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Abstract

Background: Genetic mapping has been used as a tool to study the genetic architecture of complex traits by
localizing their underlying quantitative trait loci (QTLs). Statistical methods for genetic mapping rely on a key
assumption, that is, traits obey a parametric distribution. However, in practice real data may not perfectly follow
the specified distribution.

Results: Here, we derive a robust statistical approach for QTL mapping that accommodates a certain degree of
misspecification of the true model by incorporating integrated square errors into the genetic mapping framework.
A hypothesis testing is formulated by defining a new test statistics - energy difference.

Conclusions: Simulation studies were performed to investigate the statistical properties of this approach and
compare these properties with those from traditional maximum likelihood and non-parametric QTL mapping
approaches. Lastly, analyses of real examples were conducted to demonstrate the usefulness and utilization of the
new approach in a practical genetic setting.

Background
Genetic mapping of quantitative trait loci, or QTLs,
plays prominent roles in understanding the genetic basis
of many phenotypic variations [1-4]. Depending on the
biological nature of the organism and trait studied, sev-
eral types of mapping populations generated from differ-
ent experimental crosses can be constructed to map the
QTL of interest. Among those, backcross and F2 inter-
cross are probably two of the most widely used techni-
ques and have been applied in many areas, such as
maize and mice studies [5-7]. These experimental
crosses separate individual gene components, including
QTLs, in a controlled manner, which serves as a foun-
dation for QTL mapping. The basic question is how to
efficiently and effectively associate a quantitative trait
with its corresponding QTLs and subsequently deter-
mine their locations and genetic effects through QTL-
linked genetic markers. The past two decades have seen
tremendous statistical methodological development in
this area [8-16]. Usually, one significant assumption
required to derive these statistical methods is that the

phenotypic values of a trait can be modelled by a
known parametric distribution, such as a normal distri-
bution. By estimating the parameters that define the
phenotypic distribution of each genotype at a putative
QTL and testing their differences among different QTL
genotypes within a mixture model framework, the exis-
tence of a QTL and its genetic effects can be inferred
on the genome. Statistical approaches for parameter
estimation with the mixture model are typically derived
within the maximum likelihood (ML) context because of
many good properties of a ML estimator, such as
asymptotical unbiasedness and asymptotical efficiency.
Recently, a surge of interest has also been exploded in
solving the mixture models by Bayesian approaches
[17-19].
Parametric modelling has the advantage of easy inter-

pretation of results. However, in practice it is often hard
or unrealistic to guarantee the assumed model for analy-
sis truly reflects the phenotypic distribution of a trait.
For example, significant measurement errors or outliers
occurring as a usual case in data collection may lead the
observed trait distribution to deviate from the underly-
ing distribution of data. Figure 1 illustrates the empirical
density for the growth rate of body mass from ages 5
weeks to 10 weeks in an F2 mapping population of 500
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mice derived from two inbred lines [20]. It is obvious
that the density function is not a perfect normal distri-
bution, as it contains a small bump on the upper tail of
the density function. Since the main body of the density
curve resembles a normal distribution, the true distribu-
tion of observed body mass data (Figure 1) can be
viewed as a distorted normal. In these cases, if the tradi-
tional methods, such as maximum likelihood, were
applied, significant bias would be introduced by the
potential outliers. Therefore, there is a pressing need to
develop a more robust statistical approach for mapping
those complex traits that display such a distribution.
Non-parametric rank-based method has been introduced
for mapping traits with outliers [11]; however, as it is
nonparametric, the interpretability of the mapping
results, especially on the genetic effects such as percen-
tage of variance explained by the significant QTL, is
usually poor.
In this article, we derive a new mapping approach that

is not only robust for genetic mapping of complex traits
with the distorted normal distributions, as shown in Fig-
ure 1, but also maintains the easy interpretability of a
parametric model by minimizing the integrated square
errors. The integrated square error has been typically
used as the goodness-of-fit criterion in nonparametric
density estimation [21]. Some previous studies have also
shown that this criterion can be applied in parametric
settings and the parameter estimator from this method,
or the L2 estimator (L2E), is robust to the model specifi-
cation [22-25]. In this sense, this method allows moder-
ate deviation of a proposed density function from the
true underlying density. Here, we incorporate the princi-
pal of the integrated square errors into genetic mapping
framework in a parametric way, and call it the L2E

mapping method. The main advantage of this new map-
ping method is that it automatically manipulates data
points that are apparently outliers by giving them less
weight in parameter estimation, and therefore yields
more accurate estimation of QTL locations and effects.
In the case where the data cleaning is not possible or
very hard to do so, L2E method would be a very benefi-
cial choice.

