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Anticipatory postural adjustments (APAs) compensate in advance for the destabilizing
effect of a movement. This study investigated the specific involvement of each primary
motor cortex (M1) during a bimanual load-lifting task in which subjects were required to
maintain a stable forearm position during voluntary unloading. Kinematics, electromyo-
graphic, and electroencephalographic (EEG) data were recorded in eight right-handed
healthy subjects lifting a load placed on their left forearm. Two EEG analyses were per-
formed: a time–frequency (TF) analysis and an event-related potential (ERP) analysis. The
TF analysis revealed a mean power decrease in the mu rhythm over the left and right M1
concomitant with lifting onset. Each decrease showed specific features: over the right M1,
contralateral to the postural forearm, there was a steeper slope and a greater amplitude
than over the left M1. Although a mu rhythm desynchronization has until now been the
signature of cortical activity related to a motor component, we show that it can also be
related to postural stabilization. We discuss the involvement of the mu rhythm desynchro-
nization over the postural M1 in the high temporal precision enabling efficient APAs. ERP
analysis showed a negative wave over the left M1 and a concomitant positive wave over
the right M1. While the negative wave classically reflects M1 recruitment related to the
forthcoming lifting, the novelty here is that the positive wave reflects the transmission of
inhibitory commands toward the postural forearm.
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INTRODUCTION
The execution of a voluntary movement triggers postural per-
turbations, which can be predicted and cancelled by the central
nervous system. In order to minimize the destabilizing effects of
the movement on the posture, the anticipatory postural adjust-
ments (APAs) occur before the onset of movement and prevent the
forthcoming disturbance of posture (Bouisset and Zattara, 1981;
Massion et al., 1999). Spatial and temporal coordination between
movements and APAs is crucial for the efficiency of a gesture, but
up to now the underlying central organization has not been fully
understood.

The coordination between a movement and its postural coun-
terpart has been extensively studied using the bimanual load-
lifting task, derived from the so-called “barman test.” When a
barman lifts up a bottle from the tray he is holding, the hand sup-
porting the tray stays stabilized in a horizontal position, although
unloading the tray should provoke an upward forward movement.
This is due to the use of APAs. In the experimental context, the
subjects use their right (motor) hand to voluntarily lift a load
placed on their left (postural) forearm (Hugon et al., 1982). The
advantage of this paradigm is that it enables a clear anatomical

separation of the movement and its associated APAs. Here, APAs
are characterized by a stabilization of the postural forearm due to
an inhibition of the flexor muscles before the onset of unloading
(Hugon et al., 1982).

Models of brain lesions (see Massion et al., 1999 for a review),
EEG (Martineau et al., 2004), magnetoencephalography (Ng et al.,
2011) and fMRI (Schmitz et al., 2005) recordings during the
bimanual load-lifting task have shown the involvement of the sen-
sorimotor cortex, the supplementary motor area (SMA), and the
basal ganglia within the hemisphere contralateral to the postural
arm in the production of APAs. As an alteration of the postural
performance was found in patients with a lesion of the primary
motor cortex (M1) contralateral to the postural arm only, the
specificity of the role of each M1 has been questioned (Vial-
let et al., 1992). Kazennikov et al. (2005) suggested that the M1
contralateral to the lifting arm actively inhibits the corticospinal
neurons of the M1 contralateral to the postural arm through
interhemispheric transcallosal connections. This seems contradic-
tory to results showing that patients with a complete resection of
the corpus callosum have good postural stability (Viallet et al.,
1992; Diedrichsen et al., 2005). In another posture–movement
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coordination task, transcranial magnetic stimulation (TMS) over
each M1 altered the movement but did not affect the posture,
suggesting that each command develops independently (Taylor,
2005). The specificity of the postural and the lifting commands
arising from each M1 therefore remains unsolved.

Studies with EEG have revealed that during the planning and
the execution of movements, the mu rhythm, characterized by
frequencies in the 8- to 13-Hz band, is suppressed above the sen-
sorimotor areas. This phenomenon first described as “blocking”
of the central mu rhythm in man (Gastaut et al., 1952) has been
later referred to as “event-related-desynchronization” (ERD). ERD
can be observed in response to a variety of different type of tasks.
In general, ERD reflects active information processing in the sense
of excitatory brain processes (Klimesch et al., 2007). More specifi-
cally, in motor tasks, it has been interpreted to reflect an increased
cortical excitability of the M1 contralateral to the moving side
(Pfurtscheller and Lopes da Silva, 1999). A previous study in chil-
dren revealed an ERD in the theta rhythm (equivalent to the mu
rhythm in adults, taking into account the maturational process;
Cochin et al., 2001) over the M1 contralateral to the postural arm
in the bimanual load-lifting task (Martineau et al., 2004). How-
ever, due to the small number of trials, the exact timing was not
determined. Moreover, in between-hand choice tasks, premove-
ment potentials have revealed a negative wave over one M1 and a
positive wave over the other, reflecting a specific activation of the
M1 contralateral to the responding hand and an inhibition of the
M1 contralateral to the non-responding hand (Vidal et al., 2003).

