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Efficient and accurate identification 
of ear diseases using an ensemble 
deep learning model
Xinyu Zeng1, Zifan Jiang3, Wen Luo2, Honggui Li4, Hongye Li6, Guo Li5, Jingyong Shi1, 
Kangjie Wu1, Tong Liu1, Xing Lin1, Fusen Wang1* & Zhenzhang Li2*

Early detection and appropriate medical treatment are of great use for ear disease. However, a new 
diagnostic strategy is necessary for the absence of experts and relatively low diagnostic accuracy, 
in which deep learning plays an important role. This paper puts forward a mechanic learning model 
which uses abundant otoscope image data gained in clinical cases to achieve an automatic diagnosis 
of ear diseases in real time. A total of 20,542 endoscopic images were employed to train nine common 
deep convolution neural networks. According to the characteristics of the eardrum and external 
auditory canal, eight kinds of ear diseases were classified, involving the majority of ear diseases, such 
as normal, Cholestestoma of the middle ear, Chronic suppurative otitis media, External auditory cana 
bleeding, Impacted cerumen, Otomycosis external, Secretory otitis media, Tympanic membrane 
calcification. After we evaluate these optimization schemes, two best performance models are 
selected to combine the ensemble classifiers with real-time automatic classification. Based on 
accuracy and training time, we choose a transferring learning model based on DensNet-BC169 and 
DensNet-BC1615, getting a result that each model has obvious improvement by using these two 
ensemble classifiers, and has an average accuracy of 95.59%. Considering the dependence of classifier 
performance on data size in transfer learning, we evaluate the high accuracy of the current model that 
can be attributed to large databases. Current studies are unparalleled regarding disease diversity and 
diagnostic precision. The real-time classifier trains the data under different acquisition conditions, 
which is suitable for real cases. According to this study, in the clinical case, the deep learning model is 
of great use in the early detection and remedy of ear diseases.

As is known to us all, the sense of hearing is considered as one of the most important five senses, since the sense 
of hearing is human lives mainly rely on1. However, as a common disease, if not be received early and treated 
validly, ear disease may leave some negative effects, for example, hearing impairment. In the estimation of ear 
diseases in the clinic, conventional otoscopy or otoendoscopy is an important component of physical examina-
tion at the first step. However, otoscopy or otoendoscopy used in diagnosis can be easily misdiagnosed for non-
otolaryngologists2. Research of Pichichero, Poole3, for example, found that the average accuracy of otitis media 
diagnosed by 514 pediatricians was only 50%. Such low diagnostic accuracy hinted that, without the assistance 
of supplementary resources, testing the diagnosis of ear disease will be difficult, even for experts. Based on such 
a situation, there is a great need to find a new diagnostic strategy to improve diagnostic accuracy.

In these years, deep learning has acted as a promising method for image recognition or classification, is the 
foundation of automatic image perceiving, processing and deciding, and has been a heated topic in the area of 
computer vision for a long time4,5. Deep learning has been applied in several medical imaging areas, such as the 
development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus 
photographs6, large-scale deep learning for computer-aided detection of mammographic lesions7. What’s more, 
deep learning has been widely applied in ear and hearing disease classification8–10. In these deep learning appli-
cations, deep convolutional neural networks (CNNs)4 is playing a very important role in image recognition or 
classification. Very little prior professional knowledge is needed to input during the training procedure of deep 
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CNNs models. Emerged as a feature extractor, some pre-trained deep CNNs can rival or excel in the execution 
of domain-specific, handcrafted features11–14. Comparing to conventional spectral classifiers, deep CNNs is 
more accurate in image recognition problems due to the millions of weights with multiple layers but have a high 
computational cost when training the model10,15.

To the best of our knowledge, the purpose of this research is to set up an automatic discriminating system 
for ear diseases by a deep learning model. The performance of twelve public models was evaluated by accuracy 
and training-validation time. Based on the assessment results, two best models among 12 models were chosen 
to build an ensemble classifier which then can design and accomplish a real-time automatic identification of 
ear diseases system.

