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Abstract: Hereditary factor XI (FXI) deficiency is characterized as an autosomal mild to moderate
coagulopathy in humans and domestic animals. Coagulation testing revealed FXI deficiency in a core
family of Maine Coon cats (MCCs) in the United States. Factor XI-deficient MCCs were homozygous
for a guanine to adenine transition resulting in a methionine substitution for the highly conserved
valine-516 in the FXI catalytic domain. Immunoblots detected FXI of normal size and quantity in
plasmas of MCCs homozygous for V516M. Some FXI-deficient MCCs experienced excessive post-
operative/traumatic bleeding. Screening of 263 MCCs in Europe revealed a mutant allele frequency
of 0.232 (23.2%). However, V516M was not found among 100 cats of other breeds. Recombinant
feline FXI-M516 (fFXI-M516) expressed ~4% of the activity of wild-type fFXI-V516 in plasma clotting
assays. Furthermore, fFXIa-M516 cleaved the chromogenic substrate S-2366 with ~4.3-fold lower
catalytic efficacy (kcat/Km) than fFXIa-V516, supporting a conformational alteration of the protease
active site. The rate of FIX activation by fFXIa-M516 was reduced >3-fold compared with fFXIa-V516.
The common missense variant FXI-V516M causes a cross-reactive material positive FXI deficiency in
MCCs that is associated with mild-moderate bleeding tendencies. Given the prevalence of the variant
in MCCs, genotyping is recommended prior to invasive procedures or breeding.

Keywords: hemorrhage; coagulopathy; mutation; feline; protease; partial thromboplastin time

1. Introduction

The coagulation protein factor XI (FXI) is a serine protease zymogen found in the
blood of mammals. It is synthesized in hepatocytes in placental mammals and circulates as
a complex with high molecular weight kininogen [1–3]. Factor XI is a dimer comprised of
identical 80 kDa polypeptides connected by a disulfide bond. Each subunit contains four
90 to 91 amino acid repeated domains, referred to as “apple domains” and a trypsin-like
catalytic domain [2]. In primitive mammals (monotremes) and marsupials FXI is believed
to be converted to the active protease FXIa by the enzyme factor XIIa (FXIIa), as part of
the intrinsic pathway of coagulation. However, thrombin may be the more physiologically
relevant FXI activator in placental mammals. FXIa propagates thrombin formation by
converting factor IX (FIX) to FIXaβ [1].

Inherited FXI deficiency is an autosomal trait first reported in humans by Rosenthal
and colleagues in 1953. The condition causes a mild to moderate bleeding disorder charac-
terized by post-traumatic and surgical hemorrhage, particularly when involving tissues
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with high intrinsic fibrinolytic activity, such as the mouth, nose, and urinary tract [4–10].
The prevalence of severe FXI deficiency (plasma activity <15% of normal) may vary among
human populations, with an estimate of 12.9 per 100,000 in Europeans [11]. The condition
is particularly common in certain ethnic groups (e.g., Ashkenazi and Iraqi Jews and French
Basques) [10,12,13], and has been reported more frequently in some geographic regions
(e.g., Israel, France, Southern Italy, and the United Kingdom) [14–17].

Hereditary FXI deficiency has been identified in a few domesticated species, with
high allele frequencies of causative mutations reported in certain breeds of cattle and
dogs [18–24]. In these animals, as in humans, the condition is associated with a mild to
moderate propensity for excessive bleeding. Here, we describe a novel common variant in
the FXI gene (F11) in Maine Coon cats (MCC), a common domestic cat breed. The mutation
results in a circulating FXI variant with altered catalytic activity and typically manifests as
a trauma- or surgery-induced bleeding disorder.

2. Materials and Methods
2.1. Animals and Samples

A FXI-deficient MCC with abnormal bleeding was identified in a cattery in the United
States in 2019. Subsequent coagulation testing of MCCs from this and a second cattery
related to the index case revealed additional FXI-deficient animals. Individuals from these
two catteries were considered the core family for this study. Primary care veterinarians for
MCCs in the core family provided blood samples for coagulation testing and information
regarding age, sex, and bleeding history. Client consent was obtained for sample acquisition
with approval from the Institutional Animal Care and Use Committee at Cornell University.
Citrated plasma samples were tested at the Comparative Coagulation Laboratory (Cornell,
College of Veterinary Medicine, Ithaca, NY, USA). Cell pellets from blood samples and
cheek swabs for core family members, and archived DNA from unrelated FXI-deficient
MCCs were sent to Labogen (Laboklin GmbH & Co. KG, Bad Kissingen, Germany) for
genetic studies. Pedigrees for the core family were analyzed for common ancestry. A review
of submissions to the Coagulation Laboratory was performed to identify samples from
additional MCCs tested for FXI activity over a two-year period (January 2019 to January
2021). An archived DNA sample of a domestic shorthair cat was used to sequence F11.
Archived DNA samples for MCCs and other cat breeds in Europe were genotyped for
F11 gene variants (Labogen; sent for routine genetic testing other than FXI deficiency).
Genotyping studies were approved by the governmental animal care and use committee in
Bavaria, Germany (RUF-55.2.2-2532-1-86-5).

2.2. Coagulation Assays

Activated partial thromboplastin time (aPTT) and prothrombin time (PT) assays,
and FVIII, FIX, FXI, and FXII activities were measured in citrated plasma using STA-
Compact and ST4 coagulation analyzers (Diagnostica Stago, Parsippany, NJ, USA) as
described [25,26]. Briefly, human congenital factor deficient plasmas (George King Bio-
Medical, Overland Park, KS, USA) were used in modified aPTT assays to measure the
intrinsic factor activities. A feline pooled plasma was prepared in-house from 15 healthy
domestic shorthair cats. Dilutions of the pooled plasma were used to generate factor assay
standard curves. Factor activities were reported as the percentage activity of the pooled
standard that had an assigned activity of 100% for each factor tested.

