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Absorption and Extinction Cross 
Sections and Photon Streamlines in 
the Optical Near-field
Moritz Striebel1, Jӧrg Wrachtrup1,2 & Ilja Gerhardt1,2

The optical interaction of light and matter is modeled as an oscillating dipole in a plane wave 
electromagnetic field. We analyze absorption, scattering and extinction for this system by the energy 
flow, visualized as streamlines of the Poynting vector. Depending on the dissipative damping of the 
oscillator, a part of the streamlines ends up in the dipole. Based on a graphical investigation of the 
streamlines, this represents the absorption cross section, and forms a far-field absorption aperture. 
In the near-field of the oscillator, a modification of the aperture is observed. As in the case for a linear 
dipole, we model the energy flow and derive the effective absorption apertures for an oscillator with a 
circular dipole characteristics – such as an atom in free space.

One of the most fundamental processes which involves the interaction of light and matter is the attenuation of 
light by a nanoscopic emitter. Its fundamental limit is defined by the interaction of a beam and a point-like dipole. 
The introduced attenuation of light is observed since ancient times. Today’s nano-optic technologies have enabled 
controlled experiments with single photons1 and single nano-scale emitters2. The theoretical description of this 
optical interaction does not only address very fundamental questions, it might lead to an increased efficiency in 
light-matter interaction. While much attention has been paid to engineering optimal light extraction strategies3,4 
– so that a single molecule or a nano-crystal can be detected by fluorescence with a good signal to noise ratio – 
relatively little has been paid to achieving the most efficient excitation. For optical protocols, such as the quantum 
phase gate5, or coherent microscopy schemes6, an efficient excitation and extraction of light – ideally a single 
photon – to and from a single emitter is desirable.

Light attenuation by a single molecules2,7,8, quantum dots9, atoms10–13, and recently NV-centers14 has been 
investigated. The initial solid state experiments were initially conducted under cryogenic conditions2,8 to achieve 
the required signal-to-noise ratio. Only balanced detection15 made it possible to extend these fundamental studies 
to room temperature16,17. Motivated by the experimental realization of these fundamental processes, numerous 
theoretical approaches were reinvented18,19, often founded on electrodynamic calculations from the 1960s when 
the field of antenna theory was very active. One central question was the maximum amount of extinction in a real 
optical focus18. Others describe the energy relations in the context of the optical theorem and in the near-field20. 
The energy flow itself, depicted as streamlines of the Poynting vector, introduced a vivid insight in this fundamen-
tal problem already decades ago21,22. Today, we see the most fundamental approaches are presently getting unified 
between classical antenna theory, quantum technologies and nano-optics.

Much of the literature on the interaction of light and point dipoles uses cross sections to quantify the distinc-
tion between the total amount of “incident radiation” and light which is then either scattered (extinction cross 
section) or absorbed by the dipole (absorption cross section). The optical far-field is the only regime where the 
cross sections are strictly defined. Here, we nevertheless approach the emitter and observe the non-trivial behav-
ior of the cross section concept. The extinction is also famously related to the optical theorem, that explains how 
the total amount of extinction manifests itself through the reduction of power detected in the forward scattering 
direction as compared to when no dipole is present. These concepts relate directly to a plane wave excitation of the 
dipole, and almost always assume a real, scalar dipole transition moment – which corresponds to a symmetrically 
excited linear or isotropic dipole.

Many modern investigations involve highly-focused or sub-wavelength apertured excitation and/or detec-
tion geometries, and dipoles with complex and/or an-isotropic transition moments. The relevance of cross 
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sections and the extinction theorem to non-plane-wave excitation conditions is often tenuous at best, and 
geometry-specific models must be developed to properly account for the important role played by the near-field 
terms in the fields scattered by the dipole. In some cases the impact of the scattering geometry can lead to behav-
ior that seemingly contradicts the results and intuition associated with the plane-wave results.

In this paper we review the fundamental basics of coherent light-matter interaction and absorption of a single 
emitter. The relevant cross sections of absorption, extinction and scattering are analytically derived from first 
principles for plane wave excitation. Everything is applied to the mathematical description of the energy flow in 
the proximity of a dipolar emitter. While this was discussed already in the past decade, we address shortcomings 
and present novel findings. The cross sections are calculated, and the analytic result and their derivation by fol-
lowing the energy flow are compared. In the close proximity of the dipole the total field is altered by the presence 
of the emitter. This change also alters the effective cross sections. The (optical) near-field cross sections become 
more and more a dipolar shape. Whereas the dipolar emitter was assumed as a linear, Hertzian, dipole in many 
papers, we see the experimental efforts extended to single atoms11,13, which usually exhibit a circular dipole. 
Therefore, we further adapt the underlying formulation to the case of a circular dipole.