Methods
Mapping population
Suppose there is an F2 population of N progenies,
initiated with two different inbred lines, in which there
are three groups of genotypes at each gene. A genetic
linkage map is constructed for this population, aimed to
identify trait-controlling QTLs on the genome. Let yi
denote a phenotypic trait of interest for F2 progeny i. It
is assumed that a QTL with allele Q and q exists to
affect this trait. The QTL is bracketed by two flanking
markers M1 (with alleles M1 and m1) and M2 (with
alleles M2 and m2). Let r1, r2 and r be the recombina-
tion fractions between M1 and the QTL, between the
QTL and M2, and between the two markers, respec-
tively. Although QTL genotypes are not known, the
probability with which a progeny i carries a specific
QTL genotype can be inferred from the marker geno-
types of this progeny. The conditional probability of
QTL genotype j (j = 2 for QQ, 1 for Qq, and 0 for qq),
conditional upon one of the nine genotypes of the flank-
ing markers for progeny i in the F2 population, can be
derived and expressed as a function of the recombina-
tion fractions (r1, r2 and r) [26].
Suppose each QTL genotype j has a genotypic mean

gj. The comparisons of these means among three differ-
ent genotypes can determine whether and how this
putative QTL affects the trait. The trait phenotype of
progeny i due to the QTL can be expressed by the fol-
lowing linear statistical model:

yi =
2∑

j=0

ξijgj + ei (1)

Where ξij is an indicator variable for individual i that
is defined as 1 for QTL genotype j considered and 0
otherwise, and ei ~ f (e) is the residual effect of progeny
i, including the aggregate effect of polygenes and error
effect.
We assume that f (e) is the true density of ei, which is

unknown but has zero mean. Then, the density of yi
would be a mixture of f with mean gj. Within the maxi-
mum likelihood context, the EM algorithm can be
employed to estimate the genetic parameters and test
the existence of the QTL [26].

Figure 1 Mice data density plot. The empirical density for the
growth rate of body mass from ages 5 weeks to 10 weeks in an F2
mapping population of 500 mice.
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L2E approach
Our proposed L2E method is to minimize a data-based
estimation of the L2 divergence between the assumed
model density � and the true objective density (f) under-
lying the data. An energy function (E) can be defined to
measure the divergence between � and f:

E =
∫

|ϕ − f |2du =
∫

ϕ2du − 2
∫

ϕfdu +
∫

f 2du

where u is a random variable with density of f. Since
the goal is to minimize E, ∫ f2du can be dropped off
because it is a constant of unknown parameters.
Hence, the energy function to be minimized can be
redefined as

E =
∫

ϕ2du − 2
∫

ϕfdu =
∫

ϕ2du − 2E(ϕ)

Although it is impossible to give the explicit form of E
(�), by applying the law of large numbers (LLN), it can
be approximated by the observed data and then a new
energy function can be formulated as

E ∼=
∫

ϕ2du − 2
N

N∑
i=1

ϕ(ui) (2)

Since the LLN has been employed in the formula deri-
vation, the L2E method is not suitable for dataset with a
small sample size. Let Θ denote all the parameters in E,
then the L2E of Θ �(�̂) is

�̂ = arg min
�

(E) ∼= arg min
�

(∫
ϕ2du − 2

N

N∑
i=1

ϕ(ui)
)

The asymptotic properties of the parameter estimators
by L2E can be shown by the following proposition.
Proposition 1
Consider a single trait y. Let �(y | Θ) be the para-

metric model used in (2). Under mild conditions, the L2E
parameters are consistent and asymptotically normal, i.
e.,