2.3. DNA Sequencing

The 14 coding exons and adjacent intronic regions of the feline F11 gene were se-
quenced bidirectionally on an ABI Genetic Analyzer 3130 (Applied Bioscience, Thermo
Fisher Scientific, Waltham, MA, USA). Template DNA was extracted from blood (GenEluteTM

Blood Genomic DNA Kit; Sigma Aldrich, Merck KGaA, Darmstadt, Germany) and buccal
swabs (MagNA Pure 96 Instrument; Roche Diagnostics GmbH, Penzberg, Germany). The
primer pairs based on F11 coding sequences from a reference genome for Felis catus 9.0
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(NCBI accession no. XM_003984601.5) are listed in Supplemental Table S1 [27]. DNA
sequences from MCCs were compared with the feline reference genome sequence. Pre-
dicted amino acid sequences for wild-type and variant FXI were analyzed for homology to
other species (Clustal Omega [28]). The first methionine of the signal peptide was desig-
nated as amino acid number one. Web-based tools were applied to predict the impact of
non-synonymous variants on the protein (PROVEAN, SIFT) [29,30].

2.4. Genotyping

DNA sequencing with primer pair 13 detected an F11 missense variant (XM 003984601.5:
c.1546G>A) in MCCs with FXI deficiency. The change resulted in substitution of FXI valine
516 (V516) with methionine (M516). A polymorphism within one of the primer binding
sites was identified in some MCCs that caused inconsistent sequencing of the wild-type
allele. A second primer pair (#13a) was generated (Supplemental Table S1), which properly
sequenced the alleles. A TaqMan® SNP Genotyping Assay was performed for the missense
F11 variant (Thermo Fisher Scientific) using Rotor-Gene 6000 (Corbett/QIAGEN, Hilden,
Germany). The initial TaqMan® primer pair (#13b) did not discriminate clearly between
heterozygous and wild-type cats (missing the mutant F11 allele in heterozygotes), so a
second primer pair (#13c) was developed that reliably discriminated between the genotypes
(Supplemental Table S1).

2.5. Factor XI Immunoprecipitation from Plasma

Citrated plasma from FXI-deficient and non-deficient humans, a baboon, and a do-
mestic cat were tested. Anti-FXI monoclonal IgG 14E11 was linked to Affigel-10 beads
(BioRad, Richmond, CA, USA) at 3 mg/mL [31]. One ml of plasma diluted 1:1 with Tris-
buffered saline (TBS; 50 mM Tris-HCl pH 7.4, 100 mM NaCl) was incubated with 50 µL
14E11-beads at room temperature (RT) for two hours. Beads were washed with TBS and
eluted with 50 µL sodium dodecyl sulfate (SDS)-non-reducing sample buffer. Eluates
were size fractionated by SDS-polyacrylamide gel electrophoresis (PAGE), transferred to
a nitrocellulose membrane, and incubated with biotinylated IgG 14E11. Detection was
with streptavidin-horseradish peroxidase (Thermo Scientific) and chemiluminescence [32].
Western blots of citrated plasma samples (1 µL) and recombinant proteins were performed
in a similar manner.

2.6. Recombinant FXI

cDNAs encoding wild-type feline and human FXI (fFXI-V516 and hFXI-V516, re-
spectively) were synthesized based on reference genome sequences. Sequence encoding
a nine amino acid hemagglutinin (HA) tag (YPYDVPDYA) was added to the C-termini.
The cDNAs were introduced into mammalian expression vector pJVCMV [33]. The nu-
cleotide triplet GTG encoding V516 in the fFXI cDNA was changed to ATG coding for
methionine (fFXI-M516). 293 human embryonic kidney (HEK) fibroblasts (American Type
Culture Collection [ATCC CRL 1573], Rockville, MD, USA) were transfected with 40 µg
of pJVCMV-FXI constructs and 2 µg of pRSVneo, encoding a neomycin resistance marker
using an Electrocell Manipulator 600 (BTX, San Diego, CA, USA). G418-resistant clones
expressing G418-resistant FXI were expanded in Dulbecco’s modified Eagle medium with
5% fetal bovine serum and 500 µg/mL G418, then transferred to a serum-free medium.
Recombinant FXI was purified by affinity chromatography using an anti-HA antibody
(Invitrogen/Thermo Scientific, Waltham, MA, USA).

2.7. Factor XI Activity in aPTT Assays

Thirty microliters of recombinant FXI (0.3–30 nM) in TBS with 0.1% bovine serum
albumin (TBSA) was mixed with 30 µL human FXI-deficient plasma and 30 µL PTT-A
reagent (Diagnostica Stago, Asnières-sur-Seine, France). After incubation at 37 ◦C for 5 min,
30 µL of 25 mM CaCl2 was added, and time to clot formation was determined with an
ST4 coagulation analyzer (Diagnostica Stago, Asnières-sur-Seine, France). Clotting times
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were plotted against FXI concentration on log–log plots, and activity of fFXI-M516 as a
percentage of fFXI-V516 activity was calculated.

