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Abstract

Through understanding the intricacies of host-pathogen interactions, it is now possible to inhibit
the growth of microbes, especially viruses, by targeting host-cell proteins and functions. This new
antimicrobial strategy has proved effective in the laboratory and in the clinic, and it has great
potential for the future.
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It is now clear that, despite the optimism of the 1967 US

Surgeon General in stating that ‘it’s time to close the book on

infectious diseases’, implying that drugs such as antibiotics

had made microbial diseases a thing of the past, infectious

diseases remain a major cause of continuing human suffer-

ing. It is estimated that infectious diseases currently account

for one third of global annual deaths. This led the more

recent 16th US Surgeon General, David Satcher, to state that

‘we are seeing a global resurgence of infectious disease’.

Finding ways to treat these diseases is a continuing battle,

and any new avenues for discovering therapeutics should

be explored. 

Current approaches to antimicrobial drug
development  
The paradigm of antimicrobial drugs, be they against

viruses, bacteria, fungi or parasites, has been to target

unique processes or enzymes of the pathogen with a specific

drug, thus achieving a high antimicrobial effect and low

host-cell toxicity because there is no cross-inhibition of host-

cell proteins. This paradigm has been used to develop almost

all current antimicrobial therapies, with many notable suc-

cesses, and it will continue to be an important drug-develop-

ment strategy in the future [1,2]. Even when pressure from a

drug results in the selection of drug-resistant variants, the

antimicrobial drug pipeline has delivered new therapies that

allow us to stay ahead - in some cases just ahead - of a resur-

gence of old microbial diseases [3]. 

Despite this success, it is clear that the pipeline of new

antimicrobial drugs is not full, and it may never be possible

to develop drugs targeted to all the diverse pathogens that

cause disease. This is partly because the disease burden of

any one pathogen is unlikely to reach sufficient levels for

pharmaceutical companies to justify the enormous cost of

developing a new drug, which (although hotly debated) is

estimated to be between $0.5 billion and $1.7 billion [4-6].

Although legislation over the past 20 years in the USA, espe-

cially the ‘Orphan Drug Act’, is designed to reduce such bar-

riers, the difficulty of developing new antimicrobial drugs

remains, and it is compounded by the fact that many infec-

tious diseases requiring treatment occur in developing coun-

tries, which cannot cope with the costs of new drugs. In

addition, the fact that multiple companies develop drugs

against the same ‘important’ pathogen dilutes an already

limited market share; this can be beneficial, however, when

drug combination therapy is used to reduce the selection for

drug resistance in, for example, human immunodeficiency

virus (HIV) in patients with acquired immune deficiency

syndrome (AIDS). 

Broad-spectrum antibiotics are a way to expand the number

of diseases that are treatable with the same medicine, but in

the field of antiviral drugs such broad-spectrum classes of

drug are less common. Even despite the massive sequencing

of microbial genomes, which has identified many new drug

targets, the classic antimicrobial paradigm cannot quickly

deliver what we need. Given that encounters with existing or



new microbial pathogens are unlikely to decrease [7], can we

find a new way of combating microbial disease? Evidence

suggests that we can, and that by using genome-scale

approaches to identifying critical host-cell functions that

facilitate microbial replication, we may be able to unlock

new potential in both existing and future drugs.

New approaches to antiviral therapy  
It is clear that all pathogenic microorganisms interact in

some way with host tissues and cells during the disease

process. These interactions can now be viewed at the level of

whole-genome transcriptional responses [8,9]. In the case of

viruses the interaction is obligatory, as viruses require the

host-cell environment to replicate. It is the viral world that

provides clues to how we could acquire a new range of

antimicrobial drugs at relatively little cost and on a short

timescale.

The concept of attacking the microbe by altering or aug-

menting a host-cell function or process is not new. The use

of interferon � (IFN�) in combination with ribavirin in the

treatment of hepatitis C virus infection is successful in 50%

of infected individuals on a long-term basis [10,11], although

the exact mode of action, and the reasons why 50% of people

do not respond fully, are not understood. Similarly, inter-

leukin-2 (IL-2) has been used to augment ‘highly active anti-

retroviral therapy’ (HAART) in HIV infection (HAART is a

multiple drug combination therapy with higher antiviral

activity than therapy with a single drug). Although this does

not directly affect the viral load in the peripheral blood, it

accelerates the normalization of CD4+ T-cell counts in

infected individuals (HIV-infected individuals have reduced

numbers of T cells bearing the CD4 cell-surface molecule

because of the effects of HIV replication) [12].