The paper is organized as follows: In section 2 the basic effect of light extinction and absorption is reviewed. 
It starts with a perfect dipole, introduces the polarizability and the loss-channels. Then, a visual representa-
tion of the cross sections is presented. Section 3 introduces the use of apertures which illustrate the mentioned 
cross-sections. Section 4 introduces the theory on a circular dipole emitter, such as it is represented by an atom 
in free space.

Absorption, Scattering and Extinction
A perfect dipole and a plane wave.  We approach the relevant math with an intuitive picture of the funda-
mental process of light-matter interaction. To that end we study the most basic case, given by the interaction of an 
incident plane wave with a single dipole. A single dipole emitter is assumed in free space at the origin of a coordi-
nate system (Fig. 1a). An incident plane wave, which propagates from −z  to +z  excites the emitter. This field is 
expressed as

��
ε ω= −ˆE E kzexp(i i t) (1a)in in

0

Figure 1.  (a) An electromagnetic wave is incident on a dipole, which scatters all energy without further loss. An 
integrating sphere is divided into a forward (Ω2) and a backward (Ω1) direction (b) The different energy 
contributions. (c) Forward ( ΩPext, 2

, red) and backward ( ΩPext, 1
, blue) component dependent on the radius of the 

sphere as well as Pscat,tot. The situation corresponding to (d) is marked with a gray dashed line. The hole effect of 
extinction occurs in forward direction and is equal to the scattered amount of power as required by energy 
conservation and we have =Extinction Scattering  (no absorption). The oscillation in the extinction terms arise 
from integration effects of the plane wave over a spherical surface d) Solutions for 〈 ⋅ 〉



R S e yz
2

ext r  (blue) and 
〈 ⋅ 〉


R S e xz
2

ext r  (green). The quantity 


R S e2
ext r〈 ⋅ 〉 represents the integrator of the extinction term. The reference 

curve 0 defines zero. The magnitude of the solutions is plotted against the reference curve.
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�� ��
B

c
k E1 , (1b)in in
ˆ= ×

where ε̂ is the Jones vector of the incident wave.
Let us consider an electrically polarizable system – such as a dipole – in vacuum. This can be excited by a inci-

dent electric field E (0)in
��

 at the location of the dipole, 
��
d , the response of the system due to the incident field is 

given by

α= .
�� ��
d E (0) (2)in

Here, α is the electric polarizability of the dipole. The system is assumed to exhibit a parallel response due to the 
incident field, and treated as a point-like dipole, i.e. infinitely small. In general, the response of the system is not 
necessarily parallel to the incident field, and α has to be written as a tensor. This limitation is relaxed in the follow-
ing section. As a consequence of the excitation, the dipole scatters a certain amount of power into all 4π steradians 
of the environment (Fig. 1a).

In the following we calculate the time averaged energy flow into the system, to get an idea how energy is 
absorbed by the dipole. To do so, we calculate the time averaged Poynting vector, which is computed by (for time 
harmonic fields)23

 ⁎� �� ��

µ
= × .S e E B1

2
{ }

(3)0
tot tot

Here, 
��
Etot is the total electric field calculated as a superposition of the incident field and the scattered field. 

��
Btot 

denotes the corresponding magnetic field. Since magnetic response is neglected, µ=
�� ��
B Htot 0 tot holds.

The scattered dipole field is expressed by23
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where d̂ is the unit vector in the direction of the induced dipole moment and d0 is the magnitude of the dipole 
moment (

��
= ⋅ ˆd d d0 ). Since we said that the dipole moment is parallel to the incident wave polarization, ˆ ˆε = d 

is valid. The total energy flow is written as

  
µ µ µ

= × + × + × + × .

〈 〉 〈 〉 〈 〉

� �� ��

� �������� ��������

�� �� �� ��

� ��������������� ���������������

�� ��

� ��������� ���������� � �

⁎ ⁎ ⁎ ⁎S e E B e E B E B e E B1
2

{ } 1
2

{ } 1
2

{ }

S S S
0

in in
0

in scat scat in
0

scat scat

in ext scat

We now analyze the energy distribution in the case of a dipole that dissipates energy only via elastic scattering of 
the incident wave. Therefore, the space is separated into two half spheres, one in the forward direction ( 2Ω ) and 
one in the backward direction (Ω1). Afterwards, the transmitted energy is analyzed. The different contributions 
and their signs, i.e. if they are directed inwards to (−) or outwards from the sphere (+), are summarized in the 
table Fig. 1b. As expected, we find that the sum of the energy contributions which travels through the sphere in 
the forward direction and in the backward direction yield to the same amount with different signs so that their 
total sum is zero. This is required by energy conservation. The extinction terms are here listed as negative, since 
the extinguished power is commonly defined by