2.8. Factor XI Activation

All reactions were carried out in 50 mM 4(-2-hydroxyethyl)-1-piperazine-ethanesulfonic
acid (HEPES, Sigma-Aldrich, St. Louis, MO, USA) pH 7.4, 125 mM NaCl, 1 mg/mL
polyethylene glycol (PEG) 8000 was incubated at RT. Autoactivation. FXI (60 nM) was
incubated with 10 µg/mL dextran sulfate (MW 6.5 to 10 kDa) and 500 µM L-pyroglutamyl-
L-prolyl-L-arginine-p-nitroaniline (S-2366; Diapharma, West Chester, OH, USA). Changes
in OD405 nm were continuously monitored on a spectrophotometer.

Activation by FXIIa or thrombin. FXI (200 nM) was incubated with 20 nM human FXIIa
(Enzyme Research, South Bend, IN, USA), or a combination of human thrombin (6 nM)
and polyphosphate (4 µM of polymers of 200 to 1300 phosphate units) in microfuge tubes
coated with PEG 20000. At various times, aliquots were removed into reducing SDS-sample
buffer, size fractionated by SDS-PAGE, and stained with Coomassie blue (GelCode Blue,
Pierce, Rockford, IL, USA).

2.9. Factor IX Activation by FXIa

FXI was incubated with FXIIa in TBS at 37 ◦C for 24 h to generate FXIa. Conversion of
the 80 kDa FXI zymogen to the 45 kDa heavy chain and 35 kDa catalytic domain of FXIa
was confirmed by SDS-PAGE (Supplemental Figure S1). Human FIX (200 nM) in 50 mM
HEPES pH 7.4, 125 mM NaCl, 5 mM CaCl2, and 1 mg/mL PEG 8000 was incubated at RT
with FXIa (2 nM) in PEG 20000-coated microfuge tubes. Aliquots were removed at various
times and mixed with non-reducing SDS-sample buffer. Samples were size fractionated
with non-reducing 10% SDS-PAGE and stained with Coomassie blue. Gels were analyzed
by band densitometry using an Azure Biosystems C600 imager (Dublin, CA, USA).

2.10. Chromogenic Assay for FXIa Activity

FXIa (6 nM) was incubated with 50 to 2000 µM S-2366 in 20 mM HEPES pH 7.4,
0.1 M NaCl, and 0.1% PEG 8000 at RT. Generation of free p-nitroaniline (pNA) was measured
by following changes in absorbance at 405 nm on a microtiter plate reader. pNA generation
was calculated from OD changes at 405 nm using an extinction coefficient of 9920 OD
units (mol/cm3). Inverses of pNA generation were plotted against inverses of S-2366
concentration. The X-intercept was 1/Km, the Y-intercept was 1/Vmax, and the kcat was
derived from Vmax.

2.11. Statistical Analysis

Statistical analysis was performed using MS Office Excel (Microsoft Corp., Redmond,
WA, USA) and the SPSS Statistics (version 26; IBM Corp., Armonk, NY, USA) software
programs. All continuous data were assessed for normal distribution. Differences in
coagulation factor activities and aPTTs were evaluated using a Kruskal–Wallis test [34].
The level of significance was set at p < 0.05.

3. Results
3.1. F11 Sequence Variants in Maine Coon Cats

The feline F11 gene (XM_003984601.5) resides on chromosome B1 and contains fifteen
exons. The predicted amino acid sequence (XP_003984650.2) is 85% identical to human
FXI (NP_000119.1) (Supplemental Figure S2). We sequenced the 14 coding exons (exons
2–15) and adjacent intronic regions of F11 from a domestic shorthair cat, 36 MCCs from
the core family, and three archived DNA samples from non-related MCCs. All 13 MCCs in
the core family with plasma FXI activity <30% of normal (and one with 42% FXI activity)
were homozygous for a non-synonymous variant in exon 13 (XM003984601.5:c.1546G>A)
(Figure 1A). Fourteen other MCCs were heterozygous for the variant. The substitution
changed the first nucleotide of the triplet coding for valine 516 (V516), resulting in a
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methionine (M516) replacement (Supplemental Figure S2). V516 in human and feline FXI
corresponds to V138 in the chymotrypsin numbering system used to compare trypsin-like
serine proteases [35]. It is highly conserved in mammals including a monotreme, the
duck-billed platypus (Ornithorhynchus anatinus) and resides in a conserved region of the
catalytic domain (Figure 1B). Utilizing genetic variant impact tools, this missense variant
was considered to be ‘neutral’ by PROVEAN but ‘not tolerated’ by SIFT [29,30].
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Figure 1. The FXI V516M substitution. (A) DNA and predicted amino acid sequence for a portion of
exon 13 of the F11 mRNA surrounding the single base substitution (XM_003984601.5:c.1546G>A) in
Maine Coon cats. The top sequence is from a homozygote for wild-type fFXI-V516 (XP_003984650.2),
the middle sequence from a homozygote for the missense variant fFXI-M516, and the bottom sequence
from a heterozygote for fFXI-V516 and fFXI-M516. The top lines show the DNA codons in grey boxes,
with the predicted amino acid sequences below. (B) Predicted FXI amino acid sequence alignments
(Clustal Omega [28]) of the part of the FXI catalytic domain containing the V516M substitution. Shown
are sequences from a MCC homozygous for the missense variant FXI-M516 (top) and several other
mammals. Conserved amino acids are shaded in grey, and the missense variant in the FXI-deficient
MCC is shaded black. Numbers on the right mark the last amino acid per row. NCBI database
accession numbers are: XP_003984650.2 (feline), NP_001128595.1 (canine), NP_000119.1 (human),
NP_001008665.1 (cattle), XP_028932216.1 (duck-billed platypus [O. anatinus]), XP_001368290.1 (gray
short-tailed opossum [M. domestica]), and XP_007174042.1 (minke whale [B. a. scammoni]) [27]. All
amino acid sequences are based on the initiator methionine in the signal peptide as the first amino
acid. Note that the V516M is equivalent to V498M in the human Legacy FXI sequence commonly used
for reporting human FXI mutations (EAHAD) in which the first amino acid of the mature plasma
protein is designated as residue one [36].