Materials and methods
Patient selection and data preprocessing.  In this study, our dataset was obtained from 41,056 patients 
who were diagnosed in the department of otolaryngology in the people’s hospital of Shenzhen Baoan District, 
from July 2016 to August 2019. Usually, patients got their eardrums and external auditory canal (EAC) photos 
via a conchoscope upon visit. These images were got by using standard endoscopes (Matrix E2, XION GmbH, 
Berlin, Germany) tethered to Olympus CV-170 digital endovision camera systems (Olympus Corporation, 
Tokyo, Japan). The resolution rate of these images is 586 × 583 pixels. In order to unify graph data and keep 
the original shape, we uniformly cropped and scaled these images with a size of 448 × 448 pixels with a ratio of 
1:1. We chose 20,542 images, about 53.55% of the total candidate images. Male 11,797. female 8,745. occupied 
57.43% and 42.57% of the total number of the selected images, respectively, as shown in Table 1. According to the 
age, aged (0,10] years have the maximum (22.187%) , aged (30,40] years (21.169%) and (20,30] years (20.861%) 
in order. Simultaneously, those images were randomly split into three sets, which of 80% for training, 20% for 
validation, respectively. The training set and validation set have no repetition and are consistent with each model 
that we trained.

This study confirmed that all methods were implemented in accordance with the relevant guidelines and 
regulations of the ethics committee of Shenzhen Baoan District People’s hospital. It is confirmed that all the 
experimental protocols have been approved by the ethics committee of Shenzhen Baoan District People’s hospital. 
The informed consent of all subjects was confirmed, and the informed consent of parents and/or legal guardians 
was obtained for those under 18 years old.

Labeling of images.  Image samples of eardrums and EAC were divided into eight categories based on 
the Colour Atlas of Endo-Otoscopy16, as shown in  Fig. 1. All the image classification was implemented by six 
ear specialists with more than six years of experience. The number of examples representing each ear disease 
category is shown in  Table 2.

(1)	 Normal eardrum and EAC (included completely normal eardrum, normal with healed perforation or some 
tympanosclerosis, NE, Fig. 2).

(2)	 Chronic suppurative otitis media (CSOM) There is perforation of tension of tympanic membrane, and they 
are not a uniform size. Most of them are single shots. The residual tympanic membrane may have calcifica-
tion, ulceration and granulation tissue growth around the perforation margin.

(3)	 Cholestestoma of middle ear (CME) Loose inner pocket can be seen, and white exfoliated epithelium can 
be seen inside the pocket.

(4)	 External auditory cana bleeding (EACB) Bright red blood can be clearly seen in the external auditory canal.
(5)	 Impacted cerumen (IC) The external auditory canal can be blocked by brown-black or yellowish-brown 

lumps. The cerumen masses have different textures, some are loose like mud; some are hard as stone.
(6)	 Otomycosis external (OE) The external auditory canal and tympanic membrane are covered with yellow 

black or white powdery or villous fungal masses. The short process of the malleus is apparently exoid.
(7)	 Secretory otitis media (SOM) The tympanic membrane is invaginated and the handle of the malleus moves 

backward and upward. When the tympanic cavity has effusion, the tympanic membrane loses its normal 
luster, showing light yellow, orange oil or amber color, but If the liquid does not fill in the tympanic cavity, 
the liquid level can be seen through the tympanic membrane.

(8)	 Tympanic membrane calcification (TMC) The calcification of the tympanic membrane is deposited like 
white plaque, which is located in the fibrous layer of the tympanic membrane, but the reason is unclear. It 

Table 1.   Sample characteristics.