The aim of this study was to clarify the contribution of each M1
during the coordination between posture and movement that takes
place in the bimanual load-lifting task. We assumed that a detailed
comparison between EEG activities recorded over each M1 would
reveal common and/or distinct features, which should help to dis-
entangle the specificity of the motor and the postural commands.
Originally, in order to capture a broad range of EEG features, we
performed two types of EEG analysis because of their comple-
mentarities: a time–frequency (TF) analysis and an event-related
potentials (ERPs) analysis. We used TF analysis based on Gaussian
Morlet’s wavelet transform (Tallon-Baudry and Bertrand, 1999)
instead of the traditional ERD/ERS quantification, because this
approach provides an overview of the activity over broad fre-
quency ranges, which enables a specific frequency band to be
chosen for each subject for a detailed analysis (Graimann and
Pfurtscheller, 2006). We hypothesized that a TF analysis focused
on oscillatory activities would highlight features in the sensori-
motor rhythms differentiating the postural and lifting programs,
while an ERP analysis would specify the role of each M1.

MATERIALS AND METHODS
SUBJECTS
Eight healthy subjects [four males, 29.11 ± 4.3 years old
(mean ± SD)] participated in this experiment. All participants,
chosen in the general population, used they right hand for every
day manual activities and did not show any particular motor exper-
tise. All participants gave their informed consent before the trial
and local ethics committee approval (Comité de Protection des
Personnes Sud Méditerranée 1) was obtained in accordance with
the ethical standards of the Declaration of Helsinki.

TASK AND EXPERIMENTAL SET-UP
The experimental arrangement has been described in previ-
ous papers (Massion et al., 1999; Schmitz et al., 2002) and is
schematically depicted in Figure 1A.

The subjects were comfortably seated on a hardback chair
in a Faraday cage. In the bimanual load-lifting task, the pos-
tural arm supports the load while the motor arm lifts the load

FIGURE 1 | (A,B) Experimental set-up and raw trial recording during

voluntary unloading. (A) G: strain gage measuring the force exerted by
the load. P: potentiometer measuring the elbow rotation. L: 800 g-load.
Motor EMG: EMG recording sites in the motor arm (biceps brachii and
abductor pollicis brevis). Postural EMG: EMG recording sites in the postural
arm (brachioradialis and biceps brachii). (B) Parameters recorded (from top
to bottom) are: force, elbow rotation angle, rectified EMG of the biceps
brachii and abductor pollicis brevis on the motor arm, and of the biceps
brachii and brachioradialis on the postural forearm. The decrease in force
indicated the onset of unloading (vertical dashed line), which was used as a
reference time (T0). The maximum angular amplitude (MA) of the upward
movement of the postural forearm was measured after unloading. The
muscular activity (activations for the motor arm and inhibitions for the
postural arm) occurred before T0.
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(Dufosse et al., 1985; Massion et al., 1999). The postural arm, cho-
sen as the left arm for all subjects, was fixed vertically just above
the elbow. The subjects were asked to maintain the left forearm
in a horizontal and semi-prone position throughout the entire
session, with no specific instructions. Wrapped around each sub-
ject’s wrist was a metallic wristband equipped with a strain gage,
enabling a load to be either suspended by means of an electro-
magnet or placed on top of the forearm. In order to measure
the effectiveness of the stabilization during the bimanual load-
lifting task, repetitive imposed unloadings were used in a control
situation. This consisted of a passive situation during which the
suspended load was released by the experimenter by switching off
the magnet at unpredictable times. In this situation, no antici-
pation was observed; a reactive postural correction, expressed by
an unloading reflex, was seen at the level of the flexors of the
postural forearm (Hugon et al., 1982). In contrast, in the vol-
untary situation, the load placed on top of the wristband was
voluntarily lifted by the subjects with their right hand. The begin-
ning of each active trial was indicated by a green LED located
close to the weight placed on the postural arm (GO signal). Sub-
jects were instructed to lift the load as quickly as possible when
the green LED appeared. In order to maintain a high level of
attention, NO GO trials signaled by a red LED were also pre-
sented to the subjects (who were instructed not to lift the load in
those trials). Only GO trials were included in the analysis. More-
over, to limit the ocular artifacts in EEG signals, subjects were
informed that they could blink or close their eyes only between
trials.

