60%). All four positive variants restored about 50% of wt E.
coli AP activity (nearly the same level as native HP0231) and
cell motility, though to varying degrees (Figures 2A,B). HP0231
functions in E. coli in an EcDsbB-independent manner. Thus, we
asked whether the four HP0231-mutated versions were able to
function irrespective of the presence of EcDsbB. To check this,
we analyzed the motility of E. coli dsbA−dsbB− strains harboring
HP0231-mutated variants cloned on pHel2. We found that only
HP0231 CPYC/VcP, acted in an EcDsbB-independent manner—
similar the native HP0231. The other HP0231-mutated variants
did not restore motility in E. coli dsbA−dsbB− (Figure 2C).

Two of the HP0231 variants possess the CXXC motif of
EcDsbC paired with TcP or VcP, and two have the CXXC motif
of EcDsbG combined with TcP or VcP. DsbC from E. coli is
required for in vivo copper (a redox-active metal) resistance,
whereas EcDsbG is not involved in this activity (Hiniker et al.,
2005, 2007). As we previously have shown, HP0231 is not able
to complement the lack of EcDsbC, as measured by the copper
sensitivity test (Roszczenko et al., 2012). Thus, it was interesting
to examine whether the HP0231-mutated versions could act to
isomerize proteins that are mis-oxidized by copper. To check
this, we investigated their ability to complement an EcDsbC
deficiency in the copper sensitivity assay. We found that none
of the mutated forms of HP0231 were able to complement the
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FIGURE 1 | HP0231 with CPHC/TcP is not active in H. pylori hp0231::cat cells. As a positive control, H. pylori N6 hp0231::cat was transformed with pHel2

carrying the native hp0231 gene with CPHC/VcP motifs. (A) Cadmium sensitivity assay. Exponentially growing H. pylori (wt, the hp0231::cat mutant and hp0231::cat

complemented in trans with hp0231 or its mutated forms). Cultures were 10-fold serially diluted, spotted on BA plates with 8 µM CdCl2, and incubated at 37◦C. The

mutant shows reduced growth after 3 days of incubation on plates containing cadmium chloride. All but one (HP0231 with CPHC/TcP) of the mutated forms, partially

restored the cadmium resistance of the H. pylori hp0231::cat. (B) Motility assay. Bacterial motility was monitored after 4 days of incubation on 0.35% MH-agar plates

containing 10% FCS. The hp0231::cat mutated strain and the same strain complemented in trans with TcP mutated form are non-motile.

deficiency of EcDsbC (data not shown). However, copper is
known to catalyze the formation of non-native disulfide bonds
in periplasmic proteins, and therefore the copper sensitivity
assay measures the global effect of EcDsbC activity. In order to
more directly evaluate the role of the HP0231 catalytic motif
in EcDsbC complementation, we examined all five HP0231-
mutated versions for specific isomerization activity by checking
their influence on the oxidative folding of a specific protein,
EcRcsF. EcRcsF is a small, outer-membrane lipoprotein which
activates the Rcs phosphorelay upon envelope stress. RcsF
contains two non-consecutive disulfide bonds, therefore depends
on DsbC for proper folding (Cho et al., 2014). Use of an
E. coli mdoGdsbC mutant convincingly assesses the specific
isomerase activity of Dsb proteins in vivo, as mutation of the
mdoG gene, involved in the synthesis of membrane-derived
oligosaccharide, activates the Rcs system in an RcsF-dependent
manner. An mdoG mutant displays a mucoid phenotype on
M63 minimal medium, while a double mdoGdsbC mutant does
not, due to lack of activation of the Rcs cascade in the absence
of correctly folded DsbC (Leverrier et al., 2011). Interestingly,
we found that two mutated versions of HP0231, containing
the CXXC motifs of EcDsbG or EcDsbC paired with native
EcDsbA/HP0231 VcP motif, were partially able to complement
the lack of EcDsbC (Figure 3). These two mutated variants also
retain their oxidizing activities, which means they are capable of
both generating disulfide bonds and catalyzing disulfide bonds
rearrangements.