∫= − Ω.
Ω



P S d
(5)ext ext

tot

The incident power (Pin) is symmetric and has the same amount in the forward and the backward direction 
with a different sign. The scattered power (Pscat) is symmetric and amounts to the same value backwards and for-
wards (dipole radiation). Interestingly, the extinction terms are not symmetric anymore. Whereas power in the 
backwards direction oscillates around zero with a distance R to the emitter (blue curve), the power in the forward 
direction oscillates around the negative value of the total scattered power (red curve, Fig. 1c). It might be confus-
ing that this integration is not independent of R (radius of the integrating half sphere). The incident plane wave 
has no constant phase on the surface of a half sphere, thus the integral depends on the radius and therefore on 
how many wave peaks and valleys are collected. Both extinction terms together add up to the amount of the scat-
tered power in all 4π steradians. This becomes clear when the energy conservation is considered. The oscillation 
amplitude amounts to half of the power of the scattered power. This is a result of a spurious phase difference in 
both planes, which are displayed in Figs 1 and 2.

When the oscillations which are caused by the incident wave are neglected, it becomes clear that extinction 
occurs only in the forward direction and the amount adds up to Pscat (c.f. Fig. 3c). This corresponds to the defini-
tion of extinction as scattering plus absorption20,24, since we have assumed in this case that there is no absorption 
(such as a transfer to heat). Figure 1d shows the extinction part of the Poynting vector in the xz- as well as in the 
yz-plane. We have a small constant effect on the z-axis in the forward direction, independent of the radius (c.f. 
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Fig. 2). This is observed as a small deviation of the reference level 0 and 〈 ⋅ 〉


R S e2
ext r . This effect occurs, since the 

phase relation between the scattered and incident wave is constant on the z-axis. If the behavior of this plot is 
studied dependent on the radius (R), one anti-node occurs within a half wavelength as shown in Fig. 2. Moreover, 
there is a phase shift of π/2 between the 





〈 ⋅ 〉R S e yz
2

ext r  (blue) and the 〈 ⋅ 〉


R S e xz
2

ext r  (green) solutions on the 
incident half sphere (Ω1). The sum of the two parts in the forward and the backward direction always yields to 
zero as expected by energy conservation.

Figure 2.  Solutions for 




〈 ⋅ 〉R S e yz
2

ext r  (blue) and 〈 ⋅ 〉


R S e xz
2

ext r  (green) for values of R chosen in distances of 
λ/4. One anti-node occurs within half a wavelength. This periodic behavior has been described in context of 
Fig. 1c. The plots shown here are closely related to the results of Ref.24.

Figure 3.  (a) Ratio between extinction, scattering and absorption, dependent on the loss parameter β. At 
β = 0.5 the absorption, which is an energy transfer to other than coherent re-radiation, displays a maximum. A 
broadband lossy particle, with β = 0, which has only loss, does not absorb or scatter any light. This is equivalent 
to a polarizability α = 0. A perfect scatterer, with β = 1, does not absorb any light. Pideal corresponds to the case 
β = 1 and amounts to c k E(3 )/(4 )2 in

0 2. This is equivalent to the consideration of the cross sections in Eqn. 21. 
Due to energy conservation the whole extracted energy is re-radiated. (b) Streamlines of the time averaged 
energy flow of a perfect scatterer in a plane wave. Energy used for its excitation is re-radiated, such that on 
average no energy is absorbed i.e. in the time averaged picture we do not see streamlines which end up in the 
dipole. (c) Streamlines for a lossy system, the loss-parameter β is set to 0.1, the emitter is an effective sink of 
energy. Therefore, some streamlines end up in the emitter. Here, the yz-plane is shown. (d) same physical 
situation pictured in the xz-plane. The extensions of the cross-section σx and σy are not necessarily the same (see 
also Fig. 5b).
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We now compare the situation investigated here with Ref.18, where the reflection from a single (e.g. molecular) 
dipole is observed. In that case, the pattern of forward scattered radiation from the dipole closely matches the 
forward propagating Gaussian excitation beam, but its phase is shifted by π/2 due to the Gouy phase shift which 
spans over the focus, and the π/2 phase lag of the dipole field at resonance. Thus the total forward propagating 
beam is fully cancelled, and there is only a (backward) reflected beam that conserves the power flow. In the plane 
wave situation, no Gouy phase shift is present in the driving field. Subsequently, the patttern of forward scattered 
dipole radiation is completely different from the plane wave, so the “extinction” in the forward direction is limited 
in opposite as in the case of the focussed Gaussian.

