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ABSTRACT

Motivation: DNA copy number gains and losses are commonly
found in tumor tissue, and some of these aberrations play a role
in tumor genesis and development. Although high resolution DNA
copy number data can be obtained using array-based techniques,
no single method is widely used to distinguish between recurrent
and sporadic copy number aberrations.

Results: Here we introduce Discovering Copy Number Aberrations
Manifested In Cancer (DINAMIC), a novel method for assessing
the statistical significance of recurrent copy number aberrations.
In contrast to competing procedures, the testing procedure
underlying DINAMIC is carefully motivated, and employs a novel
cyclic permutation scheme. Extensive simulation studies show that
DINAMIC controls false positive discoveries in a variety of realistic
scenarios. We use DINAMIC to analyze two publicly available tumor
datasets, and our results show that DINAMIC detects multiple loci
that have biological relevance.

Availability: Source code implemented in R, as well as text
files containing examples and sample datasets are available at
http://www.bios.unc.edu/research/genomic_software/DiNAMIC.
Contact: vwalter@email.unc.edu; fwright@bios.unc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

DNA copy number aberrations (CNAs) are commonly found in
tumor tissue, and can range from losses (deletions) of one or both
copies of chromosomal regions to gains of numerous additional
copies (amplifications). The size of these aberrations can range
from entire chromosome arms to less than 100 kb (Myllykangas and
Knuutila, 2006). A variety of platforms are used to detect CNAs, and
provide quantitative signals that reflect the underlying discrete copy
number (Coe et al., 2007; Davies et al., 2005; Zhao et al., 2004).
Much of the statistical effort in analyzing CNAs has focused on
discerning copy number at each location within individual tumors
(Hupe et al., 2004; Olshen et al., 2004; Venkatraman and Olshen,
2007), and in handling the potential contamination of normal tissue
in tumor samples (Sun et al., 2009).

*To whom correspondence should be addressed.

In contrast to heritable copy number variation, CNAs are the
result of genomic instability in somatic tumor tissue (Albertson
et al., 2003). From the earliest days of modern cancer genetics,
it was recognized that such instability could unmask or promote
the effects of tumor suppressors and oncogenes (Knudsen, 1971;
Stratchan and Read, 1999). However, surveys of a number of tumor
types (e.g. Miller et al., 2003) demonstrate that sporadic gains and
losses can also occur throughout the genome, likely representing
generic genomic instability, with little effect on tumor progression.
The phenomenon of recurrent CNAs, which affect the same region
in multiple tumors, is of great interest, as such CNAs may highlight
genes or regions that are directly involved in tumor progression.
Past studies have detected recurrent CNAs in a wide range of tumor
types, with an extensive catalog of these findings in the Mitelman
Database (Mitelman et al., 2010) and the Genetic Alterations in
Cancer (GAC) database (Jackson et al., 2006).

Despite the apparent successes in the field, there is no clear basis
for a general approach for sensitive detection of recurrent CNAs,
as many regions important for tumor progression may affect only
a minority of tumors. The task of distinguishing between sporadic
and recurrent CNAs is thus largely a statistical issue. The instability-
selection model introduced by Newton er al. (1998) provides a
statistical framework specific to loss of heterozygosity (LOH) data,
but even for this specific data type difficulties remain in assessing
significance over multiple markers (Sterrett and Wright, 2007). The
problem of assessing significance for general copy number data
has received relatively little attention until recently (Shah, 2008).
Few of the existing methods (reviewed below) provide an explicit
description of the null hypothesis being tested, or fully acknowledge
the inherent correlation structure of copy number data. For these
reasons, it has been difficult to place the techniques in a traditional
statistical framework or to understand error rates on a genome-wide
scale. The purpose of this article is to introduce an explicit testing
scheme for recurrent CNAs that preserves correlations inherent to
the data.

Before proceeding to our testing framework, we review the
current methods for copy number calling/segmentation, which can
serve as a useful intermediary to the detection of recurrent CNAs.
Numerous technologies are available to measure DNA copy number,
ranging from array comparative genomic hybridization (Coe et al.,
2007; Davies et al., 2005) at tens of thousands of probes, to high-
density SNP platforms (up to 1 million probes or more, Zhao et al.,
2004). Reviews of the technologies are provided elsewhere (Davies
et al., 2005; Zhao et al., 2004), but a common feature is that a
quantitative signal is extracted at each probe that reflects underlying
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copy number, with additional noise and potentially probe-specific
bias inherent to the platform.