Age (0,10] (10,20] (20,30] (30,40] (40,50]

Male 13.451% 4.323% 11.451% 12.612% 8.308%

Female 8.736% 2.391% 9.410% 8.557% 6.055%

Age (50,60] (60,70] (70,80] (80,90] > 90

Male 4.322% 2.124% 0.634% 0.194% 0.009%

Female 4.421% 2.266% 0.583% 0.137% 0.015%

Total Male: 57.43%; Female: 42.57%
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may be related to chronic inflammation, such as chronic otitis media and so on, which can be found in the 
entire intact and perforated tympanic membrane.

Training transfer learning network models.  In order to extract  features from eardrums and EAC 
white light images for the automated detection of ear diseases, we used a model method which is typically 
used to solve image classification in computer vision17,18. In many models of deep learning models, ResNet19 
(ResNet50, ResNet101), DensNet-BC20,21 (DensNet-BC121, DensNet-BC161, DensNet-BC169), Inception-
V322, V423, Inception-ResNet-V223 and MoblieNet-V224, V325 were implemented and compared performance 
data from release to release, such as Inputting the image samples, training network, optimizing the network 
model. Traditionally, the feature maps of the last convolutional layer are vectorized and fed into fully connected 
layers followed by a softmax logistic regression layer. However, fully connected layers are prone to overfitting. 

Figure 1.   Otendoscopy image and eight diagnostic classes of ear diseases. (a) Cholestestoma of middle ear 
(n = 818). (b) Chronic suppurative otitis media (n = 3169). (c) External auditory cana bleeding (n = 694). (d) 
Impacted cerumen (n = 5453). (e) Normal eardrum (n = 4217). (f) Otomycosis external (n = 2256). (g) Secretory 
otitis media (n = 2448). (h) Tympanic membrane calcification (n = 1037).

Table 2.   The number of examples representing each ear disease category.

Category CME CSOM EACB IC

Number 818 3169 694 5453

Category NE OE SOM TMC

Number 4217 2256 2448 1037

Figure 2.   Example of image diversity labelled “Normal”.
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In this process, therefore, we used global average pooling in place of the fully connected layers in each model, 
generating eight output nodes with a softmax activation function. This have some advantage26: (I) enforcing 
correspondences between feature maps and categories, thus the features can easily be interpreted as categories 
confidence maps. (II) No parameter to optimize in the global average pooling. (III) Global average pooling sums 
out the spatial information thus it is more robust to spatial translations of the input. The training makes full 
use of a stochastic gradient descent method27 with a batch size of 100, an epoch of 15, an initial learning rate of 
0.01, momentum of 0.9 and weight decay of 10–4 to optimize parameters. L2-regularization, dropout and data 
augmentation were applied to prevent overfitting. The images were flipped horizontally and vertically and then 
rotated 90 and 180 degrees. Nerves run in various directions, and a change of the nerve direction will not cause 
any problems.

This study was performed using the deep learning framework PyTorch28 through four graphics processing 
units (Tesla K80, NVIDIA) in Dell T640 station (inc., USA). For data augment in the process of model training, 
we performed random X and Y flip horizontal and vertical of input images.

Firstly, we classified the features of image samples of eardrums and EAC from the training sets by feeding to 
the deep neural network in the frame of PyTorch, and then we observed the performance of the training model on 
the validation dataset, simultaneously. And when the loss and the accuracy were stable, the training was stopped.

Model structure adjustment.  To reduce the size of image features slowly in the convolution operation process 
of training, we added one dense block ([1 × 1 conv, 3 × 3 conv] × 6) which is the same as the first dense block 
of DenseNet-BC in the DenseNet-BC20,21 framework (the growth rate is k = 32) and compression is 0.5). Take 
DensNetBC161 for example, added one dense block ([1 × 1 conv, 3 × 3 conv] × 6) as the first dense block in 
DensNet-BC161, and the output size is 112 × 112 (tagged as DensNet-BC1615), as shown in  Fig. 3. Others, such 
as, DensNet-BC121 → DensNet-BC1215, DensNet-BC169 → DensNet-BC1915. Therefore, a total of 12 models 
were implemented and compared performance data from release to release adding the model described above.