Compared to previous studies (Dufosse et al., 1985; Massion
et al., 1999), the weight of the load was reduced from 1000 to
800 g in order to avoid any muscular fatigue caused by the high
repetition of lifts in the voluntary situation (n = 210). The gen-
eral procedure was as follows: a series of 10 passive trials in the
imposed situation followed by six series of 35 trials in the volun-
tary situation, making a total of 210 GO trials. A 5-min rest period
was proposed between each series. An entire session usually lasted
less than 2 h.

DATA ACQUISITION AND ANALYSIS
In each trial, the force exerted by the load and the angular elbow
displacement signals were recorded on the postural side, digital-
ized, and stored on a computer disk (Windelest®, TechnoConcept,
France). Electromyographic (EMG) signals were recorded with a
TELEMG multi-channel electromyograph (BTS). Both kinematics
and EMG signals were acquired with a 500-Hz sampling rate. EEG
and electrooculographic (EOG) data were continuously moni-
tored with a 512-Hz sampling rate by the BioSemi Active Two
system (BioSemi, Amsterdam). Because the EEG and the EMG
signals were sampled with independent amplifiers and acquisition
cards and also with different sampling rates, a common trigger
ensured the time correspondence between the two data sets.

Kinematics, force, and EMG acquisition
The change of force was measured by a strain gage fitted to the
metallic wristband supporting the weight. The angular displace-
ment of the forearm was measured by a potentiometer placed
along the elbow joint axis. EMG data were acquired using bipolar

surface electrodes (surface area: 2.5 mm2) placed over the surface
of two flexors (brachioradialis,biceps brachii) on the postural fore-
arm, and one flexor (biceps brachii) and one abductor (abductor
pollicis brevis) on the motor arm. The EMG signals were ampli-
fied, filtered (5–100 Hz band pass), and rectified using the MatLab
software program (The Math-works, Inc.).

Kinematics, force, and EMG analysis
Figure 1B illustrates a single trial recorded during the voluntary
situation. Each trial was viewed offline on a monitor screen. Mea-
surements were performed with the MatLab software program
(The Math-works, Inc.). The onset of unloading (T0), used as a
reference time, was defined as the time of the first maximal value
of the second derivative of the force signal transmitted by the
strain gage. The upward movement of the postural forearm was
quantified both in the imposed and voluntary situations by mea-
suring the maximum angular amplitude (MA) after unloading. In
the voluntary situation we also measured the reaction time (RT),
defined as the time-interval between the onset of the GO signal
and T0. A visual inspection made it possible to characterize iden-
tifiable EMG events for each trial. They consisted of activations
or inhibitions, for which we measured the EMG latencies, i.e., the
time-interval between T0 and the onset of the EMG event, and the
EMG duration, i.e., the interval between the onset and the end of
EMG activity. The onset of the EMG event was determined visually
and marked with a cursor using the computer mouse. Although
laborious, this method was preferred to an automated one because
it guarantees an accurate and reliable detection (Van Boxtel et al.,
1993).

We compared MA obtained in the imposed and voluntary
situations to ensure the presence of APAs during the bimanual
coordination. Furthermore, in order to detect any possible effects
of the muscular strain on APAs effectiveness throughout the entire
voluntary situation, we verified that the kinematics and muscu-
lar events were not altered. Differences in MA and in the latency
and duration of the postural muscle inhibitions were tested by
comparing the first 25 and the last 25 trials. Statistical analyses con-
ducted for the kinematics and EMG data were performed using the
Wilcoxon test. Differences with a P value <0.05 were considered
statistically significant.

EEG data acquisition
During the voluntary situation, EEG was recorded from 64 pre-
amplified Ag/AgCl scalp electrodes placed according to the stan-
dard 10–20 electrodes placement system. In order to detect ocular
artifacts, EOG was recorded using electrodes situated above and
below the left eye and both outer canthi. EEG and EOG data were
amplified and filtered with a bandwidth between 0.1 and 200 Hz.
A selective 50 Hz “notch” filter was used. The data were offline
referenced to the left mastoid.