Regional losses and gains within a single tumor typically cover
contiguous sets of numerous probes (Myllykangas and Knuutila,
2006), and so segmentation approaches (Hupe et al., 2004; Olshen
et al., 2004; Venkatraman and Olshen, 2007) are popular as a means
to estimate the underlying copy number state at each position per
tumor. Here we distinguish between discrete segmentation, where
the copy number is constrained to the non-negative integers, and
continuous segmentation, where the segmented values need not be
integers. Examples of continuous segmentation include methods that
essentially average over quantitative probe values within a genomic
region determined by the algorithm to be a copy number segment.
Regardless of the segmentation procedure, technical artifacts and
differences in probe characteristics can lead to probe-specific bias,
potentially reducing the accuracy of segmentation. A number of
authors have established the presence of probe bias. Marioni et al.
(2007) show that aCGH data exhibits serial autocorrelation, a
phenomenon they term ‘genomic waves’, and Komura et al. (2006)
note a correlation between apparent DNA copy number and GC
content. Marioni et al. (2007) and van de Wiel et al. (2009) present
procedures for ‘smoothing’ genomic waves. Both procedures can be
applied to copy number data from normal samples, and the method
of van de Wiel et al. (2009) can be applied to tumor samples as
long as normal samples are present. For sufficient sample sizes, we
describe further below an approach to correct the bias by comparing
intensities of individual probes using data from surrounding probes
(via segmentation), without the need to model or otherwise consider
the sequence context.

We also clarify that we are interested in somatic copy number
changes in tumors, rather than heritable copy number variants
(CNVs). As the resolution of typing technologies increases, it is
possible that CNVs, which are rarely larger than 1 Mb (Itsara et al.,
2009) and thus considerably shorter than the aberrations found in
solid tumors (Albertson et al., 2003), can be mistaken for recurrent
CNAs. The distinction can be clarified by comparisons of matched
tumor and normal tissue. Researchers using tumor-only datasets
should be alert to the possible presence of common copy number
polymorphisms when interpreting DINAMIC output (Redon et al.,
2006).

Over a dozen software packages for analyzing DNA copy number
data are discussed by Rueda and Diaz-Uriate (2008), Baross et al.
(2007) and Shah (2008). We focus here on the approaches that
attempt to identify recurrent copy number changes, highlighting the
input formats and a few relevant similarities and differences.

* STAC (Diskin et al., 2006) and CGHregions (van de Wiel and
van Wieringen, 2007) require discrete segmented input data, i.e.
categorical values such as aberrant/normal, gain/normal/loss or
some numerical equivalent.

e GISTIC (Beroukhim er al., 2007) requires continuous
segmented input data, such as one might obtain from a
segmentation program such as GLAD (Hupe et al., 2004)
or DNAcopy (Olshen et al., 2004; Venkatraman and Olshen,
2007).

* KC-SMART (Klijn et al., 2008) and MSA (Guttman et al.,
2007) accept continuous input data, such as log, intensity
ratios, although MSA performs discrete segmentation internally
and then makes multiple calls to the STAC algorithm.

¢ GISTIC, KC-SMART, STAC and MSA assess the statistical
significance of the most striking marker or region using
permutation-based null distributions, while adjusting for
multiple comparisons. However, the resulting output differs
among the methods. GISTIC produces false discovery rate
(FDR) g-values for the ‘significant’ regions. STAC and MSA
control the family-wise error rate (FWER) by using the max-T
procedure of Westfall and Young (1993), while KC-SMART
controls FWER by using a Bonferroni adjustment.

e GISTIC and KC-SMART analyze genome-wide data, whereas
STAC and MSA analyze data at the level of the chromosome
or chromosome arm.

Here we introduce Discovering Copy Number Aberrations
Manifested In Cancer (DINAMIC), a new procedure to map
recurrent CNAs and assess their statistical significance. DINAMIC
can be applied in the analysis of data from individual chromosomes
or genome wide. The input can consist of segmented data,
either discrete or continuous. Alternately, quantitative probe
measurements may be used directly, although the reader is advised
to read the material on Probe Bias in DNA Copy Number
Data in Section 2.4 before analyzing individual probe-level data.
DiNAMIC is computationally fast, statistically robust and requires
no specialized software. We believe that DINAMIC is a valuable
addition to the methods available to search for recurrent CNAs.