Selection of two appropriate models.  Through the evaluation of the accuracy and calculation time performance 
among the 12 models, the appropriate models were selected. 80% and 20% of the images were set up the training 
set and validation set, respectively, from a total of 20,542 otoendoscopic images. The model optimization step 
was training-validation which was executed twice with training and validation set respectively.

Ensemble classifier.  An ensemble classifier was constructed by combining classifiers’ outputs of the two appro-
priate models. Each classifier model assigns the probability of an input image to eight tags (NE, CME, CSOM, 
EACB, IC, OE, SOM, TMC) and the maximal probability among all tags is considered as a predictable label. The 
ensemble classifier combines 8-term score vectors from the predicted results of the two models together and the 
class with a maximal score will be treated as the final forecast image’s label.

Sensitivity–specificity curve.  Sensitivity and specificity are frequent clinimetric parameters that together define 
the ability of a measure to detect the presence or absence of a specific condition (i.e., likelihood ratio). On the 
whole testing set, a population-level sensitivity and specificity were calculated based on the following formula.

where FP, PN, TP and PN represent the numbers of false positives, false negatives true positives and true nega-
tives, respectively. A sensitivity–specificity curve can be created by changing the threshold value t (probability 
p ≥ t, where t is a threshold value).

Sensitivity =
TP

TP + FN
,

Specifificity =
TN

TN + FP
,

Figure 3.   A schematic of model structure adjustment for DensNet-BC1615.
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Confusion matrix.  We used the confusion matrix to evaluate the quality of the output of the classifier. The val-
ues in the diagonal line represent the number of correctly predicted samples, while the values not in the diagonal 
elements represent the number of misclassified samples. If the diagonal values are very high, it indicates the 
classifier has a very good performance.

Overall accuracy.  The overall accuracy is the ratio of the number of correctly categorized images to the total 
number of testing images, as shown below:

Results
Model and performance analysis.  The number of parameters, training and validation time (Model opti-
mization time) and accuracy of every transferred model were revealed in Table 3. The number of parameters was 
calculated by user-defined python programs, as shown below.

def get_model_parameter_num(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
return {’Total Time’: total_num, ’Train Time’: trainable_num}
The hidden layer of the models had no significant improvement. There is not a hidden layer in the fully 

connected layer of the ten models. Calculating results show that the best accuracy was the DenseNet-BC1615 
(95.099%), followed by Inception-ResNet-V2 (94.617%), DenseNet-BC161(94.564%) and DenseNet-BC169 
(94.541%), as shown in Table 3. For model optimization time, DenseNet-BC1615, Inception-ResNet-V2, 
DenseNet-BC161 and DenseNet-BC169 were 80,895, 111,849 and 78,453 and 56,477 s, respectively. In order 
to test the stability of the model, the 12 models which we have been trained were evaluated by 10 percent of the 
sample which collected randomly from the training set. Repeated the previous step ten times and recorded its 
accuracy, and then and then performed repeated measures one-way ANOVA, as shown in  Fig. 4a. One-way 
ANOVA indicated that the DensNet-BC1615 and DensNet-BC169 increased more significantly than other mod-
els except for the Inception-ResNet-V2 (the reason it was not chosen was that it took too long to train). Then 
we analyzed the significance of the two models we selected and the best two of the remaining models. It further 
showed that the two models increased diagnostic accuracy significantly (p-value = 2.74e−09), as shown in  Fig. 4b.

Together with the accuracy and the model optimization time, DenseNet-BC1615 and DenseNet-BC169 were 
selected to be the best-transferred network models to form an ensemble classifier. To better display the training 
process, we add learning curves to visualize the training performance of these 2 selected deep learning models 
(Fig. 5).

From the two models, the classification mechanism of the ensemble classifier is estimated according to the 
following formula.

where S1 and S2 are the lexicographic vector of an input image predictor score of the two models, respectively. 
S1*S2 represents the dot product of the S1 and S2 vectors. S is a predicted label score of the ensemble classifier. 
For this design, we also give an example of the ensemble classifier running results which were shown in Fig. 6.