HP0231 is present in its native host in an oxidized form
(Roszczenko et al., 2012). In E. coli dsbA−,HP0231 is maintained
as a mixture of oxidized and reduced forms, where the oxidized
form is dominant (Bocian-Ostrzycka et al., 2015b). Given
that two of the HP0231-mutated variants are bifunctional
(CGYC/VcP and CPYC/VcP), at least in E. coli, we next checked

the in vivo redox state of the analyzed proteins by AMS trapping
technique. We found that all of them, like native HP0231, were
maintained in an oxidized state in vivo, even though HP0231
with CPHC/TcP did not exhibit oxidizing activity in vivo. In
E. coli dsbA− and E. coli dsbC− cells, the five HP0231 variants
examined were sustained as a mixture of oxidized and reduced
forms. However, the oxidized form is predominant. In E. coli

the redox state of the HP0231-mutated forms were examined
using MalPeg instead of AMS in order to increase the distance
between reduced and oxidized protein forms. There were no
significant differences between individual mutants in different
hosts or strains (Supplementary Figure S4).

To confirm the role of the HP0231 CXXC motif in the
process of disulfide bond formation, four variants containing
cysteine residues changed to alanine or serine were constructed
(for details see Materials and Methods section). Three of the
variants (APHC, CPHS andAPHA) did not complement HP0231
deficiency, as measured bymotility and cadmium resistance tests,
illustrating the essential role of having two cysteine residues in
the catalytic site for normal functioning (Figure 4). The activity
of the HP0231 with CPHAwas dependent on the test used. AnH.
pylori hp0231mutant with this version of HP0231 was cadmium
sensitive, but its motility was restored. So, the activity of HP0231
with CPHA seems to be dependent on the target protein. It
appears capable of generating disulfide bonds in specific proteins
involved in motility, but it is not able to complement the global
toxic effect of cadmium. A similar relation was seen when the
HP0231 variants were examined in E. coli cells, using motility
and AP activity tests. Three variants with the APHC, CPHS and
APHAmotifs do not complement an EcDsbA deficiency in either
test. The HP0231 variant with the CPHA motif restores motility
of E. coli dsbA mutant and restores AP activity at a level slightly
lower than native HP0231 (Figures 5A,B).
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FIGURE 2 | Only HP0231 with the CPHC/TcP motifs did not restore the E. coli dsbA::kan wild type phenotype in two functional assays. As negative

controls, E. coli dsbA::kan was transformed with an empty pHel2 vector. (A) Alkaline phosphatase (AP) assay. The bars represent average activity of three

independent experiments (n = 3) with the wild type set to 100% activity. There are significant differences (p < 0.001) in relative alkaline phosphatase activity between

the E. coli wt cells and the E. coli dsbA::kan mutant strain, and also the strains complemented in trans by hp0231 and hp0231-mutated forms. Error bars marked with

asterisk (*) indicate no significant difference between dsbA::kan complemented with CPYC/VcP, CPYC/TcP and CGYC/TcP—these strains are slightly less active than

strains with bars marked with plus sign (+); these indicate no significant difference between dsbA::kan complemented with native form of HP0231 and CGYC/VcP

mutant (ANOVA followed by post-hoc Tukey’s test). Alkaline phosphatase activity of wild type and dsb mutants and complemented strains was performed in M63

minimal medium. (B) Motility of the E. coli dsbA::kan complemented in trans by hp0231-mutated forms. Bacterial motility was monitored after 24 h of incubation on

0.35% LB-agar plates. The E. coli dsbA::kan/HP0231(CPHC/TcP) is non-motile, while E. coli dsbA::kan/CPYC/TcP is less motile than other strains. The figure

presents a representative result. (C) Motility of the E. coli dsbAB::kan complemented in trans by hp0231-mutated forms. Only the E. coli dsbA::kan/CPYC/VcP can

restore motility. The figure presents a representative result.
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FIGURE 3 | Only two mutated forms of HP0231 (CPYC/VcP and CGYC/VcP) function as an isomerase in an mdoGdsbC::kan strain. The E. coli

mdoGdsbC::kan strain harboring various recombinant plasmids (pBAD33, pBAD33/DsbC+, pHel2/HP0231+, pHel2/HP0231-mutated forms) were grown on M63

minimal medium for 2 days at room temperature. The mucoid phenotype of the mdoGdsbC/DsbC+ strain was evaluated. OnlyHP0231 with CPYC/VcP or CGYC/VcP

motifs complement the dsbC mutation.

Overall, the in vivo tests documented that all but one of the
generated HP0231-mutated versions are involved in disulfide
bond generation, both in H. pylori and E. coli cells. Additionally,
two variants containing the EcDsbC or EcDsbG CXXC motif
paired with VcP are bifunctional, with the ability to generate
disulfide bonds as well as rearrange improperly introduced
disulfide bonds.