EEG data analysis
The acquired EEG data were subjected to the following preprocess-
ing steps: preprocessing as well as artifact removal were performed
in the MATLAB environment program (The Math-works, Inc.)
with the EEGLAB toolbox (Delorme and Makeig, 2004) as well as
in BrainVision Analyser software (Brain Product Gmbh).
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Subsequently, since the bimanual motor task involved the mus-
cles of the shoulder girdle, we used independent component
analysis (ICA) to remove muscle artifacts as well as ocular ones.
The use of ICA allows direct examination of information com-
ponents in the data rather than their summed effects at the scalp
electrodes. By removing or minimizing the effects of overlapping
components, ICA enables a detailed examination of the separate
dynamics of electrical brain activity as well as artifacts in order
to remove them (Delorme et al., 2007). In addition, if the artifact
ICA components were deemed unsatisfactory, the EEG recordings
were visually inspected and trials presenting with residual artifacts
were rejected. The Laplace transform was applied to the monopo-
lar averages after spherical spline interpolation, with three as the
order of spline (Pernier et al., 1988; Perrin et al., 1989). All further
statistical analysis were performed on Laplacian transform.

We chose T0 (i.e., the onset of unloading) as the reference time
because T0 is the common event indicating accurate coordination
between the postural arm and the motor arm. This time refer-
ence has been classically used in other behavioral and EEG studies
(Viallet et al., 1992; Massion et al., 1999; Schmitz et al., 2002;
Martineau et al., 2004). The pre-GO signal period (defined from
−1000 to −200 ms with respect to the GO signal) was considered
as a baseline level for both the TF and the ERP analyses.

Time–frequency analysis
Each epoch was analyzed in the TF domain by convolution with
complex Gaussian Morlet’s wavelets (Tallon-Baudry and Bertrand,
1999). This convolution provided for each trial a TF power
map P (t, f) = Iw (t, f) ∗ s (t ) I2, where w (t, f) was for each
time t and frequency f a complex Morlet’s wavelet w(t , f ) =
A ∗ exp(−t 2/2σ2

t ) ∗ exp (2iπft) , with A = (σt
√

π)−1/2 and
σt = 1/(2πσf), and σf a function of the frequency f: σf = f/7. The
investigated frequency range was 5–49 Hz with a step of 1 Hz. After
averaging the TF data power across each single trial, the mean TF
power data measured during the baseline was subtracted from the
TF power data. This correction was performed separately in each
frequency band. From the 64 original electrodes, we focused our
analyses on C3 and C4 electrodes corresponding to the two motor
cortices, M1L for the left M1 and M1R for the right M1 respec-
tively. Visual inspection revealed the most prominent task-related
spectral power change, mainly observed around the 10- to 13-Hz
frequency band, corresponding to the sensorimotor mu rhythm.
Since the upper and the lower limits as well as the frequency band-
width varied across subjects, we selected for each of them the band
power with the most significant variations during the task on the
basis of the TF map obtained for M1R. We selected M1R instead of
M1L because the most significant power variations occurred over
this cortex. For each subject we used the half-height bandwidth to
select the subject’s mu frequency band. Further analysis of the time
course of spectral power (−1000 to 1000 ms relative to reference
time) was performed on the individualized mu frequency band.

Statistical analyses of the time course of spectral power were
performed using the Wilcoxon test. Differences with a P value
<0.05 were considered statistically significant.

(1) To eliminate the possibility that further differences between
M1R and M1L band powers were due to different level of

baseline activities, we first compared their absolute powers
during a period (F1) defined as a time window extending
from −550 to −300 ms with respect to the GO signal.

(2) For each M1 separately, to determine when the mu rhythm
differed from the baseline, a comparison between the power
values and the baseline was performed.

(3) We then directly compared M1R and M1L band power ampli-
tudes for (F2) defined as a time window extending from T0
to the point at which the forearm was stabilized (250 ms after
T0).

(4) To compare the time course of the spectral power related to
M1R and to M1L, the slope of the curve was estimated for each
electrode (C3 and C4) and for each subject. The slope estima-
tion was based on a linear regression with a period starting at
the first maximal value of the second derivative of the spectral
power time course and extending to T0. We also compared
the initial slopes of the time course of the spectral power
obtained over M1L and M1R to a theoretical zero value using
the one-sample Wilcoxon test over two time periods. The first
(P1) extended from −300 to −250 ms with respect to T0. The
second (P2) extended from −240 to −140 ms before T0. Dif-
ferences with a P value <0.05 were considered statistically
significant.