2 METHODS

2.1 Data format and definitions

The data are contained in a numeric n x m matrix X. Each entry x;; represents
DNA copy number (or LOH data) for subject i at marker j. In other words,
each row X;. of X corresponds to copy number for one subject at m markers,
while each column X.; corresponds to data at a single marker for n subjects.
Markers that exhibit high or low average copy number are of interest, so it
is natural to examine summary statistics for each marker. We define S; to be
the sum of the entries in the j-th column of X, leading to the local summary
statistics S1,S2,...,Sm.

Copy number gains and losses are analyzed separately, and for either type
of analysis we want a global summary statistic that is sensitive to the presence
of the corresponding CNA. We will restrict our attention to

Tgain(X):maX(Sl 282500, 8m),
when copy number gains are of interest and
Thoss(X)=min(S1, 2, ...,8m)

when the focus is on copy number losses. For brevity, we restrict all
subsequent discussion to Tgin(X) and make comments regarding Tioss(X)
when necessary.

2.2 Permutation, cyclic shift and assessing statistical
significance

Sporadic variation in DNA copy number often occurs throughout the genome,
so it important to determine the statistical significance of recurrent CNAs.
This can be done if we have a null distribution for Tg,in(X) under the
hypothesis that no recurrent CNAs are present, i.e. that all CNAs are
sporadic. We prefer to not make assumptions about the entries in X—i.e.
they may be discrete segmented, continuous segmented or continuous values.
Thus, the estimation of a null distribution for Tg,;,(X) using permutation is
attractive. This approach is also broadly taken by GISTIC, STAC, MSA and
KC-SMART with their corresponding statistics.
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A variety of permutation schemes are possible. Entries in different
rows come from different subjects, and may have different rates of CNV,
contamination of normal tissue in tumor samples, etc. Thus, permutation of
entries across rows should be avoided. KC-SMART randomly permutes the
DNA copy number values within a given row, and thus breaks up the genomic
positional relationship of the entries. The null distribution assumed by
GISTIC is based on a convolution of histograms. Each histogram is created
from the entries in a given row, but the serial structure of the entries is not
preserved. In contrast, STAC and MSA perform random rearrangements of
‘aberrant’ regions within a given row. These permutations maintain the serial
structure within aberrant regions, but require a clear and prior distinction
between aberrant and non-aberrant regions.

DNA copy number data is inherently correlated, due to the underlying
loss or gain of chromosomal segments, even if the CNAs are sporadic. It is
desirable to maintain this correlation under permutation in order to maximize
the retained information and to provide proper control of error rates. These
considerations provide the motivation for DINAMIC’s permutation scheme.

Let X;. =xj1xi2...Xim be the i-th row of X, which corresponds to the data
from the i-th subject. For 1 <k <m, we define a cyclic shift of X;. of index k
to be

0k (Xi.) = XikXi(k+1) - - - XimXi1 - -
More generally, a cyclic shift o(X) of X is obtained by applying cyclic shifts
oy to each row of X, where the shift index k& can vary from one row to
the next. This yields a total of m" —1 distinct possible cyclic shifts other
than the original state. The biological motivation for cyclic shifts is clear for
organisms such as bacteria that have circular chromosomes, for the serial
structure of the copy number data from a given row is completely preserved
under cyclic shifts. Thus, if the observed copy numbers for each row mimic
a circular stationary process (Anderson, 1960), the correlation structure is
not changed by the cyclic shifts. Human chromosomes are of course not
circular, but the cyclic shift ox(X;.) maintains all of the serial structure
between the markers, except at the breakpoint x;—1y. As the number of
markers m is much larger than the total number of breakpoints, we conclude
that the correlation structure is approximately maintained. Another way of
motivating the cyclic shift is to consider that the hallmark of a recurrent CNA
is that gains or losses tend to ‘line up’ at similar positions across multiple
tumors. In contrast, the null hypothesis maintains that sporadic aberrations
may occur anywhere on the genome, but that no region is ‘special’. Thus,
the cyclic shift assesses significance by shifting each row of X, so that the
rarity of apparently recurrent events (multiple tumors showing aberration
at a marker) is easily assessed. These assumptions are directly tested in
simulations described further below.

We now describe our method for assessing the statistical significance of
Tgain(X) :maX(S| ) Sz, ey Sm).