In addition to V516M, nine synonymous variants and one non-synonymous variant
were identified in F11 exons of domestic shorthair cats and MCCs (Supplemental Table S2).
A non-synonymous valine 8 to isoleucine variant was absent in affected MCCs and was not
predicted to be deleterious to structure by PROVEAN or SIFT. Synonymous variants were
dispersed over eight exons, and included a previously reported variant (Ensembl transcript:
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ENSFCAT00000001549.6 F11-201:c.282G>A; Supplemental Table S2) that was present in
three MCCs. No synonymous variant segregated with V516M or low FXI activity.

3.2. Genotyping for FXI-V516M

A TaqMan® SNP Genotyping Assay was developed to identify the FXI-V516M variant
and confirm results of exon sequencing. Within the core family there were 13 homozy-
gotes for FXI-V516M and 14 heterozygotes. While animals in the core family appeared to
be closely related based upon pedigree analysis, and FXI-V516M segregated within the
pedigree (Figure 2), a single common ancestor could not be identified for five generations
spanning 17 years (DNA was not available for ancestral cats).
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Figure 2. Maine Coon cat core family pedigrees. Pedigrees of the MCC core family from (A) the
cattery of the index case and (B) a related cattery. FXI activity and excessive bleeding phenotype are
indicated. Squares and circles represent males and females, respectively. Filled symbols indicate cats
homozygous for the FXI-V516M with low FXI activity and/or prolonged aPTT. Half-filled symbols
indicate cats that are carriers of the FXI-V516M variant. Percentage numbers below symbols indicate
FXI activities. The black asterisk indicates animals with known clinical signs of bleeding. Symbols
with a dot represent untested cats. Not all animals of the core family are shown in this pedigree.

Archived DNA for 263 MCCs from Germany and some other European countries were
genotyped for FXI-V516M. While their relatedness to the cats in the USA was not known
(intercontinental breeding commonly occurs), 100 MCCs were found to be heterozygous
(carriers), and 11 were homozygotes. Screening of 100 cats from 19 other breeds including
10 Norwegian Forest and 10 Siberian cats did not identify any cat with the V516M variant
(Table 1).
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Table 1. Comparison of F11 mutant allele frequencies in Maine Coon cats from the USA and Europe,
and other cat breeds in Europe assessed by Taqman® SNP Genotyping Assay.

Cats Total Number #
F11 Genotype (XP_003984650.1:p.V516M) Mutant (M516)

Allele FrequencyVV VM MM

MCCs from USA 39 12 14 13 0.51
MCCs Europe 263 152 100 11 0.23

Other Feline Breeds * 100 100 - - 0.00

* 17 breeds; VV, wild-type; VM, heterozygous; MM, homozygous mutant.

3.3. Clinical Signs

Excessive bleeding was reported for eight MCCs homozygous for FXI-V516M and/or
who had prolonged aPTTs with low plasma FXI activity (three from the core family, one
from Italy and four identified by a retrospective analysis at Cornell University). Other
related cats did not have histories of excessive bleeding. Episodic recurrent bleeding was
reported at different ages (from juvenile up to 8 years of age at first presentation). Signs
of abnormal hemostasis included easy bruising, gingival bleeding, bleeding with loss of
deciduous teeth, subcutaneous and aural hematomas, and late post-operative bleeding. One
animal experienced massive bleeding after being spayed. Another developed hematomas
with recurrent bleeding despite transfusion support. Two MCCs (Figure 2A, marked with
asterisks) had easy bruising. While we did not have clinical information for all animals,
abnormal bleeding with trauma or surgery was reported only in MCCs homozygous for
the V516M substitution.

3.4. Coagulation Test Results: aPTT and FXI Activity

Coagulation screening tests including FXI activity assays were available for 39 core
family MCCs. All MCCs homozygous for FXI-V516M substitution had prolonged aPTTs
and normal PTs (Figure 3A and Supplemental Tables S3 and S4). Their aPTTs ranged from
30 to 42 sec (upper limit of normal 21 sec), except for one aPTT of 77 sec. The aPTTs of MCCs
heterozygous for FXI-V516M were slightly prolonged when compared with homozygous
wild-type MCCs (Figure 3A and Supplemental Tables S3 and S4 and).

Specific coagulation factor testing revealed reduced FXI activity (17–29% of feline
pooled normal plasma) in plasmas of MCCs homozygous for FXI-V516M (Figure 3B,
Supplemental Tables S3 and S4). Two MCCs homozygous for FXI-V516M with 3% (aPTT
was not measured) and 42% FXI activities (prolonged aPTT [29 sec]) were at the extremes
and were considered outliers ( Supplemental Tables S3 and S4). Cats heterozygous for FXI-
V516M had aPTTs within or slightly above the reference interval, and normal to moderately
reduced plasma FXI activities when compared with the pooled control plasma and wild-
type MCCs. There was a strong correlation between genotype, aPTT, and FXI activity in
MCCs (Figure 3A,B and Supplemental Tables S3 and S4).