The polarizability, α.  The model is completed by a definition of the polarizability α. We assume the emitter 
is coupled to both the vacuum (which causes scattering and radiation reaction, but no extraction of power from 
the electromagnetic field), and to other bath(s) that can additionally dephase the dipole response. Thereby, the 
emitter extracts power from the electromagnetic field distribution (i.e. it generates heat). This diminishes the 
re-radiation of energy as the oscillator becomes a sink for the energy.

If a Lorentzian oscillator is considered, the problem can be described by the following equation of motion23

τ Γ ω ε





− + +





= ω−    ˆm r r r r ed
dt

d
dt

d
dt

E e
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t
2

2

3

3 nrad 0 0
i

where m is the free electron mass and

e
mc

1
4

2
3 (7)0

2

3τ
πε

= .

Γnrad represents the rate of dissipative loss to by the dipole. When the equation of motion is solved, it yields a 
expression for the inverse polarizability and uses 

�� �� �α= =d t E er t( ) ( )in
o

[25].

α
ω ω ωΓ= − −
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(8)2 0
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




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( ) ,
(9)

t nrad
0

2

and where and Γ ω τ= 0
2  is the damping due to radiation reaction i.e. scattering.

In the remainder of the manuscript we only consider the system response when excited on resonance. For 
a treatment for the off-resonant case we refer to Ref.26. This is conveniently expressed in terms of the response 
function in the absence of dissipative damping as,

α
α

ω Γ πε
=

+ m e k1 6 /( )
,

(10)
res

0

0 nrad 0
2 3

where

Figure 4.  Corresponding to the absorption cross-section in Fig. 3b–d, the extinction cross section (σ xte ) can be 
calculated. For no further loss (β = 1), this amounts to λ π3 /(2 )2 , as shown in the picture. To note, that this 
cross-section is not simply circular.
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α
πε

=
k

6 i
(11)0

0
3

If no dissipation occurs (i.e. α is purely real), then the amount of extinction is equivalent to scattering. We con-
sider the time averaged power extracted by the dipole by26

 ∫
ω ω α= − = .I

�� �� ��⁎{ }P e J E V E
2

d
2

m{ }
(12)V

ext in in
0 2

Here, 
��
J  is the electric current density (a harmonic time dependence ω− texp( i ) is used). For Eqn. 12 it is essential 

that the electric field is uniform and time harmonic over the volume, V , of the system (which is a semi-classical 
approach). The time averaged energy of the incident wave is

ε
= .P c E

2 (13)in
0

in
0 2

An oscillating dipole radiates power and the the scattered energy is given by23

πε
α

πε
α= | | = | | .P ck E k P

12 6 (14)scat

4

0

2
in
0 2 4

0

2
in

If no energy is transferred into other channels (e.g. heat) the amount of extracted and scattered energy is 
equal. This implies that the absorption is zero. In the time averaged case no energy flows into the dipole. All 
energy which is transferred to the emitter first excites the emitter and is then re-radiated. In the following, the 
polarizability is defined to account for further loss channels.

Introduction of a loss channel, β.  The introduction of α as outlined above allows the introduction of a 
loss parameter, β, which is sometimes also introduced as a “single-scattering albedo”,

= =
+

= = .
a
a m G pe e k

ß 1
1 ? 6 /( )

where 0 ß 1
(15)

res

0 0 nrad 0
2 3

The dipole moment is then written as
�� �� ��

α α β= = .d E E (16)in
0

0 in
0

In this notation the factor β can be seen as a heuristically introduced absorption parameter, since the polar-
izability of the system is reduced if absorption is introduced. The different power flow parameters on resonance, 
are given by

Figure 5.  (a) Three dimensional representation of the energy flow into a dipole. Due to symmetry, only one 
quadrant is shown for β = .0 75. It is visible that the streamlines leave the yz-plane. We determine the effective 
absorption aperture, by finding the boundary between the lines which end up in the dipole and the ones which 
are bypassing. b) the shape of this absorption aperture (equivalent to the cross section) for different values of β 
far away from the emitter ( λ≈ .z 2 4 ). The crossed labels on the curve Pabs in Fig. 3a correspond to the derived 
areas for the different β-values in here.
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where the relation ω=k c/  is used. The three different contributions in Eqn. 5 correspond to the different energy 
components given in Eqn. 17a,b,c via an integration over an imaginary sphere Ωtot (c.f. Fig. 1) which incooperates 
the dipole.