Xi(k—1)-

Algorithm 1. Assessing Statistical Significance of Tg,in(X)
(1) (Optional) Set random seed r,

(2) Perform N random cyclic shifts o!(X),o%(X), ...,
matrix X,

oV (X) of the data

(3) Compute the value of the summary statistic Tgam(al(X)) for each
shifted dataset [=1,2,...,N,

(4) Define the quantile-based P-value

1+fgain(NvX)’ 1>’

P(Tin (X)) =min (—22

N
where foain(N, X)= Y _I(Tgain(0" (X)) > Tgain(X)) and I() is the
I=1
indicator function.
The empirical P-value of Tjos(X) is computed by replacing ‘gain’ with ‘loss’
and reversing the inequality in Step 4. Both definitions yield P-values that
are easy to interpret and are automatically adjusted for multiple comparisons
across the markers.
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Fig. 1. A plot of the column sums of the Wilms’ tumor data of Natrajan et al.
(2006). The point corresponding to probe RP11-393K 10, which corresponds
to Tgain(X), is shown in red. Using N=1000 cyclic shifts, we obtain
P(Tgain(X))=0.001.

Natrajan et al. (2006) obtained genome-wide aCGH copy number data
using 3288 probes on 97 Wilms’ tumor samples. By analyzing this data in
conjunction with data on tumor relapse, these authors concluded that copy
number gains in chrlq are associated with increased risk of tumor relapse.
The original data consists of log, quantitative copy number values, for which
we perform segmentation and bias correction (see the material on Probe Bias
in DNA Copy Number Data in the Section 2.4). The column sums of the
resultant X matrix are plotted in Figure 1. Marker 196 on chrlq with probe
name RP11-393K10 corresponds to the location of the maximum column
sum of X, and applying Algorithm 1 with a random seed r=12345 and
N =1000 cyclic shifts yields pg,in(T(X))=0.001.

2.3 Peeling

Figure 1 shows that a number of markers have large column sums, both in
the region surrounding probe RP11-393K10 and elsewhere in the genome.
In fact, Natrajan et al. (2006) detected frequent gains on chromosomes 8 and
12. If multiple highly significant recurrent gains are present in the genome,
they presumably contribute high copy number values to the overall null
distribution, which may reduce power for detection of less-extreme loci.
We use these observations as motivation to extend DiINAMIC so that the
significance of multiple regions can be assessed in a straightforward manner.
Our approach is similar to the one employed by the GISTIC procedure
of Beroukhim et al. (2007). GISTIC assesses the significance of a ‘new’
region conditional on having found the previously most significant region(s)
using a procedure the authors term the ‘peel off” algorithm. Similarly, we
successively correct for each significant region in order to better detect and
dissect the recurrent CNAs. However, our peeling method is tailored to the
cyclic shift procedure used by DINAMIC.

For a given data matrix X, our peeling procedure has three components.
When analyzing copy number gains we start by identifying the marker k
that yields the maximum column sum. Then we find all of the entries in
X that contribute to the significance of marker k (i.e. are above their row
mean). Algorithm 2, given below, outlines our method for identifying the
appropriate entries of X. Next, we multiply these entries of X by a scaling
factor 7 to create a new data matrix X in which the effect of marker k has
been removed. We describe the computation of T and the creation of X in the
second part of Algorithm 2. Then Xis subjected to the cyclic shift procedure,
with a null distribution conditional on having found marker £ in X.

Below we describe the peeling procedure in detail. For convenience,
we restrict our attention to copy number gains at marker k, the marker
corresponding to the maximum column sum. We write X;. and x,; for the
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Fig. 2. Aplot of the column sums of the Wilms’ tumor data of Natrajan et al.
(2006). The gray lines show the plot of the column sums after applying the
peeling procedure to probe RP11-393K10.

means of the i-th row and j-th column of X, respectively, and Xx.. for the
mean of X.

Algorithm 2. The Peeling Procedure for Copy Number Gains at Marker &

(1) Find the largestinterval [a, b] containing k such that the column means
X.j>x. forall je[a,b].
(2) If necessary, reduce [a,b] so that the interval contains only markers

from the same chromosome arm as marker k.

(3) Let I={i:xj >X;.} be the set of rows such that the entry x;; exceeds
the mean of the i-th row.
(4) For each i€, find the maximal interval [a;, b;] such that (i) [a;,b;] C
[a,b], (ii) k €[a;,b;], (iii) x; > X;. for all j € [a;, b;].
We say that {x;;:i€l,j €[a;,b;]} is the set of all matrix entries that contribute
to the significance of marker k. Supplementary Figure 1 in the Supplementary
Material illustrates the entries of a simulated data matrix X identified by Steps
(1)—(4) of the peeling procedure.
We now show how to compute the scaling factor t and the new data
matrix X.