Event-related potential analysis
Separate ERP averages were obtained for C3 and C4 electrodes
over each sensorimotor cortex. We compared the initial slopes of
the waves obtained over M1L and M1R to a theoretical zero value
using the one-sample Wilcoxon test during two time windows:
(P1) extending from −300 to −250 ms with respect to T0, and (P2)
extending from −240 to −140 ms with respect to T0. Differences
with a P value <0.05 were considered statistically significant.

The TF, ERP, and statistical analyses were performed with a
software package for electrophysiological analysis (ELAN-Pack)
developed at the CRNL (Brain Dynamics and Cognition team,
Lyon, France; http://elan.lyon.inserm.fr/).

RESULTS
KINEMATICS AND EMG ANALYSES
The mean values of MA during the voluntary situation
(1.3˚ ± 3.2˚) showed a significant reduction (w = ± 78; p < 0.001)
as compared to the mean values during the imposed situation
(9.1˚ ± 3.2˚), indicating an effective stabilization of the postural
forearm.

During the voluntary situation, the contraction of the mus-
cle of the motor arm appeared before unloading (−55 ± 29 ms
for the abductor pollicis brevis and −49 ± 16 ms for the motor
biceps brachii). The two flexors of the postural forearm showed a
decrease in activity also starting before unloading (−14 ± 11 ms
for the postural biceps brachii and −8 ± 8 ms for the brachio-
radialis), signaling an anticipatory EMG event. The duration of
each muscular event was 228 ± 38 ms for the abductor pollicis bre-
vis, 152 ± 35 ms for the motor biceps brachii, 92 ± 23 ms for the
postural biceps brachii, and 82 ± 10 ms for the brachioradialis.

The comparison between the first 25 and last 25 trials did
not reveal any significant differences for the mean values of
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MA (1.5 ± 0.4˚ versus 1.4 ± 0.4˚), the latency (−14 ± 14 ver-
sus −16 ± 13 ms) or the duration (78 ± 13 versus 68 ± 10 ms)
of the biceps brachii inhibition, and the latency (−6 ± 9 versus
−8 ± 12 ms) and the duration (84 ± 20 versus 66 ± 7 ms) of the
brachioradialis inhibition (p > 0.05).

Moreover, in the voluntary situation the mean RT was 333 ms
with a low inter-subject variability (+77 ms) and a low intra-
subject variability (around ±60 ms).

TIME–FREQUENCY ANALYSIS
Time–frequency maps
The TF maps are presented in Figure 2 for C3 and C4 electrodes
over the two motor cortices: M1L and M1R. These maps show the
mean power in the 5- to 49-Hz range as a function of time for
M1L and M1R during the voluntary situation. The mean power
decreased in the 10- to 13-Hz frequency band around T0 over
M1L (Figure 2A) and M1R (Figure 2B).

Topographic maps
To explore the spatial distribution of the mean power decrease
in the 10- to 13-Hz frequency band over each M1, the mean
power has been mapped over the whole scalp as a function of time
(Figure 3). After the presentation of the GO signal, a decrease of
the mean power occurred over the occipital areas at about −350 ms
before T0. It increased with time and reached its maximum around
−150 ms. Over the central areas, a power decrease occurred around
−50 ms prior to T0 and reached its maximum about 200 ms after
T0. The Laplacian transform enabled to clearly disclose the occip-
ital from the central transient activity over the motor areas in the
10- to 13-Hz frequency band.

Time course
For each subject, the individual M1R TF map was used to define
the frequency band specific to the mu rhythm. This resulted in a
mean frequency band of 10.6 ± 2.1 Hz for the lower limit and of

13.2 ± 2.1 Hz for the upper limit. The time course of each indi-
vidually defined band power was then averaged and extracted for
M1L and M1R (Figure 4).

FIGURE 3 |Topographic representations (top view) of theTF energy

time course (from −450 ms beforeT0 to +250 afterT0, with a 50-ms

step) in the 10- to 13-Hz frequency range; grand average across

subjects. Two distinct diminutions occurred over the occipital and the
superior central areas.

FIGURE 2 | (A,B)Time–frequency (TF) analysis in the 5- to 49-Hz frequency range, grand average across subjects in the voluntary situation (−1000 to

+500 ms). (A) M1L, left primary motor cortex. (B) M1R, right primary motor cortex. A transient diminution in the 10- to 13-Hz frequency range occurred for M1L

and M1R just before T0 and during unloading.
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(1) As the tonic muscular activities recorded before T0 on the pos-
tural and the motor arms were different, it was first necessary
to eliminate the possibility that the baseline activities recorded
over M1L and M1R were also different. A direct comparison
between the two baselines during F1 indicated no significant
differences (p > 0.05).