In this research, we calculated the confusion matrices for DensNet-BC1615, DensNet-BC169 and the ensem-
ble classifier that were shown in Fig. 7. These results are obtained by identifying the testing data with these 3 
models. The testing data covers 10% of total images and is not used during the whole training process. The average 

Overall Accuracy=
Ncorrectly classified images

Ntesting images

(1)S = max{x|x ∈ S1 ∗ S2}

Table 3.   Performance table of training models. GPU time is the processing power needed for training and 
validation the model. Processing time means the time of each model to identify the same input image.

Transferred models Accuracy GPU time (s) Parameters Processing time (s)

MoblieNet-V2 93.455 27,240 2,235,200 0.0374

MoblieNet-V3 93.884 24,758 2,946,622 0.0357

Inception-V4 93.000 98,270 42,681,353 0.1309

ResNet50 93.581 51,098 25,557,032 0.0668

ResNet101 93.632 78,844 42,516,552 0.1099

Inception-ResNet-V2 94.617 111,849 54,318,760 0.1604

DensNet-BC121 94.188 54,192 6,962,056 0.0859

DensNet-BC161 94.564 78,453 26,489,672 0.1707

DensNet-BC169 94.541 56,477 12,497,800 0.1090

DensenetBC1215 94.364 56,079 7,548,920 0.0809

DensenetBC1615 95.099 80,895 27,893,456 0.4512

DensenetBC1695 94.339 58,209 13,122,040 0.1318

Ensemble – – – 0.5708
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Figure 4.   The accuracy comparison between different models on 10 sampling datasets.

Figure 5.   The learning curves of 2 selected models, DenseNet 1615 (a) and DenseNet 169 (b).

Figure 6.   A sketch of structure and an operating diagram for the ensemble method classifies given 
otoendoscopic image.
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classification accuracy was obtained on DensNet-BC1615, DensNet-BC169 and the ensemble classifier reached 
94.94%, 95.08%, and 95.59%, respectively. The combined forecasting method possessed the two single method’s 
advantages, and the result showed that forecast value was more accurate.

We assessed the ensemble classifier according to the performance of generating binary predictions on Urgent 
versus Non-urgent subjects. Blood transfusion is the means of life-saving treatment of many diseases. Such a 
binary classification task has been very important for clinical significance since emergency cases should be 
treated immediately. Any delay, attributed to misclassification, for example, will increase the risk of death. The 
performance of the Urgent versus Non-urgent based on the sensitivity–specificity curve can be clearly found 
in Fig. 8. The AUCs of the DensNet-BC1615, DensNet-BC169 and the ensemble classifier were 0.9968, 0.9965, 
and 0.9974, respectively. The reason for the increase in the overall accuracy of the ensemble classifier is that the 
ensemble classifier actually can classify more samples correctly based on the result of two separate models. For 
example, one sample gets wrong identification by one model but obtains the correct label in another model, in 
this case, the ensemble classifier can eventually return the correct classification result to this sample. As a result, 
more samples can get correct classification by using an ensemble classifier.

The real‑time automatic identification system.  A real-time automatic identification system was 
designed by combining an endoscopy system and ensemble classifier, as shown in Fig. 7, and its web page also 
can be seen in. The image was obtained from the endoscopy system by adjusting the focus. The image got into the 
real-time recognition system after being processed by the capture system, and then the prediction results were 
obtained by the ensemble classifier, which was displayed on the web page of the system. Provided that an image 
is in the process of real-time classification if the maximum probability of the eight classes (NE, CME, CSOM, 
EACB, IC, OE, SOM, TMC) estimated by one of the three models (DenseNet-BC169, DenseNet-BC1615 and 
ensemble classifier) is less than or equal to 0.3, or more than three categories of the prediction probabilities are 
greater than 0.3 in any model of the three, the system would point out that the image is likely to be excluded in 
those eight categories and give tips on the web page of the system (others, as shown in the inset of Fig. 9), which 
will arouse doctors’ attention and give artificial intervention to avoid misjudgment.