√
n(�̂ − �0) → N(0, A−1(B2 − B1BT

1)A−1),

where

A =
∫

∂ϕ

∂�0

(
∂ϕ

∂�0

)T

du, B2 =
∫

∂ϕ

∂�0

(
∂ϕ

∂�0

)T

ϕdu andB1 =
∫

∂ϕ

∂�0
ϕdu

Proof
The estimation functions for (2) are

�n =
∂E

∂�
=

n∑
i=1

∂ϕ(ui)
∂�

−
∫

∂ϕ(u)
∂�

ϕdu =
1
n

n∑
i=1

(
∂ϕ(ui)

∂�
−
∫

∂ϕ(u)
∂�

ϕdu
)

,

Define ψ =
∂ϕ(u)
∂�

− ∫ ∂ϕ(u)
∂�

ϕdu . Then, from the

theory for standard M-estimators, we have

√
n(�̂ − �0) → N(0, A−1

(�0)B(�0)A
−1
(�0)),

where

A(�0) = E
[
− ∂ψ

∂�T

]
�=�0

= E
[∫

∂2ϕ

∂�∂�T
du +

∫
∂ϕ

∂�

∂ϕ

∂�T
du −

∫
∂2ϕ

∂�∂�T
du
]

�=�0

=
∫

∂ϕ

∂�T
0

∂ϕ

∂�0
du

and

B(�0) = E[ψψT]�=�0 =
∫

∂ϕ

∂�0

(
∂ϕ

∂�T
0

)T

ϕdu −
∫

∂ϕ

∂�0
ϕdu

∫
∂ϕ

∂�T
0

ϕdu.

Then, the results follow.
In the setting of genetic mapping, where the density of

a mixture of normal applies (model 1), two approaches
can be used to implement the principle of minimum
integrated squared errors. The most straightforward
implementation is to directly model the true density of
the error term (ei), and the second one is based on
modelling the true density of the observed phenotype
data (yi). The obvious difference between these two
methods is that density for ei is f with mean zero, but
the density for yi is a mixture of f with mean gj. A more
subtle difference is that the error term based L2E
method (eL2E) involves one additional approximation
step in genetic positions between markers. Although
simulation studies shown in later sections demonstrate
that eL2E is inferior to the phenotype data based L2E
method (pL2E), we would still like to present the eL2E
procedure, because its formulation at marker positions
can help derive the pL2E method, as will be seen below.
Both eL2E and pL2E employ the energy function E
defined in Equation (2), with u being the error term e
or the observed data y, correspondingly.

Error term based L2E method (eL2E)
In model (1), the randomness is derived from the under-
lying error term. Thus, it is natural to directly model the
density of the error term f(e). In a continuous case, a
normal density function �(e|0,s2) is used to approxi-
mate the true error density f(e). Thus, using (2), the
energy function for error (Ee) becomes

Ee =
∫

ϕ2de − 2
N

N∑
i=1

ϕ(ei)

where

ei = yi −
2∑

j=0

ξijgj (3)
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Notice that

∫
ϕ2de =

∫ ⎡⎢⎣ 1√
2πσ 2

e
−

e2

2σ 2

⎤
⎥⎦

2

de =
1

2
√

πσ 2

Then, the estimators of the unknown parameter set in
(Θ = (g0, g1, g2, s2)) can be represented as

�̂ = arg min
�

(Ee) ∼= arg min
�

(
1

2
√

πσ 2
− 2

N

N∑
i=1

φ(ei)

)

where �(ei) can be approximated by its expectation E
[�(ei)]. Based on the error (3), we have

E[ϕ(ei)] =
2∑

j=0

ωijϕ(yi − gi)

where ωij is the conditional probability of QTL geno-
type j given the marker genotype of progeny i.
Thus, the estimator of the parameters is

�̂ = arg min
�

(Ee) ∼= arg min
�

⎛
⎜⎜⎝ 1

2
√

πσ 2
− 2

N

N∑
i=1

2∑
j=0

ωij
1

2
√

πσ 2
e

−
(yi − gj)

2

2σ 2

⎞
⎟⎟⎠ (4)