Algorithm 2 Continued.

(5) Find a constant t such that nx.. =

Z Xi -+ Z X+ Z T(Xik —Xi.).

i Xjg <Xi. it Xjk >X;. it Xjk >X;.
(6) Define
R tx; ifiel andj€la;, bil;
Xijj =

x;j  otherwise.

(7) Let X be an n x m matrix whose entries are Xij.

Recall that marker k corresponds to the maximum column sum in X. By
construction, the sum of the k-th column of X is nXx.., the mean of the column
sums in X. Thus, applying the peeling procedure yields a new dataset X in
which marker k is null. The same constant 7 is used to rescale all matrix
entries x;; that contribute to the aberration at marker k, so in X we expect
markers near k to have column sums close to nXx.., and thus also be null.
Figure 2 shows a plot of the column sums for the Wilms’ tumor data of
Natrajan et al. (2006) before peeling (black and blue, as in Fig. 1) and after
peeling (grey). After peeling, column 196 is no longer significant.

The peeling procedure immediately enables the researcher to filter out
minor variations in the vicinity of major peaks, and to potentially distinguish
among multiple major peaks. Without any further computation (other than
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Fig. 3. Power curves for DINAMIC for simulated datasets containing a
single recurrent copy number aberration.

the trivial demands of the peeling procedure itself), the peeling procedure
may be applied sequentially while comparing all peaks to the original
T, gain(U(f{ )) for significance testing. We note that the number of iterations
is an input parameter, and thus the user may choose an appropriate balance
between sequential significance of CNAs and computational cost. Such an
approach is conservative, as the original X contains the extreme values of
true recurrent CNAs, but the resulting P-values are corrected for multiple
comparisons. A more powerful but computationally demanding approach
is to repeat the cyclic shift assessment of statistical significance using the
post-peeled matrix X. Accordingly, DINAMIC provides two options, Quick
Look and Detailed Look, and the flow chart in Supplementary Figure 2
illustrates the differences between the two procedures. In Quick Look, the
original distribution of Tg,in(X) is used for significance testing of the most
extreme markers, whereas in Detailed Look the null distribution of Tgin (X)
is recomputed after each peeling. It is natural to wonder if additional power
to detect aberrant markers can be gained by recomputing the null distribution
of Tgain(X) after each peeling, and Supplementary Figure 3 indicates that this
is the case. A comparison of computation times for Quick Look and Detailed
Look can be found in the Supplementary Materials.

2.4 Probe bias in DNA copy number data

As noted in the Section 1, probe-specific variations in hybridization affinity
can lead to corresponding variations in array intensity. These in turn can result
in biased estimates of DNA copy number. To get some sense of the potential
magnitude of the bias, suppose Z is the chromosome 2 data from the glioma
dataset of Kotliarov et al. (2006), and let Seg(Z) be a continuous segmented
version of Z obtained using DNA copy. Segmentation algorithms use the
existing data to model the true underlying copy number as a piece-wise
constant function, so the expected column mean of Resid(Z)=Z —Seg(Z)
should be zero, with variation that should reflect random error. This
assumption can be tested for each marker using a f-test for the mean of
the entries of each column of Resid(Z) differing from zero. The histograms
in Supplementary Figure 4 of the Supplementary Material show that the
t-statistics are markedly overdispersed, which provides clear evidence that
probe bias is widespread.

Probe bias can lead to matrices with statistically significant column sums,
even in the absence of recurrent CNAs. Failure to correct for it can result
in increased type I error. Nevertheless, to the best of our knowledge none
of the currently available methods for analyzing DNA copy number data
have addressed this issue. One possible method of obtaining a bias-corrected
version of the data is to perform continuous segmentation as a preprocessing
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step, and then to analyze the segmented data. [GISTIC takes this approach,
although Beroukhim et al. (2007) make no mention of probe bias.] In the
Supplementary Material, we discuss simulations that show that probe bias
may still affect segmented data.

We recommend the following bias-correction procedure when working
with data matrices X that contain quantitative probe-level data:

Algorithm 3. Removing Probe Bias

(1) Use a segmentation algorithm to get Seg(X), a segmented version of
X.