Biochemical Characterization of Mutated
Versions of HP0231
To shed more light on the role of the HP0231 catalytic motif and
to confirm the data from the in vivo experiments, we studied
the biochemical features of the HP0231-mutated versions. For
biochemical experiments, the recombinant variants of HP0231
were purified from E. coli BL21 or Rosetta strains harboring
appropriate recombinant plasmids.

We first determined the reductase activity of all mutated
HP0231 forms by evaluating their ability to catalyze the reduction
of insulin by DTT (Figure 6). This test is specific for disulfide
oxidoreductases, and it defines reductase activity by the reduction
of the intramolecular disulfide bond in the insulin. As previously
shown, HP0231 acting as an oxidase displays activity that
is slightly higher than EcDsbA but significantly lower than
EcDsbC (Roszczenko et al., 2012). TwoHP0231mutated versions
(CPHC/TcP and CPYC/TcP) are less active in the insulin
reduction assay. The lowest level of activity in this test was
observed for HP0231 with CPHC/TcP, the variant which that was
inactive in vivo. Other HP0231 variants were able to reduce the
insulin disulfide bond to a degree similar to that of native protein.

Next, we determined the redox potentials of all mutated
versions of HP0231 because the value of the redox potential
reflects the activity of oxidoreductases (Figures 7A–F). The
native HP0231 redox potential is similar to that of EcDsbA (−116
mV and −120 mV, respectively). Changing hydrophobic valine
to more hydrophilic threonine in the cis-Pro loop resulted in an
increase of its redox potential to −85 mV, making this protein

more oxidizing. Similarly, the amino acid residue at cis-Pro
minus 1 also influences the redox potentials of the other mutated
HP0231 proteins. The redox potential of HP0231 (CPYC/TcP)
was higher than that of HP0231 (CPYC/VcP) (−90 mV vs.−112
mV). Similar, though less noticeable, changes were observed for
the variant having an EcDsbC CXXC motif (−112 mV for the
variant with TcP vs.−121 mV for the variant with VcP). All these
changes were consistent with activity of the recombinant proteins
in the insulin reduction test (see above).

Next, to verify the observed in vivo oxidizing action of
the analyzed recombinant proteins, we evaluated their ability
to correctly oxidize reduced unfolded RNaseA (ruRNaseA), a
protein with 4 disulfide bonds. Activity of HP0231 in this test is
like that of EcDsbA (Bocian-Ostrzycka et al., 2015b). The results
of this assay are given in Figure 8A. Unexpectedly, the HP0231-
mutated version possessing a TcP motif, which was inactive in
all in vivo tests, exhibits an oxidase activity that was even slightly
higher than native HP0231. We also found that the two variants
containing the CXXC motifs of EcDsbC or EcDsbG combined
with TcP exhibited higher oxidase activities than their equivalents
paired with VcP, implying a role for the threonine present in the
cis-Pro loop in this oxidizing process.

Finally, we evaluated the ability of the HP0231-mutated
versions to catalyze the isomerization of disulfide bonds using
scrambled RNaseA (scRNaseA) as a substrate (Figure 8B). In
its native form, RNase contains four disulfides that need to be
properly rearranged. EcDsbC, a good catalyst of disulfide bond
isomerization, was used as a positive control. HP0231 cannot
catalyze this isomerization, and its activity resembles that of
EcDsbA (Bocian-Ostrzycka et al., 2015b). We found that only
the HP0231 with CPYC/VcP was able to reactivate scrambled
RNaseA. None of the other mutated variants of HP0231 were
active in this assay.

We and others have previously shown that the native HP0231,
like the dimeric E. coli oxidoreductases EcDsbC and EcDsbG,
functions as a molecular chaperone (Shao et al., 2000; Zhao
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FIGURE 4 | HP0231 with CPHA/VcP motifs is active in H. pylori hp0231::cat cells. As a positive control, H. pylori N6 hp0231::cat was transformed with pHel2

carrying the native hp0231 gene. (A) Cadmium sensitivity assay. Exponentially growing H. pylori (wt, the hp0231::cat mutant and hp0231::cat complemented in trans

with hp0231 or its mutated forms). Cultures were 10-fold serially diluted, spotted on BA plates with 8 µM CdCl2, and incubated at 37◦C. The mutant shows reduced

growth after 3 days of incubation on plates containing cadmium chloride. Mutated forms having the cysteines of the CXXC motif changed to alanine or serine are

inactive in this assay. (B) Motility assay. Bacterial motility was monitored after 4 days of incubation on 0.35% MH-agar plates containing 10% FCS. Only the

hp0231::cat complemented in trans with HP0231 with CPHA/VcP is motile.