In practice, the genomic location of a QTL is esti-
mated by scanning positions across the genome. When
the QTL is assumed to exist between the two markers,
the Ee is approximated twice, one by the LLN and the
other by the calculation of �(ei). However, if the QTL is
scanned at a marker position, only the approximation
by the LLN is needed because no mixture density is
used in this situation. The energy function at the marker
position Eem is expressed as

Eem =
1

2
√

πσ 2
− 2

N

N∑
i=1

ϕ(ei) =
1

2
√

πσ 2
− 2

N

2∑
k=0

Nk∑
i=1

1

2
√

πσ 2
e
−

(yi − gk)2

2σ 2 (5)

where Nk is the number of progeny in the marker

genotype group k and
∑
k

Nk = N .

Phenotype data based L2E method (pL2E)
Unlike the error density, the phenotype data density
contains a mixture of density functions each corre-
sponding to a different QTL genotype. Also, because
each marker genotype group k (k = 1,...,9 for two mar-
kers) has a different probability of linking with the QTL
genotypes, the phenotype density is marker-dependent.
The density for marker genotype k is expressed as

ϕk(yi) =
2∑

j=0
ωkjϕ(yi|gj, σ 2), (6)

where ωij is the conditional probability of QTL geno-
type j given the marker genotype k. From Eq. (2), the
energy function for marker genotype k is

Ek
d =
∫

(φ(y))2− 2
Nk

Nk∑
i=1

φk(yi) =
∫ ( 2∑

j=1
ωkjφj

)2

dy− 2
Nk

Nk∑
i=1

2∑
j=0

ωkj
1

2
√

πσ 2
e
−

(yi − gj)
2

2σ 2

Notice that

∫ ( 2∑
j=0

ωkjϕj

)2

dy =
∫
⎡
⎢⎣ 2∑

j=0
ωkj

1√
2πσ 2

e
−

(yi − gj)
2

2σ 2

⎤
⎥⎦

2

dy =
1√

2πσ 2

⎡
⎢⎣ 2∑

j=0
ω2

kj + 2
∑
i�=j

ωkiωkje
−

(gi − gj)
2

4σ 2

⎤
⎥⎦

Thus, we have

Ek
d =

1√
2πσ 2

⎡
⎢⎣ 2∑

j=0
ω2

kj + 2
∑
i�=j

ωkiωkje
−

(gi − gj)
2

4σ 2 − 2
√

2
Nk

Nk∑
i=1

2∑
j=0

ωkj
1√

2πσ 2
e
−

(yi − gj)
2

2σ 2

⎤
⎥⎦ .

When a QTL is assumed to be at a marker position,
�k(yi) = �k(yi | mj), which is not in a mixture form. The

Ek
d at a marker position can be simplified as:

Ek
dm =

1√
2πσ 2

− 2
Nk

2∑
j=0

Nkj∑
i=1

1√
2πσ 2

e
−

(yi − gj)
2

2σ 2

To combine the information from all nine marker
genotypes, we take a weighted sum of the marker energy
functions to calculate an overall energy function for
phenotype data (Ed) as

Ed =
9∑

k=1
h(Nk)Ek

d

or

Edm =
9∑

k=1

h(Nk)Ek
d for marker positions.

Here h(x) is a monotone increasing function with
respect to x. The reason for choosing such an h function
is that the more progenies in one marker group, the bet-
ter approximation accuracy achieved by the LLN, and
the more weights should be put on this group. To deter-
mine the exact form of h, we need to use the formula-
tion for eL2E. Because at marker positions, the eL2E and
pL2E approaches use exactly the same information for
the derivation of energy function, they should agree at
those positions. Therefore, a comparison between the
energy functions in (5) and (7) for eL2E and pL2E at
marker positions suggests that h(Nk) = Nk/N where N is
the total number of progeny. By using this form of h
(Nk), the estimators for the unknown parameters in Ed is

�̂ = arg min
�

(Ed) = arg min
�

[
9∑

k=1

NkE
k
d/N

]
= arg min

�

[
9∑

k=1

NkE
k
d

]