A two-year retrospective case review at Cornell University identified an additional
72 MCCs (ages 0.2 to 8 years, equal gender distribution) from fourteen U.S. states with re-
sults for FXI activity testing. The median and range of FXI activity in these MCCs were 58%
and 10–197%, respectively. Twelve cats had FXI activities <30%, suggestive of homozygosity
for FXI deficiency, however, DNA was not available for confirmatory genotyping.
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3.5. Factor XI in Feline Plasma

The antibody 14E11, which recognizes an epitope on the FXI A2 domain that is
conserved in most placental mammals [1], immunoprecipitated a protein from the plasma
of a domestic cat. The band ran slightly faster on SDS-PAGE than FXI from human
and baboon (bFXI) plasmas (Figure 4A). As the FXI polypeptides from humans and cats
both have 625 amino acids (Supplemental Figure S2), differences in post-translational
modifications may explain the different migration. On Western blots of plasma, FXI in
healthy MCCs also ran faster than human or mouse FXI (Figure 4B). Interestingly, FXI
bands were present for MCCs homozygous for the M516 variant. This indicates the mutant
protein is expressed and secreted by hepatocytes, forms a dimer, and is stable in plasma
(i.e., a cross-reactive material positive [CRM+] FXI variant).

3.6. Factor XI Activity

We prepared recombinant fFXI-V516 and fFXI-M516 in HEK293 fibroblasts. The
immunoblot (Figure 4C) confirmed that fFXI homodimers (unreduced) and monomers (re-
duced) migrated slightly faster than hFXI. To determine the relative activities of fFXI-V516
and fFXI-M516, we assumed that the FXI concentrations in feline and human plasmas were
similar (~30 nM), based on the measured FXI activity of wildtype cat plasma (Figure 3B).
The aPTT of human plasma completely lacking FXI was 101.2 ± 0.8 sec. Human FXI-
deficient plasma supplemented with 30 nM fFXI-V516 or human plasma-derived FXI were
27.7 ± 0.4 and 27.4 ± 0.5 sec., respectively, while plasma supplemented with fFXI-M516
had a longer aPTT (48.4 ± 1.3 sec, Figure 4D). Using a modified aPTT assay in which
human FXI-deficient plasma supplemented with 30 nM fFXI-V516 was assigned as FXI
activity of 100% (Figure 4E), fFXI-M516 exhibited a markedly reduced activity (4% of
control, Figure 4E).
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Figure 4. Plasma and Recombinant FXI. (A) Western blots of non-reducing 7.5% polyacrylamide gels
of fXI immunoprecipitated from normal human plasma (hFXI), FXI-deficient human (hFXI−/−), ba-
boon plasma (bFXI) and domestic cat plasma (fFXI) with 14E11 linked to agarose beads. The primary
detection antibody was biotinylated-14E11. (B) Western blots of non-reducing 7.5% polyacrylamide
gels of wild-type (WT) or FXI-deficient (XI−/−) human and mouse plasmas, and plasmas from MMCs
homozygous for wild-type FXI (VV), homozygous for variant FXI (MM) or heterozygous for both
forms of FXI (VM). The primary detection antibody was biotinylated-14E11. Positions of bands
representing human (hFXI), mouse (mFXI) and feline (fFXI) are indicated on the right. (C) Coomassie
blue stained 7.5% polyacrylamide gel run under reducing (left) or non-reducing (right) conditions
of plasma-derived human FXI (pFXI); and recombinant wild-type human (hFXI), wild-type feline
(fFXI-V516), and variant feline (fFXI-M516). Positions of the FXI monomer (reduced) and homodimer
(unreduced) are indicated on the right. For panels A–C, positions of molecular mass standards in
kDa are shown on the left. (D) aPTT clotting times for FXI-deficient human plasma supplemented
with TBSA vehicle (TBSA), 30 nM plasma-derived human FXI (pFXI), 30 nM wild-type feline FXI
(fFXI-V516), or 30 nM variant feline FXI (fFXI-M516). Reactions were run in triplicate. Horizontal
bars indicate the means and one SD for each group. (E) Log-log plots of aPTT clotting times versus
plasma FXI concentration for human FXI-deficient plasma supplemented with various concentrations
of wild-type feline FXI (fFXI-V516) or variant feline FXI (fFXI-M516). The activity of the variant FXI
as a percentage of wild-type FXI was determined, assuming the activity for 30 nM FXI-V516 was
100% of normal.
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3.7. Factor XI Activation

Human FXI is converted to FXIa by autoactivation in the presence of a polyanion
such as dextran sulfate. Interestingly, wild-type fFXI did not undergo autoactivation under
similar conditions (Figure 5A). In aPTT assays, FXIIa must convert FXI to FXIa to initiate
clotting. Human FXIIa converted fFXI-V516 and fFXI-M516 to FXIa at comparable rates,
but more slowly than hFXI (Figure 5B). It is possible that fFXI is a poorer substrate for
human FXIIa than hFXI. More importantly, the similar results for fFXI-V516 and fFXI-M516
indicated that a defect in activation is unlikely to be responsible for the poor performance
of fFXI-M516 protein in the aPTT assay. The absence of a bleeding disorder associated with
FXII deficiency implies that FXI may be activated by proteases other than FXIIa. Thrombin
has been shown to activate FXI, and the reaction is enhanced by polyanions such as dextran
sulfate [37]. With hFXI, conversion to FXIa in the presence of thrombin and dextran sulfate
is due to a combination of thrombin-mediated proteolysis and autoactivation (Figure 5C,
top image). Because fFXI does not undergo autoactivation, conversion of fFXI-V516 and
fFXI-M516 to FXIa by thrombin and dextran sulfate was considerably slower than for hFXI
(Figure 5C, middle and bottom images), with the two feline proteins activating similarly.
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monitored on a spectrophotometer. (B) FXI activation by FXIIa. Time courses of 200 nM human
wild-type FXI (hFXI), feline wild-type FXI (fFXI-V516), or feline variant FXI (fFXI-M516) incubated
with 20 nM human FXIIa. (C) FXI activation by thrombin. Time courses of 200 nM human wild-type
FXI (hFXI), feline wild-type FXI (fFXI-V516), or feline variant FXI (fFXI-M516) incubated with 6 nM
human thrombin and 4 µM polyphosphate. For panels B and C, samples were removed into reducing
SDS-sample buffer at the indicated times, then size fractionated on reducing 10% polyacrylamide
gels and stained with Coomassie blue. Positions of standards for zymogen FXI (XI), and the heavy
chain (HC) and catalytic domain (CD) of FXIa are indicated on the right.