(2) The power profile averaged across subjects revealed a decrease
above M1L starting around −250 ms prior to T0. This decrease
became significantly different from the baseline 20 ms after
T0 (z = −1.96, p < 0.05). In a similar way, the amplitude
of the mu rhythm above M1R decreased around −250 ms
but differed significantly from the baseline −7 ms before T0
(z = −1.96, p < 0.05). The mu rhythm remained below the
baseline level after the movement.

(3) The comparison between the amplitude of the M1L and M1R

mean band powers during F2 indicated that it was significantly
higher for M1R than for M1L (z = −24, p = 0.046).

(4) M1L and M1R mean band power slopes differed significantly
from each other (z = 36, p = 0.007). The slope comparison

performed during (P1) and (P2) confirmed that M1L and M1R

slopes were both significantly negative (z = −24, p < 0.05).

Event-related potentials
Figure 5 shows the ERPs time-locked to T0 for C3 and C4 elec-
trodes over the two motor cortices: M1L and M1R. During (P1),
the slope of the two signals did not differ from a theoretical zero
value (p > 0.05). A negative wave, starting at −240 ms with respect
to T0, was observed over M1L with a maximal peak about −40 ms
before T0. Over M1R, a positive wave started concomitantly. The
slope comparison performed during (P2) confirmed that the M1L

slope was significantly negative (z = −55, p = 0.039) whereas the
M1R slope was significantly positive (z = 28, p = 0.027).

DISCUSSION
To clarify the specific contribution of each M1 and the tempo-
ral organization of the postural and motor commands during the
bimanual load-lifting task, we explored the characteristics of APAs
using TF and ERP analyses. While models of brain lesions (see

FIGURE 4 | Power profile in selected band power of theTF energy as a

function of time over M1L (black line) and M1R (grey line) averaged

across subjects. The arrows indicate the point at which the decrease in the
selected band power became significantly different from the baseline

(p < 0.05). The rectangular areas indicate the two time windows chosen for
the comparison of the mean amplitude (dotted rectangular area F1: from
−500 to −300 ms before the GO signal, ns; hatched rectangular area F2: from
0 to +250 ms after T0, p < 0.05).

FIGURE 5 | Grand averages of surface Laplacians as a function of time

over M1L (black line) and M1R (grey line) averaged across subjects.

Negativity is up. The rectangular areas indicate the two time windows chosen

for the comparison of the slope to a theoretical zero value (dotted rectangular
area P1: from −300 to −250 ms before T0, ns; hatched rectangular area P2:
from −240 to −140 ms before T0, p < 0.05).
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Massion et al., 1999 for a review) and fMRI recordings (Schmitz
et al., 2005) have identified a broad network of regions involved in
the organization and the production of APAs during the bimanual
load-lifting task, here EEG analyses enabled to tackle the question
of the cortical dynamics and the nature of both M1 recruitment.
Beyond this task, this is relevant to the general understanding
of the neurophysiological mechanisms yielding the coordination
between motor and postural control. The main results can be
summarized as follows:

(1) Time–frequency analysis showed a mean power decrease in
the mu rhythm over both motor cortices (M1L and M1R)
before lifting onset. Distinct features in terms of slope and
amplitude characterized mu rhythm variations recorded over
each M1.

(2) Event-related potentials showed a negative wave over M1L

contralateral to the motor arm, and a positive wave over M1R

contralateral to the postural arm.

Reduced maximal elbow rotation during the voluntary unloading
situation indicated the use of APAs, characterized by an early inhi-
bition of the postural flexor muscles (Hugon et al., 1982). Since
EEG methods require a large number of trials, we needed to ensure
that any potential muscular fatigue would not alter the characteris-
tics or effectiveness of the APAs, or their central expression. This is
unlikely since the effectiveness of the APAs did not vary during the
experimental session, as the stabilization was kept the same, and
the latency and the duration of the flexor inhibitions were identi-
cal throughout trial repetitions. The EEG activities analyzed here
therefore convey stable central processes underlying the organiza-
tion of the voluntary command on the one side, and the associated
anticipatory postural control on the other.

MU RHYTHM DESYNCHRONIZATION CHARACTERIZING THE TEMPORAL
ORGANIZATION OF EACH COMMAND
The topographic representation of the 10- to 13-Hz frequency
band showed two power decreases: one over the occipital areas
and the other one over the motor areas (Figure 3). Their respec-
tive topography differentiates them into the occipital alpha rhythm
above the visual areas, related to the visual processing of the
stimulus (GO signal), and the sensorimotor mu rhythm over
the M1 areas, involved in the production of a motor behavior
(Pfurtscheller, 2003). Interestingly, the power decreases of the mu
rhythm showed a bilateral and symmetrical spatial distribution
focussed over M1. Hence, the topographic maps did not enable to
distinguish spatial differences related to distinct controls (motor
or postural) applied to the lifting hand and the stabilized forearm.