= arg min
�

⎧⎪⎨
⎪⎩

1√
σ 2

9∑
k=1

⎡
⎢⎣ Nk

2
√

2

⎛
⎜⎝ 2∑

j=0

ω2
kj + 2

∑
i�=j

ωkiωkje
−

(gi − gj)
2

4σ 2

⎞
⎟⎠− 1√

σ 2

N∑
i=1

2∑
j=0

ωije
−

(yi − gj)
2

2σ 2

⎤
⎥⎦
⎫⎪⎬
⎪⎭
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Hypothesis testing
The existence of a significant QTL can be tested by the
following hypotheses:
H0: g0 = g1 = g2H1: Not all equalities in H0 hold.
For these hypotheses, we can find their corresponding

L2E estimates, �H0 and �H1 , and energies, EH0 and
EH1 , respectively. Analogous to the likelihood ratio (LR)
test statistics, we define an energy difference (ED) test
statistics for our hypothesis testing:

ED = EH0 − EH1

Because the mixture of density functions is a larger
family than its composite density functions, the EH1 is
minimized over a larger space than the EH0. Thus, EH1

should always be smaller than the EH0 , i.e., the test sta-
tistics ED should always be positive. As typically done in
genome-wide QTL mapping, a permutation test [27] is
performed to determine the critical threshold value for
ED.

Results
Monte Carlo simulation
We performed Monte Carlo simulation studies to exam-
ine the statistical properties of the L2E-based mapping
model. Consider a sample size N from an F2 population,
with which one chromosome segment was simulated
with a length of 200 cM covered by 11 evenly spaced
markers. Suppose there is a QTL responsible for a
quantitative trait that is placed at 86 cM from the first
marker on the left-hand side. Both the QTL and mar-
kers are assumed to be codominant. Three QTL geno-
types are assumed to have different mean values, with a
common variance (which is scaled according to a given
heritability).
By scanning the simulated chromosome with a step

size of 2 cM from the left end to the right end, the ED
values were calculated and smoothed. Figure 2 shows
two typical ED profiles obtained by modelling the error
density (Figure 2A) or the phenotype density (Figure
2B). The peak value from modelling the error density
always occurs at a marker position, although the true
QTL location is placed between the fifth and sixth mar-
kers, whereas the method by using the phenotype den-
sity can find a peak ED value close to the true QTL
location, suggesting that the pL2E approach performs
better than the eL2E. Therefore, for the simulation stu-
dies and real-data analysis, the pL2E method will be
used. This is reasonable because the derivation of eL2E
involves two approximations but pL2E involves only one
by the LLN. For the ease of notation, hereinafter L2E
means pL2E.
Additional simulations were performed to examine the

statistical properties of the L2E method, under different

sample sizes (N = 100, 200, 400) and heritabilities (H2 =
0.1, 0.2, 0.4). In each case, 100 replicates were run to
evaluate the consistency and efficiency of the mapping
methods. First, we consider simulation scenarios where
error distributions in model (1) are normally distributed
without any outlier data; i.e., the normal distribution is
the true model. Because the simulation results from dif-
ferent sample sizes display similar patterns, here we
only show the result for N = 400, which is tabulated in
Table 1. Both L2E and traditional ML methods obtained
consistent estimators and similar standard errors for the
genetic effect parameters. However, the ML estimators
have better efficiency as evidenced by smaller MSEs.
This is expected because under the true model the MLE
is asymptotically efficient.
Second, we simulated scenarios where error distribu-

tions in model (1) are non-normal, using a t-distribu-
tions as error terms. In addition to different
combinations of sample size and heritability, we also
changed the degrees of freedom (df) of the t-distributed
errors. When df is high (e.g., df = 4), where the t-distri-
bution approximate a normal distribution, the two
methods perform similarly (Table 2). However, when df
is low (i.e., df = 2), where the t-distribution has much
heavier tails than the normal distribution, the MLE
method failed to give correct parameter estimates and
yielded much larger standard errors. In the contrast, the
L2E maintained the correct estimates with smaller stan-
dard errors. This demonstrates the robustness of the
L2E method against model misspecification.
Third, we simulated experiments where data contains

outlier data points. Because NP mapping is popular for
traits with outliers [11], we compared the L2E model
with both ML and NP approaches. The outliers were
generated from another normal density on the upper
tail of a mixture density. Different percentages of noise
points (0, 5%, 10%, and 20%) were considered. The main
results are shown in Table 3 with 10% outliers with