et al., 2003). In the case of HP0231, however, its chaperone
activity is not dependent on the presence of an N-terminal
dimerization domain, as truncated HP0231 lacking this domain
also acts as a strong chaperone (Bocian-Ostrzycka et al., 2015b).
Thus, we also examined whether the HP0231-mutated versions
function as molecular chaperones by checking their impact
on the thermal aggregation of citrate synthase (Figure 9A).
EcDsbG, a protein with high chaperone activity, was employed
as positive control. HP0231, with its second cysteine replaced
by serine in the CXXC motif (CPHS), was used to distinguish
between chaperone and redox activities (Figure 9B). This variant
was disfunctional in disulfide bond formation in vivo but
remained active as chaperone, which indicates that chaperone
activity is independent of the CXXC motif. Also, the HP0231
variant (CPHC/TcP), a protein defective in all the in vivo tests,
functioned similarly to native HP0231. The two variants having
the CXXC motifs of DsbC or DsbG paired with VcP were slightly
more active in this assay than their equivalents with TcP.

Overall, the biochemical tests showed the critical role of the
amino acid that precedes the proline in the cis-Pro loop. A
hydrophilic threonine in this position makes the protein more
oxidizing, compared to a hydrophobic valine, independently of
the XX dipeptide present within CXXC motif. Although two
of the HP0231-mutated versions (CPYC/VcP and CGYC/VcP)
exhibited isomerase activity in vivo in E. coli, only the one with
the CPYC/VcP motif was able to restore activity of scRNase in
vitro.

The Influence of the Dimerization Domain
on the Activity in H. pylori and in E. coli
HP0231 is an atypical dimeric oxidoreductase that plays a
role in disulfide bond formation in H. pylori, as well as in

E. coli. Its catalytic domain belongs to class II DsbA, which is
rather characteristic for Gram-positive bacteria. The two classes
of DsbA proteins are topologically distinct (McMahon et al.,
2014; Bocian-Ostrzycka et al., 2015b). The HP0231 catalytic
domain is specifically connected to the DsbG cluster; however
it contains a catalytic motif characteristic for the class I DsbA.
TheHP0231N-terminal dimerization domain is phylogenetically
related to DsbC/G (Bocian-Ostrzycka et al., 2015b). Also, the
helical linker of HP0231 joining the dimerization and catalytic
domains is longer than that of EcDsbG (Yoon et al., 2011).
Given all the atypical features of this protein, we asked the
questions whether the dimerization domain of EcDsbG can act
with the HP0231 catalytic domain, and whether the HP0231
dimerization domain can function with the catalytic domain of
class I DsbA. Three fusion proteins were constructed (Table 2).
The first is composed of the EcDsbG dimerization domain
joined by the HP0231 linker to the HP0231 catalytic domain
(chimera 1 in Table 2—dimGαKcatK). The second consists of
the EcDsbG dimerization domain with its linker fused to the
HP0231 catalytic domain (chimera 2 in Table 2—dimGαGcatK).
The third contains the HP0231 dimerization domain with the
HP0231 linker fused to the EcDsbA catalytic domain (chimera 3
in Table 2—dimKαKcatA). Precise descriptions of the chimeras,
the details of their construction are described in the Materials
andMethods section and in Table 2. Recombinant plasmids were
introduced into H. pylori hp0231, as well as into E. coli dsbA−

and E. coli dsbA−dsbB− strains. The correctness of all constructs
was confirmed by sequencing. The presence of hybrid proteins
in H. pylori and E. coli cells was confirmed by Western-blot
experiments using rabbit specific anti-HP0231 serum or anti-
His antibodies (Supplementary Figure S5). Oxidizing activity
was monitored by the motility assay in both H. pylori and
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FIGURE 5 | HP0231 with the CPHA/VcP motifs is active in E. coli dsbA::kan cells. (A) Alkaline phosphatase (AP) assay. The bars represent average activity of

three independent experiments (n = 3) with the wild type set to 100% activity. There are significant differences (p < 0.001) in relative alkaline phosphatase activity

between the E. coli wt cells and the E. coli dsbA::kan mutant strain, and also the strains complemented in trans by hp0231 and hp0231-mutated forms. Error bars

marked with an asterisk (*) indicate no significant difference between dsbA::kan complemented with APHC and APHA (ANOVA followed by post-hoc Tukey’s test).