3.8. Factor XIa Activity in a Chromogenic Assay

Using the tripeptide chromogenic substrate S-2366, hFXIa and fcFXIa-V516 displayed
comparable activities across a range of S-2366 concentrations (Figure 6A). The fFXIa-
M516 protein also displayed substantial activity, but with a distinctly different pattern
than for hFXIa or fFXIa-V516 (Figure 6A). fFXIa-M516 actually turned S-2366 over faster
than fFXIa-V516 at high substrate concentrations (higher Vmax), but with a substantially
higher Km (Figure 6B,C) indicating poorer affinity for the substrate. The result was an
~4.3-fold reduction in catalytic efficacy (kcat/Km) for fFXI-M516 compared with fFXI-V516,
supporting the hypothesis that the V516M substitution alters the conformation of the
protease active site.
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Figure 6. Chromogenic assays for FXIa activity (A) Six nanomolar human wild-type FXIa (hFXIa),
feline wild-type FXIa (fFXIa-V516) or feline variant FXIa (fFXIa-M516) were incubated with varying
concentrations of S-2366, and change in OD405 nm over time was followed on a microtiter spec-
trophotometer. (B) Inverse reciprocal plots for data in panel C. Values for OD405 nm/min were
converted to pNA formed per unit time. (C) Kinetic parameters for S-2366 cleavage by FXIa derived
from the reciprocal plots in panel B.

3.9. Factor IX Activation by FXIa

The primary function of FXIa during hemostasis is to convert zymogen FIX to the
protease FIXaβ. This is accomplished by two sequential cleavages that release the FIX
activation peptide [38]. In time course experiments, hFXIa and fFXIa-V516 converted
human FIX to FIXaβ at comparable rates, while FIX activation by fFXIa-M516 was ~3.2-fold
slower (Figure 7), consistent with a catalytic defect in fFXI-M516.



Genes 2022, 13, 792 12 of 17

Genes 2022, 13, x FOR PEER REVIEW 12 of 17 
 

 

FIX to FIXaβ at comparable rates, while FIX activation by fFXIa-M516 was ~3.2-fold slower 
(Figure 7), consistent with a catalytic defect in fFXI-M516. 

 
Figure 7. Factor IX Activation by FXIa. Time courses of 200 nM human FIX incubated with 2 nM 
human wild-type FXIa (hFXIa), feline wild-type FXIa (fFXIa-V516), and feline variant FXIa (fFXIa-
M516). At the indicated times, samples were removed into non-reducing SDS-sample buffer. Sam-
ples were size fractionated on reducing 10% polyacrylamide gels and stained with Coomassie blue. 
Positions of standards for zymogen FIX (IX) and the protease FIXaβ (IXaβ) are indicated on the right. 
Below each gel are results of densitometric analyses, showing reduction in FIX and formation of 
FIXaβ as functions of time. 

4. Discussion 
The study of hereditary coagulopathies in domesticated animals can improve the di-

agnosis and treatment of affected individuals in veterinary medicine, and facilitate breed-
ing strategies to prevent propagation of inherited diseases. Moreover, domestic animals 
are substantially larger than mice and their hereditary coagulopathies may serve better as 
translational models for understanding the pathogenesis and propagation of human 
bleeding disorders, and for assessing efficacy and safety of novel treatments. A variety of 
hereditary bleeding disorders, including deficiencies of factor VIII and factor IX, have 
been described in domesticated animals. In particular, hemophilic dogs have been used 
extensively as intermediates between mouse models and human patients to study and 
introduce novel therapies [39]. 

Approximately 400 F11 variants associated with FXI deficiency in humans are listed 
in the new Factor XI Gene (F11) Variant Database European Association for Haemophilia 
and Allied Disorders (EAHAD, https://f11-db.eahad.org, accessed 26 March 2022) [36,40]. 
More than half are missense variants, and they are distributed over the entire F11 gene. 
While the pathogenic effects of many of these variants have not been studied in detail, 
most are associated with a lack of variant protein in the circulation (CRM-deficiency). Few 
circulating FXI variants (CRM+ deficiency) have been described. We report here on an F11 
missense mutation in MCCs associated with a CRM+ FXI variant, reduced FXI activity in 
plasma, and a mild–moderate bleeding tendency. A single base change (XM 
003984601.5:c.1546G>A) in the feline F11 gene results in valine-516 in the trypsin-like cat-
alytic (serine protease) domain of FXI being replaced with methionine (V516M). Residue 

Figure 7. Factor IX Activation by FXIa. Time courses of 200 nM human FIX incubated with 2 nM
human wild-type FXIa (hFXIa), feline wild-type FXIa (fFXIa-V516), and feline variant FXIa (fFXIa-
M516). At the indicated times, samples were removed into non-reducing SDS-sample buffer. Samples
were size fractionated on reducing 10% polyacrylamide gels and stained with Coomassie blue.
Positions of standards for zymogen FIX (IX) and the protease FIXaβ (IXaβ) are indicated on the right.
Below each gel are results of densitometric analyses, showing reduction in FIX and formation of
FIXaβ as functions of time.