Recently, however, a new anti-infective paradigm has

emerged, a logical extension of INF� and IL-2 therapies but

more sophisticated. Because pathogens, especially viruses,

use host-cell pathways and enzymes for their replicative life

cycle, it seems reasonable to expect that inhibiting such cel-

lular processes would have an antiviral effect as a byproduct.

There is now ample evidence, both in vitro and in vivo, that

this is an effective strategy. Moreover, because all existing

licensed drugs that target a human disease process affect the

functioning of a cell or organ system in some way, we have in

effect a ready-made pharmacy of antimicrobial agents with

defined safety-data profiles and clinical-use histories that

only require assessment for new or ‘off target’ second use.

Inhibiting host-cell functions produces an antiviral
effect  
The evidence that the approach of inhibiting host-cell func-

tions works now extends across many diverse virus types,

including poxviruses [13], herpesviruses [14-16], retroviruses

[17], hepadnaviruses [18,19] and flaviviruses [20] (Table 1).

But how were these novel antiviral targets discovered? In

some cases, the insight came from basic knowledge of cellular

enzymes and pathways with which the viral proteins interact.

In other cases, genome-scale approaches such as gene-

expression profiling using DNA microarrays identified

genes, upregulated as part of the infected cell response, that

were also known targets for drugs. 

There are at least three possible functions of these upregu-

lated genes. First, they may be induced specifically by a

given virus to facilitate efficient virus replication. Second,

they may be induced as part of the cellular response to the

pathogen and cause disease pathogenesis. And third, they

may be part of the cellular response leading to pathogen

clearance. Targeting genes in the first and second categories

should lead to reduced virus replication and attenuated

disease pathogenesis, whereas inhibiting genes involved in

pathogen clearance should be avoided. 

The antiviral properties that have been described for Gleevec

(Imatinib mesylate), which was originally licensed for the

treatment of chronic myelogenous leukemia and inhibits the

Abl tyrosine kinase, exemplify the advantages of target dis-

covery that uses both basic knowledge and the genome-scale

approach. Knowledge that the protein A36R of the vaccinia

virus, a poxvirus, is phosphorylated by both Src and Abl

receptor tyrosine kinases led Reeves et al. [13] to examine

the effects of inhibiting A36R phosphorylation. It became

evident that Gleevec not only decreased virus titer and

plaque size in tissue culture, but also prevented the effects of

a lethal dose of vaccinia in a mouse nasal challenge assay,

showing that Gleevec had the potential to limit the spread of

vaccinia in vivo. 

For the Kaposi’s sarcoma herpesvirus (KSHV), infection of

endothelial cells in vitro results in a change in cellular mor-

phology from cobblestone-like to a spindle-cell appearance

reminiscent of Kaposi’s sarcoma (KS) cells. This was shown

by Moses et al. [14] to coincide with increased expression of

c-Kit, another target of Gleevec. Gleevec was tested and

shown to prevent this change in cellular morphology in vitro

[14]. More recently, the results of a small clinical study

showed that Gleevec also reduced tumor size in 50% of

people with KS [21]. 

An inhibitor of another KSHV-mediated cellular effect, B-cell

lymphoma development, was also identified through

changes in gene-expression patterns. My colleagues and I

[16] identified the vitamin D receptor as being highly

expressed in a subset of B-cell lymphomas, including KSHV

primary effusion lymphoma, and showed by using a vitamin

D receptor analog that the proliferation of these tumors

could be greatly reduced in vitro. Similarly, changes in gene

expression following human cytomegalovirus (HCMV) infec-

tion in vitro showed increased expression of cyclooxygenase

2 (COX-2) [22]. COX-2, a component of the prostaglandin
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H2 synthase complex, which is part of the eicosanoid biosyn-