Figure 7.   Confusion matrices for DensNet-BC169, DensNet-BC1615, and ensemble classifier at the test sample 
sets having a maximal accuracy.

Figure 8.   The sensitivity–specificity curve of the ensemble classifier at the test sample sets for Urgent versus 
Non-urgent binary classification.
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In addition, to test the working stability of the real-time automatic identification system, we do a general 
analysis of the confusion matrices and the sensitivity–specificity curve using the clinical endoscopic images of 
the department of otolaryngology in the people’s hospital of Shenzhen Baoan district in the past six months, as 
shown in Fig. 10. The average classification accuracy and the AUCs were 95.127% and 0.9949, respectively. The 

Figure 9.   A schematic diagram of the real-time automatic identification system for ear diseases and the system 
web page of the system. The red border is drawn manually by the doctor.

Figure 10.   The Confusion matrices (a) and sensitivity–specificity (b) curve of the real-time automatic 
identification system based on the ensemble classifier at endoscopic images about the past six months.
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actual test shows that the system achieves the desired objective and is stable and reliable. The response forecast 
time of the system is about 0.7 s for one endoscopic image.

Discussion
Diagnosis of ear disease mainly depends on otoscopy and physician’s experience29, especially external auditory 
canal. For the accuracy of the ear disease diagnosis, otolaryngologists executed demonstrably better than pedia-
tricians and general practitioners, because diagnosis by otoendoscopy needed expertise in otology doctors30. In 
this condition, the deep network model could provide physicians with suggesting potential diagnosis according 
to otoendoscopic image8,9,31.

In the current model, a dataset of 20,542 labeled otoendoscopic images from more than 40,000 patients was 
used. Otoendoscopic images of the eardrum and external auditory canal were classified into six categories. The 
classification accuracy of the current model has reached 95.59%. Previous studies make use of 10,544, 389 and 
391 images to analyze ear diseases, with the accuracy of 93.73%, 86.84% and 80.6%31–33, respectively. Unluckily, 
this is only for scientific research and has not been translated into applications. In our work, we also build a 
real-time interactive detection system that provides doctors with real-time diagnostic results for complementary 
medical benefits. The classification accuracy of our model reached 95.59%.

There are a few notable limitations to this study. These include the collection of the video frame by a simple 
operator who is also an acknowledged expert in otology and the use of video frame recordings instead of real-
time assessments of ear disease. Nevertheless, we hope that the competence to operate and stabilize the instru-
ment to let stable imaging of the eardrum and external auditory canal in focus will be obtainable by an otoscope 
inspector with a generally-used skill. Even though this is not the real-time detecting of the eardrum and external 
auditory canal in clinical treatment because this model has not yet been utilized in an actual patient deployment 
scenario, as is mentioned above, the testing dataset is untouched, raw and our model executes in almost real-time.

Looking ahead, an approach similar to deep learning also has great potential in improving endoscopic otologic 
diagnosis. In addition, alternative endoscopic images, confocal laser and endocytoscopy, for example, are most 
likely to be utilized to train this platform to supply an explanation of clinically acquired images.

In summary, this study shows that a real-time deep learning system of ear disease diagnosis according to 
otoscopy can realize high accuracy in sorting the disease of the eardrum and external auditory canal when used 
on unaltered otoscopy, video sequences. Given its high accuracy, we plan to conduct clinical trials to assess the 
potential of this imaging analytics artificial intelligence model in day-to-day practice. For possible future works, 
we plan to adapt our method to other kinds of medical images like rhinoscopes or laryngoscopes. Besides, we 
also plan to develop our method to desktop software, which could be a very useful aided tool for the diagnosis 
of ear disease.
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