Figure 2 Comparison between the two implementations of the
L2E methods by simulation. (a) Using the true density of the error
term. (b) Using the true density of the observed data. The arrows to
the x-axe indicate the peak of the ED profile. The true position of
the QTL is at 86 cM from the left end of the simulated
chromosome.
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noise mean at 45 and in Table 4 with 10% outliers with
noise mean at 55. Our findings are summarized as fol-
lows: (1) With the existence of noise points, the L2E
estimators are consistent but the ML estimators become
biased towards the direction of the outliers. As the out-
liers move further away from the true density (from 45
to 55), the ML estimators perform significantly worse,
but the L2E estimators stay consistent with very little
impact. (2) As the heritability becomes smaller and
smaller, the difference between the two methods
becomes less. This is because the variation of the mix-
ture density increases with decreasing heritability and,
thus, the relative positions of the outliers become closer.
This is consistent with the point (1) (3) L2E and NP
methods show similar robustness to the outliers. How-
ever, the L2E method maintains the interpretability of a
parametric model and gives accurate estimates of
genetic effects. Overall, the simulation results demon-
strate that the L2E method is preferred to the MLE and
NP methods when the true model is misspecified or
non-ignorable outliers exist.

A worked example
Vaughn et al. [20] constructed a linkage map with 96
microsatellite markers for 502 F2 mice (259 males and
243 females) derived from two inbreed strains, the Large
(LG/J) and Small (SM/J). This map has a total map dis-
tance of 1780 cM (in 19 linkage groups) and an average
interval length of 23 cM. The F2 progeny was measured

for body mass at 10 weekly intervals starting at age 7
days. The raw weights were corrected for the effects of
each covariant due to dam, litter size at birth, parity,
and sex [20].
Our analysis here focuses on identifying QTLs that

may affect the body mass growth rate from ages 5
weeks to 10 weeks, which is defined as body mass ratio
between week 10 and week 5. On the right side of the
empirical density of this trait (Figure 1), there is an
obvious bump, suggesting the existence of some outliers.
Both L2E and ML methods were applied to map this
trait. The profiles of the two test statistics, energy differ-
ence (ED) and likelihood ratio statistic (LRS) across the
whole mice genome is shown in Figure 3. The empirical
distribution of test statistics were calculated on the basis
of 1000 permutations and the 5% significance level was
chosen.
Although the overall profiles of ED and LRS look

similar, they did detect different significant QTLs. The
ML method cannot identify any significant QTL at the
genome level; however, the L2E method successfully
detects one genome-wide significant QTL at 2 cM to
the leftmost proximal marker on the chromosome 8.
Coincidently, in 2005, Rance et al. [28] reported a signif-
icant QTL for the mature mice body mass located at 7
cM to the leftmost proximal marker on the chromo-
some 8, almost at the same location for the significant
QTL identified here. Our finding hence further validates
the existence of a significant QTL for mice body mass

Table 1 Simulation scenario 1.

H2 = 0.4 H2 = 0.2 H2 = 0.1

Parameter True Value L2E ML L2E ML L2E ML

g2 35 35(0.0685) 35(0.0514) 35.1(0.1061) 35(0.0833) 35.2(0.1653) 35.2(0.1396)

g1 30 30(0.0332) 30(0.0286) 30.1(0.0706) 30.1(0.0522) 30(0.1087) 30(0.0909)

g0 25 25(0.0724) 25.1(0.057) 25.1(0.0881) 25.1(0.0768) 24.9(0.1489) 24.8(0.1118)

sigma 4.3 4.3(0.0228) 4.3(0.0165)

sigma 7.1 7.0(0.0344) 7.1(0.0282)

sigma 10.6 10.4(0.0548) 10.6(0.0375)

Position 86 85.7(0.1386) 85.8(0.101) 85.9(0.2335) 86.4(0.1433) 86.0(0.5101) 85.8(0.2537)