Time–frequency analysis showed that, before lifting onset, a
bilateral desynchronization over M1L and M1R occurred in the
alpha rhythm. The role of alpha oscillations still remains a matter
of debate. The pre-stimulus alpha activity is likely to be involved in
the functional architecture of the brain network when preparing
for upcoming processing (Palva and Palva, 2011). According to the
“inhibition hypothesis,” information is gated through the brain by
functional inhibition of task-irrelevant areas, and is reflected by
oscillatory activity in the alpha band (Klimesch et al., 2007; Jensen
and Mazaheri, 2010). While increased synchronization would

reflect inhibition, desynchronization, which translates the fact that
the population of neurons no longer oscillate in synchrony, is inter-
preted as functionally closely related to active cognitive processing
(Klimesch et al., 2007). The functional role of alpha oscillations
may also vary along the cortical hierarchy (Palva and Palva, 2011).
Within the sensorimotor regions, decreased alpha amplitude is
classically taken to reflect a state of increased neuronal excitability,
or disinhibition, associated with active-processing (Pfurtscheller,
2003). Moreover, one should also consider the variety of alpha
rhythms in terms of functional rhythms (Pfurtscheller, 2003). In
particular, the rolandic mu rhythm has been associated to sen-
sorimotor processes in motor tasks (Pfurtscheller, 2003). Indeed,
during voluntary unimanual finger movements, a mu ERD starts
prior to the movement onset over the contralateral sensorimotor
areas (see Pfurtscheller and Lopes da Silva, 1999 for a review).
Interestingly, the mu ERD becomes bilateral at the onset of the
unimanual movement, but not before (Pfurtscheller and Lopes da
Silva, 1999). In our study, the mu rhythm desynchronization over
M1L that occurred before unloading onset related to the contralat-
eral hand lifting the object. The mu desynchronization over M1R

before unloading should therefore have related to the left pos-
tural forearm stabilization. Taken together, this indicates that in
the bimanual load-lifting task, the mu desynchronization revealed
the anticipatory mechanisms monitoring both the motor and the
postural commands.

A comparison of the mu rhythm desynchronization over each
M1 showed that distinct features characterized them: over M1R,
contralateral to the postural forearm, there was a steeper slope and
a greater amplitude, whereas over M1L there was a gradual slope
and a reduced amplitude. This result emphasizes the specific and
distinct electrophysiological signature of M1R involvement in pos-
tural stabilization and M1L involvement in the lifting movement.
Lastly, while a mu rhythm desynchronization has until now been
the signature of increased cortical excitability related to move-
ment, the present study shows that it might also be the signature
of cortical activity related to postural stabilization.

Interestingly, this stabilization is characterized by an active
muscular inhibition of the postural flexors, which produces an
almost total absence of movement. The flexor inhibition of the
postural arm occurs with a high temporal precision and a low
inter- and intra-subject variability (Schmitz et al., 2002). By con-
trast, the contraction of the biceps brachii of the lifting arm
occurs with more variability. The postural and manual muscu-
lar events therefore present with differences in their temporal
variability. A steep slope characterized the mu rhythm desynchro-
nization over M1R, corresponding to the postural arm, whereas
there was a gradual decrease in M1L mu rhythm, corresponding
to the motor arm. Taken together, this suggests that the tempo-
ral precision of the muscle events occurring on the postural and
the motor sides might relate to the slope of the mu desynchro-
nization. The rapid and strong desynchronization of the M1R mu
rhythm might therefore reflect processes involved in the high tem-
poral precision of the postural inhibition, which is essential to
the efficiencies of the APAs. The development of APAs in children
is characterized by a progressive mastering of muscular temporal
adjustments (Schmitz et al., 2002). Further studies using a develop-
mental approach should confirm the link between the mu rhythm
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desynchronization and the temporal precision of the muscular
event. According to our assumption, if the slope of the mu rhythm
desynchronization reflects the high temporal muscle inhibition,
a steeper slope should reflect improved accuracy of the postural
flexor inhibition onset.