Since β is given by the ratio

β = =
+

.
P
P

P
P P (18)

scat

ext

scat

abs scat

We see that for β < .0 5 the amount of absorbed power dominates the ratio, and for β > .0 5 the amount of scat-
tered energy dominates (c.f. Fig. 3a). Equation 18 shows the meaning of β as the fraction of re-radiated energy to 
the total extracted energy. In this context it should be mentioned that G. Wrigge derives an analogous result for a 
two-level-system with decay channels (below saturation) in Ref.27, that shows the universality of this fact illus-
trated in Fig. 3a. It might be confusing that some textbooks (e.g.28) handle Eqn. 12 as the absorbed power. If they 
do so, they use a quasi-static description of the polarizability. In this case scattering by the system is neglected, and 
extinction and absorption become the same. It has to be mentioned that the quasi static polarizability conflicts 
with the optical theorem, but Eqn. 8 provides a solution to this dilemma.

To visualize the energy flow we compute the time averaged Poynting vector and solve the differential Eqn. 23 
numerically to get its streamlines.

= =̂
s

S x s y s z s i x y zdr
d

( ( ), ( ), ( )) where { , , }, (19)
i

i

with s used as a “dummy” parameter. Such a picture was derived earlier. It allows for a vivid insight on the process 
of light absorption21,22.

For the earlier discussed case, where no absorption occurs, we show the case of streamlines in Fig. 3b. All 
streamlines are redirected, but do not end up in the dipole at the origin. It must be noted that the streamlines leave 
the xy-plane. These points are marked with circles in the plot (green). The energy flow for the case of β = 0.1 is 
shown in Fig. 3c,d. It is nicely visible how the dipole “collects” energy from a region, which is by far larger then the 
geometrical spread of the dipole (a point-like dipole is considered). Moreover, it is visible that the streamlines are 
directed towards the dipole, even if they have already “passed” the position of the emitter. The reason for that 
behavior is found in the interference terms. The interfere happens in such a way that the energy flow is directed 
towards the dipole. For a lower β value, the effect on the incident plane wave is smaller, as evident on the xy
-coordinates. With a β of unity, the distortion of streamlines exceeds one wavelength. This effect is diminished 
with a lower β.

Based on the Eqn. 17a,b,c we see that β = 1 refers to the ideal system where we have no absorption and the 
whole energy is re-radiated, whereas the β = 0 case refers to no excitation, respectively no polarizability of the 
system. Figure 3a shows the normalized energy contributions given in Eqn. 19b,c plotted as a function of β. The 
figure shows nicely the fact that absorption is necessarily concomitant with scattering i.e. absorption without 
scattering can not exist. Moreover, it occurs that the maximum value of absorption is given if β = 0.5, which is 
equivalent to an equivalent amount of scattered and absorbed energy. As shown in Ref.26, this is also valid for the 
case of out of resonance.

Figure 4 shows a calculation of the streamlines in the case for the pure extinction case. For the calculation, it 
simply implies to take only the first two terms of Eqn. 5, and neglect the third term. Additionally, no further losses 
are accounted for. This implies that the loss parameter, β, is unity. Of course, this implies, that we artificially dis-
regard the amount of energy which is redistributed in all 4π steradians – subsequently, the full incident energy is 
not conserved in this case. The scattering and the extinction cross-section are the same at this point, and amount 
to λ π3 /(2 )2 , as introduced in Eqn. 21 below. In the following, we only consider the case of the absorption 
cross-section, such that a certain loss, e.g. a transfer to heat, is introduced by the emitter.

The cross sections.  Based on the Eqn. 17a,b,c it is possible to define three different on resonant cross sec-
tions. A more general description can be found using Eqn. 8

σ π β= =
P
P k

6
(20a)ext

ext

in
2

σ π β= =
P
P k

6
(20b)scat

scat

in
2

2
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σ σ σ π β β= − = − .
k
6 ( )

(20c)abs ext scat 2
2

As implied in Fig. 3c,d the area of streamlines which end up in the singularity (given by the dipole) suggests a 
relationship to the absorption cross section. For the three dimensional case, this is depicted in Fig. 5a. This defi-
nition represents a graphical association to Eqn. 20. Based on this definition the shape of the absorption cross 
section is derived for different loss parameters. The result is shown in Fig. 5b. To derive the absorption cross sec-
tion we numerically searched for the starting point on the x-axis where a small deviation from the point 

=
r z x{ , 0, }p 0 bound  yields a change of the streamlines whether they end up in the singularity or not. z0 is chosen 
to be far away from the dipole for now, and xbound denotes this boundary. Once this point is found, the boundary 
of the aperture can be followed by circling around the last derived point and checking the endpoint of the stream-
lines. Such apertures were calculated in the past29,30. The area of the apertures is then be derived by an interpola-
tion of the data and the use of Greens theorem. As visible from the plot (Fig. 5b) the shape of the absorption cross 
section must not necessarily be round.