thesis pathway, catalyzes the production of prostaglandin

H2 from arachidonic acid. Using COX-2 inhibitors, Zhu et

al. [15] went on to show that HCMV titer could be reduced

by two orders of magnitude in vitro. This result fits with the

fact that inhibitors of the eicosanoid pathway, such as

aspirin (a nonsteroidal anti-inflammatory drug that inhibits

COX-1 and COX-2), also inhibit HCMV replication [23]. The

importance of COX-2 to cytomegalovirus replication is high-

lighted further by the fact that the related rhesus

cytomegalovirus (RhCMV), which infects rhesus macaques,

encodes its own COX-2 ortholog [24]. Although the long-

term use of COX-2 inhibitors results in an increased risk of

cardiovascular toxicity in some individuals, a fact that has

resulted in the withdrawal of the drugs for treating arthritis,

it is possible that short-term use of the drug would be useful

and safe in the treatment of acute HCMV disease.

Two other approved drugs have shown promising effects in

the treatment of viral disease; in fact, they converge on a

common cellular pathway but affect different components

and different viruses (Figure 1). Prenylation, a specific lipid

modification of proteins that promotes their association with

membranes, is known to be required for the maturation of

infectious hepatitis delta virus (HDV). Co-infection of HDV

with hepatitis B virus (HBV) causes rapid progression to

chronic liver disease. But HDV is a replication-defective

virus that requires the HBV surface antigen to become infec-

tious, and the acquisition of this antigen depends on the

HDV large delta antigen, a protein that has a prenylation

motif recognized by the enzyme farnesyltransferase.

Inhibitors of farnesyltransferase have been developed to

prevent prenylation of Ras and the subsequent association of

Ras with membranes, thereby reducing its transforming

properties. Bordier et al. [18,19] have shown that farnesyl-

transferase inhibitors reduced HDV infectious virion pro-

duction [18] and also reduced HDV viral load, as assessed by

the number of viral RNA copies in the serum of an experi-

mental mouse model for HDV liver infection [19]. This raises

the important possibility that prenylation inhibitors, which

are known to have low side effects, could be a new class of

antiviral agents [25]. 
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Table 1

Host drug targets that have antiviral activity

Antiviral Antiviral
activity activity

Virus family Virus species Host-cell target Drug in vitro in vivo References

Poxviridae Vaccinia virus Abl tyrosine kinase Gleevec + + [13]

Herpesviridae KSHV c-Kit Gleevec + + [14,21]

KSHV Vitamin D receptor Vitamin D + - [16]
analog EB1089

HSV-1 EIF-2� Salubrinal + - [30]

HCMV COX-2 BMS-279652 + - [15,23]

BMS-279654

BMS-279655

Indomethacin

Aspirin

Unclassified Hepatitis D virus Farnesyltransferase FTI-277 + + [18,19]

FTI-2153

Hepadnaviridae Hepatitis B virus Heterogeneous nuclear  siRNA + - [31]
ribonucleoprotein K (hnRNP K)

Retroviridae HIV HMG-CoA reductase Lovastatin + + [17]

HIV Geranylgeranyltransferase I GGTI-286 + - [17]

` HIV ATM kinase KU-55933 + - [28]

HIV Deoxyhypusine synthase CNI-1493 + - [29]

HIV Histone deacetylase Valporic acid + + [32,33]

Flaviviridae West Nile disease virus c-Yes (Src family kinases) PP2 + - [20]
SU6656
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Figure 1 (see legend on the following page)
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Inhibiting HIV-1 replication  
Applying to HIV infections the approach of looking for known

drugs that also affect viruses has resulted in new potential

treatment options. The upregulation of genes involved in cho-

lesterol biosynthesis pathways has been observed by gene-

expression studies of HIV-infected cells in vitro. The

upregulation increases the cellular levels of cholesterol, an

effect mediated by the HIV protein Nef [26,27]. Cholesterol-

lowering drugs such as statins, which inhibit 3-hydroxy-3-

methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting

enzyme in the cholesterol biosynthetic pathway, might

therefore have an antiviral effect on HIV. 

In a ground breaking study, del Real et al. [17] tested the

effect of statins on HIV replication both in vitro and in vivo.