Alkaline phosphatase activity of wild type and dsb mutants and complemented strains was performed in M63 minimal medium. (B) Motility of the E. coli dsbA::kan

complemented in trans by hp0231-mutated forms. Bacterial motility was monitored after 24 h of incubation on 0.35% LB-agar plates. Only the E. coli dsbA::kan

complemented with CPHA/VcP is motile. The figure presents a representative result.

E. coli. We found that the two hybrid proteins (dimGαKcatK
and dimGαGcatK)—composed of the EcDsbG dimerization
domain with the EcDsbG or HP0231 linker, respectively, and
the HP0231 catalytic domain—exhibited low activity in H. pylori
cells (Figure 10A). DimKαKcatA chimera restored motility in
both hosts. Interestingly, in contrast to native HP0231, its
function in E. coli cells was EcDsbB-dependent (Figures 10B,C).
Moreover, we found that none of the hybrid proteins were able
to complement the deficiency of EcDsbC in a double mdoGdsbC
mutant (data not shown). Together, these results demonstrate
that the HP0231 dimerization domain is critical for protein
activity in the native host, and that it cannot be substituted by the
EcDsbG N-terminal domain. Interestingly, the data showed that
the HP0231 dimerization domain does not constitute an obstacle
for EcDsbB to reoxidize the EcDsbA catalytic domain present
in hybrid protein, although EcDsbB does not react with native
HP0231 (Roszczenko et al., 2012).

DISCUSSION

HP0231 of Helicobacter pylori was the first-described
dimeric oxidoreductase involved in disulfide bond formation
(Roszczenko et al., 2012). The list of identified dimeric
oxidoreductases acting as oxidases is growing continuously.
Apart from HP0231, the best characterized members of this
group are Legionella pneumophila DsbA2 and Francisella
tulariensis FtDsbA, also referred as FipB (Jameson-Lee et al.,
2011; Qin et al., 2011, 2014). Even though LpDsbA2, FtDsbA,
and HP0231 are all involved in disulfide bond formation, they
differ considerably in many aspects. First of all, every analyzed
bacterial species possesses distinct sets of Dsb proteins. The
one and only similarity among them is the lack of the “classic”
homolog of EcDsbC in their proteomes. The L. pneumophila
genome encodes two DsbAs, two DsbBs and two DsbDs,
whereas F. tulariensis possesses DsbA, DsbB and lacks DsbD
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(Kpadeh et al., 2013, 2015; Ren et al., 2014). In E. coli DsbD is
responsible for DsbC re-reduction (Cho and Beckwith, 2009).
Most H. pylori strains produce dimeric HP0231, which is the
functional equivalent of DsbA, and DsbI (HP0595 in the H.
pylori 26695 strain), the protein that is partially responsible
for HP0231 reoxidation (Bocian-Ostrzycka et al., 2015a,b).
Additionally, dimeric oxidoreductases of L. pneumophila and F.
tulariensis, unlike HP0231, both have a bifunctional nature as
they display both oxidase and isomerase activities (Qin et al.,

FIGURE 6 | Two HP0231-mutated versions (CPHC/TcP and CPYC/TcP)

are less active in the insulin reduction assay. The reaction contained 131

µM insulin in potassium phosphate buffer, pH 7.0 and 2 mM EDTA. The

reaction was performed in the absence or presence of 10 µM EcDsbA and 10

µM HP0231-mutated forms. Reactions were started by adding DTT to a final

concentration of 1 mM. Changes in the absorbance at 650 nm as a function of

time were measured. The figure presents the average of three independent

experiments (n = 3). Purified EcDsbA or HP0231 were used as a control.

2014; Kpadeh et al., 2015). To better understand the functioning
of the H. pylori Dsb system, whose activity is required for full
virulence, we focused on the functional and biochemical analysis
of HP0231 point mutated versions, as well as on the similar
analysis of hybrid fusion proteins of the EcDsbG and HP0231
dimerization domains with monomeric EcDsbA or the catalytic
domain of HP0231.

First, using four mutated variants containing distinct CXXC
motifs (APHA, APHC, CPHA, CPHS), we found that the CXXC
motif present in the HP0231 thioredoxin domain is absolutely
necessary for catalytic activity, as HP0231 variants having
APHA, APHC, and CPHS are inactive in all in vivo tests, in
both H. pylori and E. coli cells. We also noticed that HP0231
with a CPHA motif is active in some in vivo tests. In H. pylori,
it complemented lack of native HP0231 in the motility test but
not in the cadmium sensitivity assay. In E. coli, this HP0231
variant complemented lack of EcDsbA in both the motility test
and the AP activity assay. Disulfide bond formation occurs in
two stages. First, the N-terminal cysteine residues of the CXXC
motifs, after a nucleophilic attack from a substrate protein,
form an intermediate complex with a substrate protein. Second,
the complex is resolved and the oxidized substrates released
(Shouldice et al., 2011; Denoncin and Collet, 2013). Thus, it
is expected that mutating the N-terminal cysteine residue of
CPHC motif would completely abolish the protein activity. The
observed difference of action between the two variants of HP0231
with CPHA or CPHS motifs is still unexplained. It should be
noted that although, all so far characterized DsbA proteins