Moreover, it has to be noted that while the theoretical provided behavior of the absorption cross section as a 
function of β (blue curve in Fig. 3a) would intuitively yield an assumption of a shape symmetry against a value of 
β = 0.5, the shape totally differs between a pair of β-values symmetric to 0.5 (e.g. β = 0.3 and β = 0.7 in Fig. 5b). 
But the computation of the area of the absorption cross section based on the data of the simulation shows a good 
correspondence to the theoretical forecast (black “ + ” in Fig. 3a, i.e. the area of the pair β = 0.3 and β = 0.7 is 
equal). The physical interpretation of this behavior implies that the amount of energy absorbed by a pair of loss 
parameters symmetric to 0.5 is equal, but the way the energy “travels” into the dipole is very different.

For β = 1, i.e. no absorption, we find the textbook result for the extinction respectively scattering cross section 
of a dipole given by

σ π λ
π

= = .
k
6 3

2 (21)ext, max 2

2

Thus, the whole extinction i.e. the reduction of the incident power in the forward direction is caused by scattering. 
Also, other β values should be considered, which implies to leave the point of an ideal system without absorption. 
The maximum absorption cross section can be found for a loss factor of β = 0.5 given by

σ π λ
π

= = .
k
3
2

3
8 (22)abs, max 3

2

This is again consistent with the result of Ref.26. So far, we did not introduce any polarization dependent response 
of the system, and one should note that the cross sections are indeed independent of the incident wave polariza-
tion (i.e. linear or circular). The expression for the maximum absorption cross section also holds for the off reso-
nance case26. Thus, a maximum energy dissipation is generally given if =P Pabs scat. This is also visible in Fig. 3a. 
The results which are presented for a Hertzian dipole are equivalent to the analysis of E. Shamonina and cowork-
ers, who evaluated the energy flow into a short antenna in Ref.30. The equivalence of the results is not surprising 
since the inverse polarizability of a short antenna is given by26

α
ω

= + .
l

Z Z1 i ( )
(23)2 inp load

Thus, the math for a short antenna is included in Eqn. 8. The parameter of interest in Ref.30 is ∆ which corre-
sponds to β via β = + ∆1/(1 ), i.e. the maximal absorption case in this nomenclature is given by ∆ = 1. The 
shape, we found for the absorption cross section of a Hertzian dipole is equivalent to the results of Ref.30.

Apertures in the Optical Near-field
Based on the analytically expression of the cross sections given by Eqn. 20a,b,c one can easily disregard that the 
definition of the cross section is just strictly valid for 

∞kr . A simple argument to understand this, is that the 
cross sections are defined via the incident power density Pin. Since the total field is given by a superposition of the 
incident and the scattered field, the power density of the total field differs from the power density of the incident 
field. Thus, the cross sections given by Eqn. 20a,b,c define an area which yields to the total amount of extin-
guished, scattered and absorbed power if they are multiplied with Pin. Hence, if the energy density of the total field 
changes, the area of the cross section has to change to ensure that the amount of power which is extinguished, 
scattered or absorbed stays the same. If the total energy density is e.g. smaller than the incident power density, the 
area of the cross sections has to increase, such that energy conservation is fulfilled.

Figure 6 shows the qualitative behavior of the situation described above. The absorption aperture of a dipole 
with a loss factor of β = 0.75 is plotted along the way towards the dipole. Furthermore, some boundary solutions 
on and beside the aperture are shown. At the situation “far” away from the dipole, where the power density is 
given by the incident power density, the shape of the aperture stays constant as expected; when the emitter is 
approached, the shape changes.