(2) Compute Resid(X)=X —Seg(X).

(3) Let b be a 1 xm (row) vector whose j-th entry is the mean of the
entries in the j-th column of Resid(X).

(4) Let B be an n x m matrix with each row equal to b.
(5) Define X=X —B.

(6) Use a segmentation algorithm to obtain Seg(X), a segmented version
of X.

The vector b is an estimate of the probe bias in X, and this estimated bias
is removed when we compute X =X —B. However, it is not appropriate to
use DINAMIC to analyze X directly. To see why this is the case, we first
note that the column sums of X are identical to the column sums of Seg(X).
On the other hand, the entries of the two matrices do not have the same
form, because the rows of Seg(X) are piece-wise constant, whereas the rows
of X are not. As a result, the entries in X are likely to be more variable
than those of Seg(X), and clearly the same statement can be made when
comparing the entries of o(X) and o(Seg(X)). This observation becomes
important when we examine the column sums of o(X) and o(Seg(X)), which
need not be the same, even if the same cyclic shift o is applied to both
matrices. Since the entries of o(X) tend to be more variable than those of
o(Seg(X)), the column sums of o(X) tend to be more variable than those
of o(Seg(X)) as well. However, the column sums of o(X) and o(Seg(X))
should have approximately the same mean value. As a result, Tgain(a(f( ) is
likely to assume larger values than T, (0(Seg(X)). Therefore, we expect
to observe conservative behavior if we use the empirical null distribution
{Tgain (01 X ))}f’=1 to assess the significance of Tgain (Seg(X)). Since Tgam(f( )=
Tgain(Seg(X)), it follows that the same conclusion holds when we use cyclic
shifts to assess the statistical significance of Tguin(X), which is why it is
not appropriate to use DINAMIC to analyze X. Simulation studies of the
effectiveness of the peeling procedure are discussed in the Supplementary
Material.

3 IMPLEMENTATION

A number of simulated null datasets were created and subsequently
analyzed with DiNAMIC in order to study its behavior under the
null hypothesis that no recurrent CNAs are present, and the results
of these analyses are presented in Table 1. Various marker spacing
and correlation schemes were considered in an effort to show that
DiNAMIC is robust to the type of deviation from stationarity that can
be found in real datasets. A full description of the simulated datasets
appears in the Null Simulation Studies section of the Supplementary
material. In each case, the observed type I error was computed as
follows.

(1) Create a data matrix X' using the appropriate simulation
scheme.
(2) Compute p(Tgyin (X)) using N = 1000 cyclic shifts of X'.

(3) Determine whether Tgain(Xl) is significant at the «=0.05
level.

Table 1. Observed type I error for datasets simulated under the null
hypothesis

Null simulation model Type I error
Copy number data 0.0424
Segmented copy number data 0.0429
Serially correlated normal 0.0466
Clumped copy number data (25%) 0.0473
Clumped copy number data (50%) 0.0450
Clumped copy number data (75%) 0.0456
Clumped copy number data (100%) 0.0410

Steps (1)—(3) were repeated 10000 times, and the observed type 1
error was defined to be the proportion of Tgyin(X !y that was
significant at the «=0.05 level.

The values of the observed type I error given in Table 1 suggest
that DINAMIC is slightly conservative, which seems reasonable in
light of the effect of the cyclic shift procedure on the underlying
correlation of the markers. Markers on either side of a breakpoint
will be essentially independent, and hence they are more likely to
exhibit greater variability than neighboring markers in the original
data. As a result, the distribution of the maximum column sum
after cyclic shift should yield larger values than the corresponding
distribution for the original data, and similarly for the minimum
column sums. Because the values in Table 1 are quite close to 0.05,
any difference in the distributions appears to be very minor.

Additional simulations were performed under the alternative
hypothesis that a recurrent CNA is present, and a detailed discussion
of these simulations can be found in the Power Simulations and
Peeling Accuracy section of the Supplementary Material. Briefly,
we note that these simulations show that DINAMIC has equal power
to detect gains and losses. Moreover, DINAMIC’s power to detect
CNAs increases with the effect size of the aberration. Both of these
properties are illustrated by the power curves in Figure 3.