FIGURE 7 | (A–F) The redox equilibrium of H. pylori HP0231-mutated forms with glutathione corresponds with their ability to reduce insulin in the insulin reduction

assay. The fraction of reduced (R) HP0231-mutated forms was determined using the specific HP0231 fluorescence at 330 nm. The bars represent the average of

three independent experiments.
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FIGURE 8 | RNase activity assays performed on purified HP0231 and

HP0231-mutated forms. Purified EcDsbA, EcDsbC or HP0231 were used as

controls. (A) Two HP0231-mutated variants CPYC/VcP and CGYC/VcP are

less active in an oxidase activity assay (reduced unfolded—ruRNase activity

assay) compared to HP0231 wt and its other mutated forms. Reactions were

carried out in 200 µl of PBS buffer containing 100 mM Tris acetate pH 8.0, 2

mM EDTA, 0.2 mM GSSG, 1 mM GSH, 4.5 mM cCMP, ruRNaseA (10 µM)

and the analyzed enzyme (20 µM). The reaction was performed in the absence

or presence of 20 µM EcDsbA, 20 µM HP0231, or 20 µM HP0231-mutated

forms. Changes in absorbance at 296 nm as a function of time were

measured. Three independent experiments were performed. The figure

presents a representative result. (B) Only one HP0231-mutated variant

(CPYC/VcP) functions as an isomerase in the scrambled RNase (scRNase)

activity assay. Reactions were carried out in 200 µl of PBS buffer containing

100 mM Tris acetate pH 8.0, 2 mM EDTA, 10 µM DTT, 4.5 mM cCMP,

scRNaseA (40 µM) and the analyzed enzyme (20 µM). Reactions were

performed in the absence or presence of 20 µM EcDsbC, 20 µM HP0231 or

20 µM HP0231-mutated forms. Changes in absorbance at 296 nm as a

function of time were measured. Three independent experiments were

performed. The figure presents a representative result.

contain CXXC motif, but some members of the thioredoxin
fold class involved in the reduction of a substrate have CXXS
or CXXT motif (Fomenko and Gladyshev, 2002, 2003; Atkinson
and Babbitt, 2009).

The solved structure of HP0231 indicates that, out of two
cysteine residues present in the CXXC motif of HP0231, only
the first is solvent-exposed (Yoon et al., 2011). A possible
explanation is that this single cysteine of the CPHA motif is
oxidized to sulfenic acid, whereas the N-terminal cysteine residue
present in the CPHS motif is protected against sulfenylation
by serine, which is structurally similar to cysteine (Lo Conte
and Carroll, 2013). However, activity of HP0231 variant with
CPHA is substrate dependent. The similar observation has
been made in term of mutated form of monomeric EcDsbA.
Wunderlich et al. showed that EcDsbA containing CXXA
motif acts as catalyst of oxidative protein in in vitro test
(Wunderlich et al., 1995). The crystal structure of the CXXA

FIGURE 9 | (A,B) All of the HP0231-mutated forms suppress the thermal

aggregation of citrate synthase (CS) at 43◦C at a similar level. 30 µM CS was

diluted 200-fold into prewarmed 40 mM HEPES-KOH, pH 7.5, at 43◦C in the

absence or presence of 0.15 µM HP0231-mutated forms. Protein aggregation

was monitored with light scattering measurements using a Varian

spectrofluorometer. The excitation and emission wavelengths were set to 350

nm. The excitation and emission slit widths were set to 2.5 nm. To exclude

non-specific protein effects, control experiments in the presence of 1.5 µM

bovine serum albumin were conducted. (A) Chaperone activity of CXXC/XcP

HP0231-mutated forms. (B) Chaperone activity of CPHS/VcP mutant. Three

independent experiments were performed. The figure presents a

representative result. Purified EcDsbG or HP0231 were used as a controls.

EcDsbA mutant was solved and showed that this mutated form
undergoes conformational changes and is able to form a dimer via
one intermolecular disulfide bond between N-terminal cysteine
residues. The authors speculated that the process is responsible
for its interaction with EcDsbB. However, the activity in vivo of
this form of EcDsbA has not been analyzed yet (Ondo-Mbele
et al., 2005).