Based on the idea Fig. 6 provides, a more detailed investigation of the aperture in the optical near-field is per-
formed. The absorption aperture for different loss parameters is evaluated dependent on the distance to the 
dipole. The results are shown in Fig. 7a. The purple and the blue curve in the plot are very similar to the theoreti-
cal curve given by Eqn. 19c. As shown in the plot, the area of the aperture increases in the optical near-field 
(z-values are given in the plot). Moreover, it occurs, that there is a maximum value of the aperture for a certain 
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distance in front of the dipole. A density plot, shown in Fig. 7b, shows the change in the lateral extension of the 
absorption cross-section. We determine the maximum at a distance of 0.15 λ and a loss parameter β of 0.73. 
There, the effective area is 40% larger than in any far field case. Following these arguments, this directly yields a 
change of the total power density. As an example, the situation for a loss parameter of β = 0.75 is illustrated in 
Fig. 7c. The density of the energy flow is visualized as a grid of streamlines which are followed on their way 
towards the dipole. The grid is color-coded which corresponds to the energy density of the total field at the posi-
tion. For the situation in the xy-plane at λ= −z 4  the energy density appears uniform. For the corresponding 
situation in Fig. 7a we realize that the area nearly corresponds to the theoretical expectation in the far-field. For 
the situation where a maximum in the aperture area occurs ( = − .z 0 15 c.f. Fig. 7a) the power density is reduced. 
Thus, the simulation is conformant to the previous argument.

Figure 7c shows, that the power density does not change homogeneously when the emitter is approached. 
Close to the emitter, the shape of the grid adapts the shape of the dipole radiation pattern (donut-shape). This 

Figure 6.  Distance dependence of the absorption cross section. Far from the emitter the streamlines in 
a defined region end up in the emitter. When the emitter is approached, the same amount of energy is 
redistributed and the effective cross section enlarges. The energy density inside the cross section is altered. A 
loss parameter, β, of 0.75 is assumed, as in Fig. 5a.

Figure 7.  (a) Distance dependence of the absorption cross section. Far from the emitter, it corresponds to the 
theoretical description (purple, blue curve at 4 and 1 λ distance from the dipole). The closer to the emitter the 
cross section is determined, the peak shifts to higher loss factors β. The dashed parts of the curves could not be 
calculated. (b) distance dependence in a density plot. Note that the maximum of the theoretical curve is at 0.25 
σabs. This is even not fulfilled at a distance of λ= −z 4  from the dipole. (c) Energy density inside the absorption 
cross section for a loss parameter of β = 0.75. We assume a rectangular grid, which is followed along the z-axis 
towards the emitter. It is evident, that the cross section initially widens, and it is then reshaped. As an example 
the energy density at λ= − .z 0 15  is obviously reduced, whereas the overall area is enlarged. The corresponding 
situation in (a) is marked with a blue dashed line and by triangles in (b).
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indicates, that the energy flow in the near-field is dominated by the energy flow of the dipole itself. This cor-
responds to the result of G. Zumofen and coworkers18, when they describe that the dipolar component of an 
incident focused wave can be perfectly reflected by a single dipole. In our description, the energy flow in close 
proximity to the dipole seems to match such a dipolar pattern.

Circular Dipole
If one considers an atom as a single emitter it is known from atomic physics that linear as well as circular polar-
ized excitation is of interest. Based on the math introduced in section 2 it is simple to formulate the problem for a 
circular excitation. With an incident wave given by

��
ε ω= −ˆE E kzexp(i i t), (24)in in

0

where ε=ˆ 1/ 2 (1, i, 0)T corresponds to the Jones vector of a circular polarized wave. This yields to a dipole 
moment (on resonance)

ˆ β ω= − = − − .d a e t
k

t
?

ß exp( i? ) 3
2 2

(i, 1, 0) exp( i )
(25)0 3

T

Notice the common phase shift of π/2 between the incident wave and the reaction of the driven oscillator. The 
Eqns. 24 and 25 correspond to the Eqns. 1a and 16 in section 2. Based on this modification the same investiga-
tions as for the Hertzian dipole are performed. Figure 8 shows the apertures as well as some streamlines for the 
circular dipole case and different loss parameters. The way the energy travels into the dipole corresponds to the 
energy flow of a circular dipole emitter itself (without the incident beam) as investigated in Ref.31. One has to 
notice, that the direction of the energy flow in our case is towards the dipole, while the energy flow of a radiating 
dipole is logically outwards. This is due to the interference terms which direct the energy into the dipole. If the 
plots in Fig. 8a,b are compared, it is nicely visible that the behavior of the energy flow is more dominated by the 
scattered part for β > .0 5. If one follows the solution which bypasses the dipole it occurs that the solution first 
spins around the z-axis until it changes the direction and gets “sucked” up into the dipole. This seems somehow 
counter intuitive, but simply results from the fact that both fields interfer in the proximity of the emitter. 
Figure 8c,d shows the boundary solutions for the two cases plotted in Fig. 8a,b.