Next we present the results of the analysis of two publicly
available tumor datasets. The dataset of Natrajan er al. (2006)
contains a number of copy number gain and loss loci that
are potentially statistically significant. Using both GISTIC and
DiNAMIC’s Detailed Look, we analyzed a segmented version of
this dataset after applying the bias correction scheme described in
the Section 2. Because no normal tissue reference set was available,
the thresholds for amplification and deletion, which are required
input parameters for GISTIC, were set to the default values of
+0.1. Table 2 shows all markers that were peeled by DINAMIC
and have either P(Tgain(X )) <0.025 or p(Tjpss (X)) <0.025 (marked
by ‘X’), thereby controlling the overall genome-wide false positive
rate (FWER) at « =0.05. For comparison, we also show all regions
detected by GISTIC. By default, GISTIC uses an FDR threshold of
g=0.25, and in order to facilitate comparison with DiNAMIC, we
distinguish between GISTIC findings with ¢ <0.05 (marked by ‘X’)
from those with 0.05 <¢ <0.25 (marked by ‘O’). Note that there are
fewer regions declared significant by GISTIC than by DINAMIC at
the respective 0.05 level. For a given error threshold, the FWER is
more conservative than the FDR, so this comparison is meaningful.

Natrajan et al. (2006) noted that the most common copy number
gains were found in 1q, 8 and 12, with focal gains located at 1q22-25,
8p21-12 and 12p13. Both DiNAMIC and GISTIC detected markers
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Table 2. Markers in the Glioma dataset of Natrajan et al. (2006) discovered
by DINAMIC'’s detailed look and GISTIC

Gain marker DiNAMIC  GISTIC Loss marker DiNAMIC
1923 X X 1p36 X
2pl6 X X 1p31 X
2q32 X 2pl4 X
2q37 X 2q37 X
5pl5 X 3p21 X
6p25 X 3ql3 X
6p24 X 4pl5 X
6924 X 4q22 X
Tpll X 4q31 X
7921 X S5pl5 X
7q34 X 5ql1 X
8p23 X X 6pl2 X
8q24 X 6q12 X
9q34 X X 9p24 (0]
11pl15 X X 9p21 X
12p13 X X 9q21 X
12q12 X 10p15 X X
13q12 X 10q11 X
13q31 X 11pl15 X
1332 (0] 11p13 X X
15ql1 (0] 11923 X
16p13 X X 1124 X X
17925 X 13g21 X X
18pl1 X 14q12 X
18qll X 14q21 X X
18q12 X 15q12 X X
20pl1 X 16pll X
20q13 X 16q21 X
1623 X
17p13 X
17q12 X
17921 X
18q11 X
18921 X X
19p12 X
19q12 X
21q21 X X
22q12 X
22q13 X

Markers denoted with an ‘X’ are significant at the 0.05 level (DiNAMIC genome-wide
P-value and GISTIC g-value). For GISTIC, markers with 0.05<¢ <0.25 are denoted
by ‘0.

corresponding to these gains. DiINAMIC and GISTIC detected
markers at 9934, the site of the SET oncogene, which is supported by
SET protein amplification findings by Carlson ez al. (1998) in Wilms’
tumor. Natrajan er al. (2006) also found that gains at 1331 and
16p13 were associated with tumor relapse. Both methods detected
16p13. DINAMIC’s P-value for the locus in 13q31 is significant
at the 0.05 level, whereas GISTIC’s g-value for the locus in the
neighboring cytoband 13q32 is not. DINAMIC’s detection of 7q34
and 8q24 is noteworthy because the oncogenes BRAF and c-Myc lie
in these regions, respectively. Neither of these regions were detected
by GISTIC.

Losses at 10p15 and 11p13 were found by Natrajan et al. (2006)
in a number of subjects; these are the sites of WT'/ and WT2, genes
known to be associated with Wilms’ tumor. Both loci were detected
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Fig. 4. A plot of the column sums of the glioma dataset of Kotliarov et al.
(2006) near Tgain(X). This figures was constructed using the UCSC Genome
Browser (Kent et al., 2002) and LocusZoom (Pruim et al., 2010).

by DiINAMIC and GISTIC. The same authors concluded that loss
of 21g22 was associated with tumor relapse; both methods detected
the nearby locus 21g21. Although the loss sites found by the two
methods on 1p, 11q and 16q are not identical, the differences appear
to be minor. Using linkage analysis, Rahman ez al. (1996) discovered
FWT1/WT4, a familial Wilms’ tumor gene located on 17q12. This
site was detected by DiINAMIC but not GISTIC. The gene PDCDG6 is
located on 5p15, a site that was found by DiINAMIC but not GISTIC.
Because PDCD6 is known to be associated with programmed cell
death, detection of this locus may have biological relevance.