Our work shows the crucial role of the cis-Pro loop in
modulating the oxidoreductase activities of HP0231. First of all,
changing the hydrophobic valine to hydrophilic threonine in
the HP0231 cis-Pro motif resulted in loss of its ability to create
disulfide bonds, and the process was independent of the host
background, as it was observed in both H. pylori and E. coli
cells. However, biochemical tests revealed that HP0231 V257T
possessed significantly more oxidizing redox potential compared
to native variant (−85 mV vs. −116 mV) and less reducing
activity in the insulin reduction assay. Furthermore, it is capable
of oxidizing reduced, unfolded RNaseA as efficiently as native
HP0231. Thus, our work shows that conclusions concerning Dsb
protein function that draw from their biochemical attributes
should be treated with caution. While their biochemical features
are generally determined by their catalytic motifs and structure,
their functioning in vivo is dependent on the composition of the
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FIGURE 10 | In H. pylori N6 hp0231::cat in vivo complementation

experiments only dimKαKcatA hybrid protein is active, but in

EcDsbB-dependent manner. (A) Motility assay of hybrid proteins. H. pylori

motility was monitored after 4 days of incubation on 0.35% MH-agar plates

containing 10% FCS. Only the hp0231::cat/dimKαKcatA strain is relatively

motile. (B,C) E. coli motility was monitored after 24 h of incubation on 0.35%

LB-agar plates. The E. coli dsbA::kan/dimKαKcatA is motile, in an

EcDsbB-dependent manner, while two hybrids with DsbG dimerization

domains are essentially non-motile.

Dsb network. In vivo functioning of oxidoreductases depends
also on the redox conditions of the environment in which they
act, as was shown by changing the location of cytoplasmic
thioredoxin (Debarbieux and Beckwith, 1998, 2000). The similar
lack of correlation between in vivo and in vitro features of
EcDsbA V150T was noticed by Ren et al. and was interpreted
as an inability to react with its upstream partner, EcDsbB (Ren
et al., 2009). In the case of HP0231, these results should be
interpreted with caution, as HP0231 oxidizing activity in E.
coli is DsbB-independent, and in H. pylori it is moderately
determined by the action of DsbI (HP0595), which is paralogous
to the DsbB family (Raczko et al., 2005; Roszczenko et al.,
2012). Although at this time we do not fully understand the
mechanism, we hypothesize that changing V257T influences its
ability to recognize downstream substrate/s and that the mode of
action of this thiol oxidoreductase differs substantially in E. coli
and H. pylori. Alternatively, changing the cis-Pro loop might
influence the stability of the reduced form of this protein. The
EcDsbA reduced form is more stable than the oxidized one.
Thus, to be active, EcDsbA needs to be reoxidized by EcDsbB
(Heras et al., 2008). In E. coli, HP0231 functions irrespective
of the presence or absence of EcDsbB. Although we did not

investigate this, we hypothesize that HP0231 is equally stable in
its reduced and oxidized forms. Out of four analyzed HP0231-
mutated forms that complement an EcDsbA deficiency, only
the one with the CPYC/VcP motifs acts, like HP0231, in an
EcDsbB-independent manner. The other three HP0231-mutated
variants require EcDsbB reoxidation. So, it is highly probable that
changing the catalytic motifs affects the stability of the HP0231
forms. This conjecture is corroborated by the fact that all of these
exist in E. coli in mainly the oxidized form. Also, the similar
stability of both forms of the DsbA from Staphylococcus aureus
ensures its efficient functioning without DsbB (Heras et al., 2008).
As HP0231 is the only described dimeric oxidoreductase involved
in disulfide bond generation that is DsbB-independent, further
biochemical and structural analysis of its mutated forms should
be useful to understand its functioning.