4. Discussion

The study of hereditary coagulopathies in domesticated animals can improve the
diagnosis and treatment of affected individuals in veterinary medicine, and facilitate
breeding strategies to prevent propagation of inherited diseases. Moreover, domestic
animals are substantially larger than mice and their hereditary coagulopathies may serve
better as translational models for understanding the pathogenesis and propagation of
human bleeding disorders, and for assessing efficacy and safety of novel treatments. A
variety of hereditary bleeding disorders, including deficiencies of factor VIII and factor IX,
have been described in domesticated animals. In particular, hemophilic dogs have been
used extensively as intermediates between mouse models and human patients to study
and introduce novel therapies [39].

Approximately 400 F11 variants associated with FXI deficiency in humans are listed
in the new Factor XI Gene (F11) Variant Database European Association for Haemophilia
and Allied Disorders (EAHAD, https://f11-db.eahad.org, accessed 26 March 2022) [36,40].
More than half are missense variants, and they are distributed over the entire F11 gene.
While the pathogenic effects of many of these variants have not been studied in detail,
most are associated with a lack of variant protein in the circulation (CRM-deficiency).
Few circulating FXI variants (CRM+ deficiency) have been described. We report here on
an F11 missense mutation in MCCs associated with a CRM+ FXI variant, reduced FXI
activity in plasma, and a mild–moderate bleeding tendency. A single base change (XM
003984601.5:c.1546G>A) in the feline F11 gene results in valine-516 in the trypsin-like
catalytic (serine protease) domain of FXI being replaced with methionine (V516M). Residue
516 corresponds to amino acid 498 in numbering systems that designate the first amino

https://f11-db.eahad.org
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acid of mature human plasma FXI as residue 1. The same FXI-V516M missense variant was
described in a Korean woman with a bleeding disorder [41].

While this is the first report of a F11 variant in FXI-deficient cats, F11 insertions
associated with bleeding disorders due to FXI deficiency have been reported in cattle
and dogs. In Holstein–Friesian and Indian Sahiwal cattle, a 76 bp insertion introduces a
termination codon, resulting in an mRNA encoding a protein lacking a functional catalytic
domain (lacking exons 13–15), and premature mRNA decay [18,22]. In Japanese-Black
cattle, a 15 bp insertion next to the cysteine-291 residue that stabilizes the structure of the
fourth apple domain is predicted to disturb formation of the FXI homodimer [21,42,43].
Factor XI deficiency in Kerry Blue Terrier dogs is caused by a short interspersed nuclear
element (SINE) insertion in exon 15 [23,24].

The V516M substitution replaces a highly conserved hydrophobic residue with another
hydrophobic residue, albeit with a bulkier side chain. The normal migration and intense
band for FXI in plasma on Western blots are consistent with a normal plasma FXI protein
concentration in MCCs homozygous for the substitution, and indicate that FXI tolerates
the V516M replacement without gross structural perturbation. However, our studies
indicate that an alteration in the conformation of the protease active site reduces the rate
of FIX activation. Activation of human FIX by FXIa or by the factor VIIa/tissue factor
complex involves sequential cleavage of the FIX R145-A146 and R180-V181 peptide bonds.
Activation goes through an intermediate, FIXα, in which only the R145-A146 bond is
cleaved. FIXα accumulates during activation by factor VIIa/tissue factor because the
second cleavage after R180 is rate limiting. In contrast, no intermediate accumulates during
FIX activation by FXIa, because the initial cleavage at R145-A146 is rate limiting. The FXI
activation mechanism depends on a FIX-binding exosite in the FXIa A3 domain, and its
loss reduces the cleavage rates of both FIX bonds, and results in accumulation of FIXα.
During FIX activation by fFXIa-M516, the rate of FIXaβ generation is reduced, but no FIXα
accumulates, indicating that the relative rates of the two cleavages are maintained, and that
the A3-domain dependent part of the activation mechanism is intact [2,44].

The bleeding tendency in MCCs from the core family is consistent with an autosomal
recessive disorder (i.e., no clinical bleeding in heterozygotes). The size and amount of the
FXI dimers found in heterozygous cats appeared similar to those in wild-type and affected
cats. The observed plasma FXI activities were approximately half normal, detected as a
mild prolongation of the aPTT but with no evidence for an increased bleeding tendency.
However, as V516M is a CRM+ variant, and as FXI is a homodimer, heterozygotes for
V516M likely have three forms of plasma FXI proteins: wild-type homodimers, mutant
homodimers, and heterodimers with one wild-type and one mutant polypeptide. The
effects of this on hemostasis may, therefore, not be reflected in the aPTT.