GISTIC and DiNAMIC’s Detailed Look were also used to analyze
the glioma dataset of Kotliarov et al. (2006). This dataset contains
copy number values from 178 tumors, 82 of which are glioblastomas.
As above, GISTIC’s amplification and deletion thresholds were set
to the default values of +0.1; the g-value threshold was 0.05.
With these settings, GISTIC found 47 significant gain regions
and 20 significant loss regions. Using DINAMIC, over 100 loci
for gains and losses were found to be significant at the o =0.05
level. The maximum column sum yielded the most aberrant marker,
which is marker 55489 in chr7. Figure 4 shows the column sums
near the marker, as well as nearby RefSeq genes (hgl8 genomic
annotation tracks). The highest peak includes EGFR and a region
upstream. EGFR amplification is a very common genetic mutation
in glioblastoma (Heimberger et al., 2005), and the peak finding is a
reassuring illustration of the DINAMIC procedure.

4 DISCUSSION

The analysis of DNA copy number data has proven to be a valuable
tool for the study of cancer. Segmentation methods can be used to
detect loci where copy number changes occur for a single subject, but
different approaches are needed if we wish to assess the statistical
significance of DNA copy number changes present in multiple
subjects. Here we have introduced DiINAMIC, a new permutation-
based method that can be used by researchers to detect statistically
significant recurrent CNAs.

When compared to existing methods, DINAMIC has a number
of advantages. First, since DiINAMIC makes no distributional
assumptions, it can analyze a variety of input data—continuous,
continuous segmented or discrete segmented. In addition, DINAMIC
can analyze genome-wide data, as well as data from a single
chromosome or chromosome arm. Finally, it does not require any
tuning parameters, such as user-defined thresholds for gain or loss,
that are potentially arbitrary.
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DiNAMIC is similar to GISTIC, STAC, MSA and KC-SMART in
that it assesses statistical significance using a permutation-based null
distribution. However, in contrast to the other procedures, the cyclic
shifts employed by DINAMIC preserve essentially the entire serial
structure in the data. The serial marker correlation can be very high,
especially for segmented data. For example, the average successive
marker correlation of the segmented glioma data of Kotliarov et al.
(2006) was 0.985. Thus, DINAMIC can preserve the overall false
positive rate, without the need to resort to overly conservative
procedures, which are sometimes employed by other methods.
For example, GISTIC provides multiple comparison control across
markers via Benjamini-Hochberg FDR control, which is generally
conservative under positive dependence structures (Benjamini and
Yekutieli, 2001). KC-SMART uses the Bonferroni method to control
for multiple testing, but this is also known to be conservative (Simes,
1986).

Based on our analysis of real datasets, it appears that DINAMIC
performs well when compared to currently available methods. In
addition, extensive simulation studies are described in Section 3, and
these are performed under a variety of marker correlation schemes.
The results of these simulations show that DINAMIC preserves type
I error, and is slightly conservative, even when the markers follow
non-stationary correlation structures similar to those found in real
data. Probe bias is potentially problematic, however. Even under
the null hypothesis that no CNAs are present, probe bias can lead
some columns to be more likely to attain the minimum or maximum
column sum. We propose a bias correction procedure in Section 2,
and use simulations to illustrate its effectiveness, as discussed in the
Supplementary Material. Presumably, other methods for detecting
recurrent CNAs are also susceptible to probe bias, but we have not
seen this issue discussed elsewhere.

DiNAMIC currently uses the columns sums S; to assess the
local evidence for excess copy number gains and losses, and
global statistics Tgyin(X) and Tjoss(X) for global testing. These
statistics are intuitive and easy to describe, but may potentially
ignore additional information, such as the simultaneous evidence
provided by multiple markers in a region. In addition, we do not
explore the true dissection of multiple regions, which may exhibit
correlated gain or loss structure across different tumors. Our intent
in developing DiINAMIC is to create a statistically sound testing
structure, which has immediate utility and can serve as the basis for
further extensions.

We have also performed simulation studies (data not shown)
that indicate that DINAMIC may also be applied to LOH data,
provided the data have few missing values. However, in standard
SNP-based LOH calling, the presence of heterozygosity produces a
larger number of missing values, with missingness rates that vary by
marker. Thus, we leave the application of DINAMIC to LOH data
as an extension for future research.
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