AN ACTIVATION–INHIBITION EEG PATTERN MIRRORING THE
ACTIVATION–INHIBITION MUSCULAR PATTERN
In between-hand two-choice reaction tasks, the unimanual motor
command is expressed bilaterally: a negative wave is recorded over
the motor regions contralateral to the responding hand and is
accompanied by a positive wave over the motor regions contralat-
eral to the non-responding hand (Vidal et al., 2003). The con-
tralateral negativity/ipsilateral positivity pattern corresponds to
an activation/inhibition pattern of contra- and ipsi-sensorimotor
cortices respectively (Burle et al., 2004). In our study, ERPs revealed
a negative wave over M1L, contralateral to the manual arm, which
reached its maximal value at the onset of muscle contraction
(i.e., the abductor pollicis brevis). The initial slope of this motor
potential arises from the pyramidal neurons of the motor cor-
tex from which the efferent volley is sent to subcortical struc-
tures (Arezzo and Vaughan, 1980). Therefore, this activity might
reflect the implementation of the motor command involved in the
load-lifting.

Starting at the same time, a positive wave was found over M1R,
contralateral to the postural arm. Conversely, this positive wave
might convey an active inhibition of the motor cortex contralat-
eral to the postural arm. This would correspond well with the fact
that the anticipatory postural command consists of inhibiting the
postural muscle activity.

A SPECIFIC ROLE FOR A POSTURAL M1 IN FAVOR OF INDEPENDENT
CONTROL OF POSTURE AND MOVEMENT
Studies focused on the coordination of bimanual movements
have revealed the significant role for interhemispheric coupling
between the two sensorimotor cortices (Serrien and Brown, 2002;
Blum et al., 2007). Interhemispheric connectivity is dynamically
modulated during coordinated behavior as a function of the
processing demands. Complex bimanual coordination tasks (anti-
phase movements) result in increased interhemispheric coupling,
reflecting increased information processing requirements (Ser-
rien, 2008). The bimanual load-lifting task involves another type
of complex movement–posture coordination. A fundamental and
controversial question is whether the postural and the motor
commands are generated by common or independent processes
(Massion, 1992). According to Kazennikov et al. (2005), the acti-
vation of the M1 contralateral to the lifting hand triggers an
interhemispheric transcallosal inhibition of the M1 contralateral
to the postural hand, therefore suggesting that a unique command

arises from the motor M1 and is transmitted to the postural
M1. However, in another posture–movement coordination task
in which subjects’ arms were linked, causing flexion about one
elbow resulting in extension force about the other, TMS over each
motor cortex altered the contralateral (movement-related) EMG
response but did not affect the ipsilateral (posture-related) EMG
response (Taylor, 2005). These results suggest that the postural
and the motor commands develop independently and in paral-
lel. Following Kazennikov and collaborators’ assumption, the mu
rhythm desynchronization over the two M1 should present with
similar features in terms of amplitude and slope but their onset
should differ. However, the interhemispheric comparison between
each mu rhythm desynchronization disclosed distinct amplitudes
and slopes. Because of their different shape and slope we could not
specify which one started first. Nevertheless their time course was
also distinct as they varied significantly from the baseline at dif-
ferent times, the mu rhythm desynchronization over the postural
M1 coming first.

The ERP findings may be in agreement with Kazennikov et al.
(2005) hypothesis, as the M1R inhibition (positive wave) might
be caused by the opposite M1L activation (negative wave). How-
ever, during a unimanual go/no go task, when the inhibition of
the response is required (i.e., in a no go trial), a positive wave over
the contralateral M1 can be observed in the absence of a negative
wave in the ipsilateral M1. This indicates that the inhibition of
the non-involved M1 is independent from the activation of the
involved M1 (see Burle et al., 2004 for a review). Thus, our results
in both TF and ERPs shed light on the independent role played by
the postural M1 during the inhibition of the postural muscles. The
specific and opposite recruitment of each M1 is therefore more in
line with a parallel and distinct control of movement and posture.

To conclude, the two EEG analyses performed in this study
highlight a specific mu rhythm desynchronization and a posi-
tive wave over the M1 contralateral to the postural arm as the
expression of the electrophysiological signature of APAs. While
the positive wave might be at the origin of the transmission of the
inhibitory commands toward the postural flexor muscles, the mu
rhythm desynchronization over the postural M1 might reflect the
processes involved in the high temporal precision enabling effi-
cient APAs. The specific and opposite recruitment of each M1,
confirmed by the two EEG approaches, seems to be in line with
the “parallel control” in which the APAs and the movement are
initiated by separate processes and are organized independently
over each primary motor cortices (Massion, 1992).
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