Figure 8.  The absorption cross sections for a circular dipole. All incoming aperture shapes are circular. The 
dipole is located at the origin and marked with an x. The size of the absorption cross section is symmetric 
around β = 0.5. (a) Shows the energy flow for β = 0.2 for selected points inside and outside the aperture. The 
same points are followed in b) for the case of β = 0.8. The size of the cross section is the same. (c) and (d) show 
the energy flow for points slightly inside and outside of the aperture. Although the aperture is the same, the 
energy flow differs in the optical near-field. These pictures correspond to the calculations in ref.31, but show the 
energy flow into the dipole.
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The pair of loss values (β) chosen for the plots in Fig. 8 are symmetric to 0.5. This can be seen in Fig. 3a/ 
Fig. 9a, and implies that the amount of energy absorbed by the dipole is equivalent in both cases. As shown in 
Fig. 9a the simulation data satisfies the theoretical forecast (which is exactly the same as for the linear case) for a 
circular excitation as well. But if the results are compared to the results of a Hertzian dipole it occurs that there 
is a shape symmetry against a loss value of 0.5 (Fig. 9b). This is more intuitive than for the Hertzian dipole case 
if one has the symmetric theory plot in mind (c.f. Fig. 3a). Moreover, it occurs that the shape of the absorption 
cross section stays perfectly round as visible in Fig. 9b. When the energy flow of a symmetric pair of loss values is 
investigated, it appears that the way the energy takes differs drastically for both cases (see also Fig. 8).

When the situations for the Hertzian and the circular dipole are compared, it is evident that both mathemati-
cal descriptions nicely yield a result which satisfies the underlying theory, independent of the incident wave polar-
ization. Whereas the energy flow for the different cases differs totally, it always fulfills the boundary conditions 
that the “total area” of the absorption cross section yields to a corresponding result. Thus, it might be questionable 
how meaningful the energy flow itself is, since the definition of the Poynting vector is not unique. But the results 
of the simulation provided in the current paper may give an intuitive picture how light absorption occurs.

For the Hertzian dipole, it is determined, that the effective far-field aperture is altered in the optical near-field. 
This seems to be equivalently the case for the circular dipole. An example is depicted in Fig. 9a. These apertures 
are relatively easy to determine, since their shape is always circular, such that the derivation of one point on the 
boundary of the aperture is sufficient to calculate the area ( π=A r2).

Conclusions
The presented results describe the situation regarding the power flow for a plane wave which interacts with a 
dipole emitter. They are fully equivalent to short antennas in the RF- or MW-range. The emitter can be a circular 
or a linear point-size dipole. To determine the absorption cross-section, the streamlines of the Poynting vector are 
followed, and result in an effective aperture, which matches the analytic derivations. The presented calculations 
are derived mostly equivalent to a situation with a focused light beam18 – the only difference is the definition of 
the incident field. Unlike there, the plane wave does not experience a Gouy phase shift and no reflection of light 
occurs with a plane wave. The later case corresponds more to a real measurement scenario than the studied case 
with a plane wave.

For a point-like Hertzian dipole, the apertures are not circular symmetric. The lateral area of the absorption 
cross-section is fully equivalent in both cases. Whereas for the linear case, the effective aperture changes its shape 
with the loss parameter, β, the circular dipole always has a circular shape.

In both cases, the apertures are changed in the optical near-field. This might not necessarily be interesting for 
far-field experiments with focused light. Also, extinction experiments in the optical near-field2,32,33 will be likely 
dominated by other effects, such as the emission of sub-wavelength apertures. Experiments with nano-particles or 
plasmonic structures will likely explore the described effects. For the nano-optical calculation and design of efficient 
absorbing structures, the presented results are of relevance. One example are optical wave-guides in which a single 
emitter can be placed34, such that the entire optical field interacts with high (ideally unity) probability with an emit-
ter. Such calculations will allow to implement devices which are suitable for an efficient photon-photon interaction, 
which is required in many quantum optical proposals and is commonly known as a quantum phase gate.

The described math is presently extended to the case of multiple dipolar emitters, which might “cloak” each 
other by their presence. This yields situations comparable to Ref.35. Furthermore, we extend our approach to the 
case of a real optical focus, as described earlier36,37. This would correspond to a graphical representation of the 
case described by Ref.18.

Figure 9.  (a) The size dependence of a absorption aperture corresponds exactly the case for the Hertzian dipole 
(see Fig. 3a). The cases corresponding to the plots in b) Are highlighted with a bold+. (b) Apertures, far away 
from the dipolar emitter for different values of the loss parameter β. The determined values in a) correspond to 
calculations for different apertures. Unlike for the Hertzian dipole, we observe a shape symmetry against the 
value of β = .0 5, although the energy flow is different, as shown in Fig. 8.
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