Amazingly, statins both inhibited HIV replication in culture,

an effect that could be reversed by bypassing HMG-CoA

reductase by adding the enzyme’s product mevalonate (see

Figure 1), and reduced HIV viral load by greater than three-

fold in six patients treated for one month. Interestingly, del

Real et al. [17] showed that the anti-HIV effect of the statins

was mediated by geranylgeranyl pyrophosphate, the other

prenyl lipid involved in prenylating proteins. Inhibition of

geranylgeranyltransferase I with a small-molecule inhibitor

recapitulated the anti-HIV effect of the statin, whereas far-

nesyltransferase inhibitors had no effect. Geranylgeranyla-

tion is required for post-translational modification of Rho

GTPases, and the HIV envelope protein activates Rho upon

binding the cell surface; it is therefore possible that the anti-

HIV effects of statins occur through disruption of Rho acti-

vation, required for efficient virus entry into the cell, that is

induced by the HIV envelope protein gp120 [17].

HIV replication can also be inhibited by targeting other cellu-

lar functions. Several studies have shown that the cellular

mechanisms responsible for repairing DNA double-strand

breaks are required to support retroviral infection and

prevent cell death. Lau et al. [28] demonstrated that the

ataxia-telangiectasia (ATM) kinase, one of the cellular regula-

tors of responses to DNA damage, is activated by integration

of the HIV genome into the host-cell genome. Inhibiting ATM

kinase activity efficiently blocked HIV replication in T cells by

inducing cell death in the infected cells, most probably as a

result of an impaired ability to repair DNA double-stranded

breaks arising from retroviral genome integration. Inhibiting

ATM kinase also worked synergistically with existing anti-

retroviral drugs [28]. 

By a similar rationale, Hauber et al. [29] used knowledge

about the HIV Rev protein to identify a novel antiviral

agent: Rev uses the eukaryotic initiation factor 5A (eIF-5a)

as a cofactor for the nuclear export of unspliced viral RNAs

containing the Rev-responsive element. Activity is con-

ferred on eIF-5a by the modification of the amino acid

lysine to hypusine. The catalysis of the hypusine modifica-

tion is achieved by two enzymes, deoxyhypusine synthase

(DHS) and deoxyhypusine hydrolase. A small-molecule

inhibitor of DHS, CNI-1493, is known to have antiprolifera-

tive effects on human cells in vitro and is currently being

assessed clinically for the treatment of Crohn’s disease.

Hauber et al. [29] showed that CNI-1493 could inhibit HIV

replication in vitro at drug concentrations below those that

are being used in the clinical trials, suggesting that CNI-

1493 is also a potential antiviral.

Inhibition of basic host-cell functions  
Targeting aspects of the host mRNA transport and translation

initiation mechanisms are also ways of inhibiting herpes

simplex virus (HSV) and HBV replication. Research aimed at

protecting cells from endoplasmic reticulum (ER) stress

showed that the small molecule salubrinal could block dephos-

phorylation of the eukaryotic initiation factor eIF-2�, and that

this inhibited HSV replication. All eukaryotic cells respond to

ER stress, including the stress induced by viral infection, by

inducing a set of pathways known collectively as the unfolded

protein response. The unfolded protein response leads in part

to the phosphorylation of eIF-2� and subsequent transient

translational arrest, a cytoprotective response. Virus infection

can also induce eIF-2� phosphorylation through the double-

stranded RNA-activated protein kinase (PKR). To counteract

this activity HSV encodes a protein (ICP34.5) that interacts

with cellular proteins to mediate eIF-2� dephosphorylation. 