The L2 and ML estimates of QTL parameters from an F2population of 400 individuals for the phenotypic data simulated from normal distributions. Numbers in
the parentheses are the mean square errors (MSE) of the estimates

Table 2 Simulation scenario 2.

t-distribution: df = 2 df = 3 df = 4

Parameter True Value L2E ML L2E ML L2E ML

g2 35 35.0(0.0168) 39.3(4.0988) 35.0(0.0139) 35.1(0.0185) 35.0(0.0117) 35.1(0.0133)

g1 30 30.0(0.0105) 30.0(0.0349) 30.0(0.0104) 30.0(0.0102) 30.0(0.0102) 30.0(0.0093)

g0 25 25.0(0.0163) 19.0(4.4676) 25.0(0.0158) 24.9(0.0192) 25.0(0.0131) 25.0(0.0133)

sigma - 1.2(0.0083) 2.6(0.0971) 1.1(0.0077) 1.5(0.0337) 1.1(0.0056) 1.3(0.0099)

Position 86 86.4(0.0649) 85.6(0.0971) 86.1(0.053) 86.2(0.0591) 86.1(0.0609) 86.4(0.0498)

The L2 and ML estimates of QTL parameters from an F2population of 400 individuals with heritability of 0.4 for the phenotypic data simulated from t
distributions. Numbers in the parentheses are the mean square errors (MSE) of the estimates
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at the beginning of the chromosome 8. The genetic
effects of the significant QTL identify by the L2E
method are summarized in Table 5. This example shows
the power of the L2E method to detect significant QTLs
in practice.

Discussion
Current mapping technologies allow us to dissect the
variation of quantitative traits into individual genetic
components (QTLs). Through this dissection the genetic
architecture behind the quantitative traits can be eluci-
dated, which provides a sound basis for future trait
improvement. To better utilize the genomic data, con-
siderable attention has been paid to develop powerful
analytic methodologies that can increase the power, pre-
cision, and resolution of QTL mapping (8-16). Cur-
rently, almost all the QTL mapping methods proposed
so far assume a parametric (mostly normal) distribution
density of a trait. However, there is an increasing recog-
nition of the limitation for the parametric assumption,
given that in practice the true distribution of a trait is
never known.
In this article, we propose a QTL mapping methodol-

ogy based on the principle of L2E, which may allow the
fitted model to be different from the true model. We
derived two different implementation of the L2E method
into the mapping framework and show how they are

connected. The simulation studies suggest that the pL2E
method works better than eL2E method and were used
for our further analyses. Additional simulation studies
were performed to test the statistical behaviour of the
L2E-based mapping approach. The L2E method is more
robust in the model choice at a cost of lower efficiency.
For a “perfect” data, the ML performs better than the
L2E. However, when the data contains noises, the L2E
outperforms the ML. The relative efficiency of the L2E
increases with increasing percentage of noises. In prac-
tice, it would be unrealistic for us to know the true
model underlying the data, but it can be almost assured
that no data is perfect. Thus, a better strategy is that the
L2E method can first used to explore the data, with
results compared with the MLE method.
This work is our first attempt to incorporate the prin-

ciple of the integrated square errors into the genetic
mapping framework. There are many areas that can be
explored in the future, such as how to apply this princi-
ple to examine the gene-gene interaction or gene-envir-
onment interactions. The L2E method would be an
excellent addition to the current toolbox of the QTL
mapping.

Conclusions
In this article, we derive a robust approach for genetic
mapping of complex traits by incorporating the principal

Table 3 Simulation scenario 3.