In humans, FXI deficiency is associated with a trauma- and surgery-related bleeding
diathesis. However, the bleeding tendency is highly variable, and correlates poorly with
plasma FXI activity. Indeed, many humans with severe FXI deficiency do not have a history
of abnormal hemostasis and are identified serendipitously when an aPTT is performed.
Others may experience abnormal hemostasis that occurs most often after trauma involving
the mouth, nasopharynx, and urinary tract. Tissues in these areas are thought to have
high fibrinolytic activity, leading to the hypothesis that FXI contributes to hemostasis
by preventing premature fibrinolytic breakdown of clots [45]. Similarly, the bleeding
tendency in FXI-deficient MCCs varies, with some asymptomatic animals (even after
hemostatic challenge such as surgery) and others exhibiting mild–moderate bleeding with
trauma or surgery. A similar bleeding diathesis has been reported in FXI-deficient Kerry
Blue terrier dogs. FXI-deficient cattle have a mild bleeding tendency, with blood-tinged
milk and prolonged bleeding from injection sites reported. Of greater importance for
livestock production, FXI deficiency in cattle has been associated with reduced calving and
increased susceptibility to infection [18]. Interestingly, total FXI deficiency has not been
associated with hemostatic abnormalities in F11 knockout mice [46]. It is conceivable that
the contribution of FXI to hemostasis varies significantly between species [47].
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In domesticated animals, mutant allele frequencies may reach high levels due to
inbreeding practices for propagating desirable traits, limited regional breeding populations,
and use of a limited number of sires that carry one or two copies of the mutant/variant
allele. The frequency of the insertion, causing FXI deficiency in Holstein–Friesian cattle
in Canada, was estimated to be between 8 and17% in 1980 [48]. Factor XI deficiency was
first reported in Kerry Blue terriers in 1995, but while widely present there are no data
on frequency. While there are no prior reports of common genetic variants causing FXI
deficiency in feline breeds, our survey shows an unexpectedly high mutant allele frequency
in MCCs in Europe. The large affected MCC core family and unrelated FXI-deficient
MCCs identified in the retrospective review suggest that the FXI-V516M variant may be
widespread among MCCs in the USA. A common ancestor was not identified for European
and United States MCCs but pedigree analysis suggests that the variant likely originated
within the last century. The frequent exchange of desirable breeding cats between countries
explains the presence of the pathogenic variant on at least two continents. Genotyping in
the USA was biased and focused on the core family, thus the frequency of the trait in the
United States will require additional study, but it may well be similar to that in Europe
(23.2%). The FXI-V516M variant was not found in any other feline breeds in the European
samples genotyped, including Norwegian Forest and Siberian cats that are thought to be
closely related to the MCC breed. However, our genotyping survey of other cat breeds was
limited. There is one prior report of a bleeding domestic shorthair cat with FXI deficiency,
however molecular genetic analysis was not performed [49].

Factor XI deficiency in MCCs has important clinical ramifications. FXI deficiency
should be included in the differential diagnosis for any MCC with unexplained and ab-
normal bleeding. However, hemophilia A and B must be considered if bleeding is severe,
particularly in a male cat, as spontaneous new mutations in F8 and F9 do occur and are
also characterized by prolongation of the aPTT. Finally, FXII deficiency should also be
considered in cats with an isolated aPTT prolongation, particularly if there is no history
of excessive bleeding. FXII deficiency is common in domestic shorthair cats and has been
reported in numerous other breeds including MCCs [25]. Recently, a fibrinolytic defect was
reported in several bleeding MCCs from the United Kingdom, but the molecular defect
remains unknown [50].

Diagnosis of FXI deficiency in MCC with clinical signs of bleeding has therapeutic
relevance. Treatment of coagulation factor deficiencies in cats is restricted to fresh whole
blood or fresh frozen plasma transfusion due to the small unit size that can be collected
from a cat (typically 50 mL). While FXI-deficient humans may be treated with plasma
or FXI-concentrate, antifibrinolytic drugs such as tranexamic acid and ε-aminocaproic
acid have become the mainstay of therapy [51]. FXI-containing blood products were used
successfully in FXI-deficient dogs [23]. Furthermore, use of antifibrinolytic agents appears
to be safe in dogs [52–54], and could be tested in FXI-deficient dogs. However, cats have
relatively restricted drug metabolisms and are prone to adverse side-effects with many
drugs (e.g., acetylsalicylic acid). The effects and safety of antifibrinolytics has not been
studied in cats.

Surgical bleeding in FXI-deficient animals can be avoided with pre-operative transfu-
sion or managed through surgical technique and close post-operative monitoring. It seems
advisable to screen MCCs with aPTT tests or F11 genotyping prior to surgery. Indeed,
screening for FXI-V516M could be performed along with screening for other known dele-
terious traits in the breed as part of wellness, pre-sale, or pre-breeding exams. It is often
desirable to identify hereditary diseases in domestic animals to avoid breeding affected
individuals. However, other important considerations are the available gene pool (which
may be very narrow), maintenance of desirable traits, and the severity of a particular
disease and its manageability. In this regard, the generally mild and manageable clinical
phenotype of FXI deficiency may be less of a consideration than other disease traits in
MCCs such as hypertrophic cardiomyopathy, erythroid pyruvate kinase deficiency, and
spinal muscular dystrophy.
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5. Conclusions

In conclusion, we present the first clinical phenotype to molecular genetic character-
ization of FXI deficiency in cats. fFXI-M516 is a CRM+ variant with impaired catalytic
activity that reduces the capacity of FXIa to activate FIX. It appears to be common in the
MCC breed and causes a mild–moderate bleeding tendency. Genotyping for F11 variant
along with other breed specific pathogenic variants is recommended for MCCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050792/s1, Table S1: Primer sequences; Table S2: Variants
in sequenced Maine Coon cats; Table S3: Hemostatic test results; Table S4: Comparison of coagulation
screening tests and specific factor activities; Figure S1: Incubation of FXI with FXIIa; Figure S2: Amino
acid sequences of human and feline FXI.
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