Testing of salubrinal in an HSV-infection assay showed that

the small molecule could block HSV-mediated eIF-2� dephos-

phorylation and prevent HSV replication [30]. Similarly,
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Figure 1 (see figure on the previous page)
Well characterized drugs that inhibit prenylation can also be used to inhibit viruses. The biosynthetic pathway from acetyl CoA to squalene and then on
through multiple other steps (not shown) to ubiquinone, cholesterol and dolichol is shown. Statins inhibit HMG-CoA reductase and thereby prevent the
synthesis of mevalonate and subsequent downstream lipids; statins also inhibit the replication of HIV [17]. Farnesyl pyrophosphate and geranyl
pyrophosphate are the substrates for farnesyltransferase and geranylgeranyltransferase I and II, respectively. These enzymes catalyze the prenylation of
proteins (blue hexagons), with farnesyltransferase catalyzing the addition of the 15-carbon farnesyl prenyl lipids to the cysteine of the tetrapeptide CXXX
(where X is one of a possible three amino acids at the carboxyl terminus of the protein) and geranylgeranyltransferase I and II catalyzing the addition of
20-carbon geranyl prenyl lipids to CXXX, CC or CXC motifs. Farnesyltransferase inhibitors (FTI) block the farnesylation of proteins such as Ras and also
inhibit the replication of hepatitis delta virus (HDV) [18,19]. Similarly, geranylgeranyltransferase inhibitors (GGTI) block the geranylation of proteins such
as Rho and also inhibit the replication of HIV [17]. The prenylation of Ras and Rho proteins promotes their association with membranes and is therefore
necessary for the targeting of these proteins to the plasma membrane, where they function.



knowledge that the HBV genome enhancer region binds het-

erogeneous nuclear ribonucleoprotein K (hnRNP K), a pre-

mRNA-binding protein that shuttles between the nucleus

and cytoplasm, led Ng et al. [31] to remove hnRNP K using

RNA interference (RNAi) gene silencing and to demonstrate

that this reduces HBV DNA replication by up to 50%.

The ability to target host-cell proteins as antivirals is not

limited to DNA viruses (poxviruses and herpesviruses) or

viruses that use DNA intermediates as part of their replica-

tive life cycle (hepadnaviruses and retroviruses). Studies of

gene-expression changes caused by infection with West Nile

virus (WNV), a flavivirus the genome of which consists of a

single-stranded positive-sense RNA molecule, showed that

the gene encoding the Src-family kinase (SFK) c-Yes was

upregulated fivefold [20]. Specifically inhibiting SFKs with

small molecules and removing c-Yes by RNAi significantly

inhibited WNV replication in vitro [20]. 

Treating persistent virus infections 
Many viruses, especially herpesviruses and retroviruses,

persist for the lifetime of the host after the initial infec-

tion. These ‘latent’ infections are the source of continued

virus production, but they are generally not affected by

the range of drugs that target the lytic side of the viral life

cycle. Recently, the prospect of using licensed drugs to

deplete latently HIV-infected cells in patients has shown

promising results. 

Histone deacetylase 1 (HDAC1), which mediates chromatin

remodeling, has been implicated in the repression of HIV

gene expression in infected cells, and inhibition of HDAC1

by the anticonvulsant valporic acid (VPA) results in reacti-

vation of HIV-1 replication in latently infected T cells [32].

This may seem like a bad effect, but it raises the possibility

of using VPA to induce a ‘flushing out’ of latently infected

cells in combination with antiretroviral drugs to prevent

infection of new cells. The idea was tested in a small group

of patients, and the combination of VPA and the antiretrovi-

ral enfuvirtide resulted in a significant decline in latently

infected resting T cells [33]. It may therefore be possible in

the future to reactivate latent virus infections in a con-

trolled way and thereby perhaps eliminate the virus from

the individual completely. 

Systematic hunting for new antiviral targets 
Together, the approaches described above provide sufficient

evidence that targeting host-cell processes is a good

approach to finding new antiviral drugs. More of the same

kind of research will clearly uncover other cell processes that

can be similarly inhibited. Fewer than half of the studies dis-

cussed so far, however, used DNA microarray technology to

provide the first clue to which drug to use [14-16,20], sug-

gesting that greater use of unbiased approaches will uncover

a greater range of novel drug targets. 

The use of genomics and bioinformatics in drug discovery is

now part of the core business of many pharmaceutical com-

panies [34,35]. This has resulted in a rationalization of the

sort of data required and how they are integrated to facilitate

discovery of new drugs. The simplest unbiased approach to

finding new antivirals would be to assess systematically the

gene-expression changes induced in appropriate target cells

by a range of viruses, and then link the induced genes to

known drugs that target the protein or pathway encoded by

the induced genes. This can be undertaken in vitro, as the data

generated from appropriate cells seem to be robust and can be

translated directly into therapies for patients [17,21,33]. 