H2 = 0.4 H2 = 0.2 H2 = 0.1

Parameter True Value L2E ML NP L2E ML NP L2E ML NP

g2 35 35.3(0.0709) 35.9(0.0606) - 35.7(0.1028) 35.9(0.0905) - 36(0.1646) 36(0.1404) -

g1 30 30.1(0.0335) 31.4(0.0389) - 30.7(0.074) 31.5(0.0573) - 31(0.1108) 31.4(0.0916) -

g0 25 25(0.0696) 26.7(0.0774) - 25.4(0.0911) 26.8(0.0881) - 25.8(0.1628) 26.6(0.1244) -

sigma 4.3 4.7(0.0238) 6.2(0.022) - -

sigma 7.1 7.6(0.0386) 8.3(0.0312)

sigma 10.6 11.1(0.0567) 11.5(0.0376)

Position 86 85.5(0.1466) 85.2(0.1712) 86.7(0.1387) 86(0.2272) 85.1(0.2528) 85.9(0.2562) 85.7(0.4935) 86.6(0.362) 85.4(0.3452)

The L2 and ML estimates of QTL parameters from an F2 population of 400 individuals for the phenotypic data simulated from normal distributions containing
10% noise points with mean g = 45. Numbers in the parentheses are the mean square errors (MSE) of the estimates

Table 4 Simulation scenario 4.

H2 = 0.4 H2 = 0.2 H2 = 0.1

Parameter True Value L2E ML NP L2E ML NP L2E ML NP

g2 35 35(0.0664) 36.8(0.0789) - 35.1(0.1061) 35(0.0833) - 36.1(0.1731) 36.8(0.1494) -

g1 30 30(0.0325) 32.3(0.0514) - 30.1(0.0706) 30.1(0.0522) - 30.8(0.1156) 32.5(0.1054) -

g0 25 25(0.0699) 27.7(0.0872) - 25.1(0.0881) 25.1(0.0768) - 25.4(0.1531) 27.4(0.1412) -

sigma 4.3 4.6(0.0231) 8.4(0.0253) -

sigma 7.1 7.0(0.0344) 7.1(0.0282) -

sigma 10.6 11.5(0.0588) 12.8(0.0421) -

Position 86 85.6(0.1419) 84.8(0.2242) 86.7(0.1426) 85.9(0.2335) 86.4(0.1433) 86.6(0.1737) 85.5(0.5162) 85(0.6221) 85.8(0.4071)

The L2 and ML estimates of QTL parameters from an F2 population of 400 individuals for the phenotypic data simulated from normal distributions containing
10% noise points with mean g = 55. Numbers in the parentheses are the mean square errors (MSE) of the estimates
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of the integrated square error into the general mapping
framework. This approached, called the L2E mapping,
automatically manipulates data points that are appar-
ently outliers by giving them less weight in parameter
estimation, and therefore yields more accurate estima-
tion of QTL locations and effects. In the case where the

data cleaning is not possible or very hard to do so, our
new method could be a very beneficial choice. Simula-
tion studies showed that in the presence of outliers, L2E
method outperforms the traditional MLE and non-para-
metric methods in terms of both accuracy and efficacy
of the parameter estimations. A real data analysis of the

Figure 3 L2E and MLE mapping of the mice data. Genomic scanning profiles for mapping QTLs controlling the growth rate of body mass
from weeks 5 to 10 by L2E (a) and ML approaches (b). The y-axes are the ED and LR test statistics, respectively. The dash dot line and the dash
line are the chromosome-wide and genome-wide 0.05 cutoffs at the significant level of 0.05 based on the 1000 permutations, respectively. The
x-axis ticks indicates the marker positions, the arrows to the × axes shows the genomic positions of the significant QTL at chromosome level,
and the asterisk at chromosome 8 in the L2E profile marks a genome-wide significant QTL.

Table 5 L2E mapping results of the mice data.

Chromosome Map Flanking Markers QTL associated effects

positiona Marker 1 Marker 2 Additiveb Dominanceb %varc

8 2 D8Mit293 D8Mit25 0.012 -0.044 8.68

Significant QTL for body mass ratio between week 10 and week 5 in an F2 mouse population detected from the genome-wide interval mapping scan by the L2E
and ML methods at the 0.05 significance level
aMap position = population-estimated position in cM from the leftmost proximal marker.
bAdditive and dominance effects of the QTL
c%Var = percentage variance explained by the QTL.
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mice body mass data also demonstrates the usefulness
and utilization of the new approach in a practical
genetic setting. We strongly encourage researchers to
explore both the L2E and MLE mapping procedures in
practice.
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