As mentioned above, H. pylori does not encode an EcDsbC
homolog. However, we previously demonstrated that HP0377
(CcmG playing a role in apocytochrome c reduction) confers
in vitro a disulfide isomerase activity, and its functioning is
related to HP0231 (Roszczenko et al., 2015). Thus, it may
compensate the lack of DsbC homolog. As the two dimeric thiol-
oxidoreductases, LpDsbA2 and FtDsbA, are bifunctional proteins
with both oxidizing and isomerizing activity, we asked the
question: which features of HP0231 prevent it from functioning
in the isomerization pathway? We found that changing the
catalytic motif to that of EcDsbC or EcDsbG (CPHC to CGYC
or CPYC, respectively) and leaving the cis-Pro motif intact
(VcP) generated bifunctional proteins. These two variants still
retained their oxidizing activities, and at the same time, they
acquired the ability to act as isomerases in in vivo tests. Also,
in the case of the two described mutated forms of HP0231, the
crucial role of the cis-Pro loop was clear, as their equivalents
with a TcP motif were not active as isomerases in both E.
coli and H. pylori. Furthermore, two of the HP0231-mutated
forms (CPYC/VcP and CGYC/VcP) possess more reducing redox
potential, exhibit lower oxidase activities and higher activities in
the insulin reduction assay than their equivalents paired with TcP,
which confirms their functions observed in vivo. However, only
the HP0231 with CPYC/VcP was able to restore scRNase activity
in vitro, indicating that the protein function is also determined
by available substrate.

Chaperone activity has so far been attributed to homodimeric
oxidoreductases such as EcDsbC or EcDsbG (Chen et al., 1999;
Shao et al., 2000). Monomeric EcDsbA exhibits low chaperone
activity in vitro, but chimeras of the N-terminal domain of
EcDsbC with catalytic EcDsbA function in vitro as chaperones
(Zhao et al., 2003; Segatori et al., 2004). The catalytic CXXC
motif of EcDsbC is not necessary for its chaperone activity,
as was shown by Liu and Wang (Liu and Wang, 2001). Thus,
we tested whether the HP0231 CPHC/VcP catalytic motifs are
necessary to prevent thermal aggregation of citrate synthase. Our
data are consistent with those presented by Liu and Wang, as
all of the HP0231-mutated versions, including the one with the
CPHS motif, function as chaperones. Moreover, we previously
have shown that a monomeric truncated version of HP0231
lacking the dimerization domain, in contrast to EcDsbA, displays
high chaperone activity (Bocian-Ostrzycka et al., 2015b). Thus,
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we concluded that HP0231 chaperone activity requires neither
enzyme dimerization nor the active catalytic motif. Our data are
in agreement with those presented by Schmidt et al. concerning
FtDsbA (Schmidt et al., 2013).

Previously, we showed that the HP0231 truncated version
(class II DsbA) is active in disulfide bond formation in a DsbB-
dependent manner, similar to EcDsbA in E. coli cells, but
that it is inactive in H. pylori. Similarly, monomeric EcDsbA
(class I DsbA) does not function in H. pylori (Bocian-Ostrzycka
et al., 2015b). Thus, to shed more light on the function
of the HP0231 dimerization domain, several chimeras were
constructed. Our phylogenetic analysis showed that the HP0231
dimerization domain is related to the DsbG/C dimerization
domains (Bocian-Ostrzycka et al., 2015b). So, we evaluated
the functioning of the HP0231 catalytic domain fused to the
EcDsbG dimerization domain with its own, or the HP0231,
α-linker. Both variants displayed only moderate activity in
H. pylori and did not function in E. coli, indicating that the
EcDsbG dimerization domain cannot efficiently substitute for
the HP0231 dimerization domain. We assume that the reason
lies in the primary structure of the dimer cleft. The V-shaped
cleft of H. pylori HP0231 exhibits different characteristics than
the clefts of DsbC and DsbG, thereby suggesting different
substrate specificity. The major difference is the surface charge.
The inner surface of the H. pylori HP0231 model is lined
with positive residues (i.e., Lys-41, Lys-45, Lys-46, Arg-48, Lys-
72, Lys-97, Arg-238, Lys-246, Lys-247, Lys-255, and Lys-264).
Moreover, there are also Asp-68, Asp-70, Asp-99, Asp-100, Glu-
242, Glu-250 negative residues lining the presumed binding
cleft). In contrast, E. coli DsbG has several acidic residues
(i.e., Glu-11, Asp-36, Glu-69, Glu-79, Glu-189, Asp-193, and
Asp-220), and E. coli DsbC has hydrophobic and uncharged
residues (Heras et al., 2004). The positive residues form patches
that are absent in both E. coli DsbC and DsbG. EcDsbA,
which was inactive as monomer, complemented an H. pylori
hp0231− mutation, when fused to the N-terminal domain of

HP0231, as measured by the motility test. These data indicate
that the process of disulfide bond formation in H. pylori is
conditioned by tertiary protein structure. Our data are generally
consistent with studies on DsbC-DsbA chimera fusions, where
these homodimers were found to interact with DsbB in the
process of disulfide bond generation in E. coli (Segatori et al.,
2004).
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