As it is unlikely that one laboratory will generate all possible

virus-induced host gene-expression data, it is clear that data

sharing and integration will be required, an idea champi-

oned by the Katze laboratory through their view of a ‘virus

compendium’ to capture such information [36]. If such a

compendium were integrated with data on existing drugs

and their protein or pathway targets, we would have an

easily accessible means of finding potential antivirals. Even

in the absence of a unified compendium, meta-analysis of

host gene-expression programs altered by infection has

revealed over 500 genes that can now be explored [9]. If

these are not direct targets themselves, the clever use of

‘pathway expansion’ methods should reveal alternative pro-

teins that could be used to achieve an antiviral effect.

Pathway expansion allows a given protein (which may or

may not be the target of an existing drug) to be placed in a

functional pathway, thereby identifying additional pathway

proteins as potential drug targets. When unraveling the anti-

HIV effects of statins, knowledge that HMG-CoA reductase

is part of the pathway producing farnesyl and geranyl

pyrophosphate (see Figure 1) allowed the identification of

farnesyl- and geranyltransferase inhibitors as additional

drugs in the expanded pathway [17]. 

To find more general targets, this strategy could be integrated

with high-throughput loss-of-function assays, in which the

function being assessed is the ability of the cells to support

viral replication. This could be undertaken either in model

systems or in cell types that can actually be infected by the

viruses of interest. The idea of using model systems stems

from the work of two groups [37-39], who assessed yeast

single-gene-deletion libraries for their ability to support the

replication of RNA virus genomes. Each study identified a

range of yeast genes that were required for viral-genome

replication or recombination. A concern must be raised about

the low level of concordance between genes identified by the

two groups, however. In fact, comparing genes required for

tomato bushy stunt virus (TBSV) replication with those for

brome mosaic virus (BMV) replication identified only four

genes needed for both viruses. This small overlap can be

explained in part by different experimental systems and the

fact that TBSV and BMV represent different supergroups of

viruses. Nevertheless, the real proof that these surrogate
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systems are meaningful will require testing the effect of

inhibiting some of the genes in real viral replication systems. 

A more authentic method, and one supported by some of the

examples described above, would be the large-scale loss-of-

function screening of human cells with RNAi libraries [40].

When combined with expression vectors to produce short

interfering RNAs (siRNAs), such screens have been success-

ful in identifying new modulators of the proliferation arrest

that is dependent on the transcription factor p53 [41]. 

A related method of using genetic suppressor elements has

been used in the context of HIV infection. Genetic suppres-

sor elements work by blocking target-gene function through

an inhibitory RNA or the production of trans-dominant pep-

tides. When used to screen for genes important for HIV

infection, this method revealed known proteins, such as the

chemokine receptor CXCR4 and cyclin T1, together with

additional proteins that were subsequently confirmed to

affect HIV replication [42]. Such approaches could identify

many important host-cell factors, but care will be needed to

exclude the possibility that they do not induce an apparent

antiviral response by simply activating classical cellular

sensors of viral infection, such as PKR.

Combined with existing mechanistic insights into host-

pathogen interactions, the coordinated use of unbiased,

large-scale genomic methods will reveal a richer picture of

the integrated host-cell response to infection and could well

unlock the largely untapped potential of inhibiting virus

replication through targeting the host. Whether using exist-

ing drugs in an infectious disease setting will result in addi-

tional side effects is not known, but the safety profiles of

drugs generated from their current clinical use suggest that

this will not be a large concern. The use of existing drugs for

a new antiviral purpose, although in some cases not as effec-

tive as traditional antiviral drugs in preventing virus replica-

tion, will also enable combination therapies and may be less

likely to cause selection for drug-resistant viruses. 

In conclusion, the constraints on developing drugs to treat

diseases caused by the wide variety of microbes has left us

with a gap in healthcare that existing and emerging

pathogens can all too easily colonize. The potential to target

host-cell functions that prevent or reduce pathogen replica-

tion may be a quick and cost-effective way to plug this gap.
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