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ABSTRACT

To mine gene expression data sets effectively, ana-
lysis frameworks need to incorporate methods that
identify intergenic relationships within enriched bio-
logically relevant subpathways. For this purpose, we
developed the Topology Enrichment Analysis
frameworK (TEAK). TEAK employs a novel in-
house algorithm and a tailor-made Clique
Percolation Method to extract linear and nonlinear
KEGG subpathways, respectively. TEAK scores sub-
pathways using the Bayesian Information Criterion
for context specific data and the Kullback-Leibler
divergence for case–control data. In this article, we
utilized TEAK with experimental studies to analyze
microarray data sets profiling stress responses in
the model eukaryote Saccharomyces cerevisiae.
Using a public microarray data set, we identified
via TEAK linear sphingolipid metabolic subpathways
activated during the yeast response to nitrogen
stress, and phenotypic analyses of the correspond-
ing deletion strains indicated previously unreported
fitness defects for the dpl1D and lag1D mutants
under conditions of nitrogen limitation. In addition,
we studied the yeast filamentous response to
nitrogen stress by profiling changes in transcript
levels upon deletion of two key filamentous growth
transcription factors, FLO8 and MSS11. Via TEAK we
identified a nonlinear glycerophospholipid metabol-
ism subpathway involving the SLC1 gene, which we
found via mutational analysis to be required for
yeast filamentous growth.

INTRODUCTION

With the exponential growth of high-dimensional gene
expression data, biologists need versatile tools at their

disposal to efficiently extract important biological
insights from their data. Clearly, many pathway resources
are now available including KEGG (1,2), Reactome (3,4)
and Biocarta (http://www.biocarta.com). The increasing
availability of high-throughput gene expression data and
high-fidelity pathways has led to an evolution in bioinfor-
matics analysis from the analysis of single genes to gene
sets and now to subpathways.
A classical approach for analyzing high-dimensional

gene expression data is to use an over representation
approach (ORA). Many methods exist (5) such as
Pathway Processor (6), PathMAPA (7), PathwayMiner
(8), ArrayXPath (9), GenMAPP (10) and Low Variance
Pathway Predicator (11). In an ORA approach, one typ-
ically analyses the number of differentially expressed genes
within a pathway gene set against the number of genes
expected to be found by chance. While these previous
approaches are useful, they may fail to take into account
the inherent regulatory relationships found in biological
pathways among the different genes. Biological pathways
are effectively reduced to sets of gene sets using an ORA
approach. In other words, a rich source of information,
namely pathway topologies, remains untapped and
unused.
SPIA (12) and Paradigm (13) are more recent tools that

use whole pathway topologies. Whole pathways, however,
may have different subpathways activated in response to a
biological context. Thus, their subpathways may more ac-
curately represent the underlying biological phenomena.
One approach, SubpathwayMiner (SM) (14), extracts
k-clique subpathways, i.e. the distance between any two
nodes in a subpathway is not larger than k. Another
approach (15) extracts linear subpathways using a
depth-first search (DFS) algorithm. These approaches,
however, may be limited since a hypergeometric test is
used for SM and a Euclidean-based measure is used for
the latter approach. Such approaches may fail to fully
capture the underlying topological information present
in biological pathways as permuting the structure of the
subpathways using either approach will yield the same
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results. Currently, frameworks that exploit subpathway
topologies have not been extensively studied.
The need to better identify pathway and subpathway

topologies enriched within large-scale data sets is evident
from studying the budding yeast Saccharomyces
cerevisiae. As a prototypical eukaryote, cellular processes
in yeast occur through complex sets of signaling modules.
Genomic methods have been applied extensively in yeast
to profile the signaling changes underlying these processes,
but challenges remain toward effectively identifying
pathways and subpathways within the gene lists resulting
from these studies. In standard laboratory strains of
S. cerevisiae, nutritional stress is mediated through
several key signaling modules that act in concert with
sets of genes responsive to a specific stimulus (16,17). In
particular, nitrogen starvation is a common form of
nutrient stress for the budding yeast, and upon nitrogen
stress, yeast cells initiate both general and stimulus-specific
responses. Nitrogen stress initiates a general response
referred to as the environmental stress response
characterized by stereotypic increases and decreases in
mRNA levels for �600 genes in response to a broad set
of environmental/nutritional stresses (16). Nitrogen de-
privation also induces stress-specific increases in the
mRNA levels of �300 additional genes, combined with
post-transcriptional regulatory mechanisms to upregulate
autophagy, alter endocytosis and downregulate protein
synthesis (16,18).
Beyond the regulatory responses discussed earlier, fila-

mentous strains of S. cerevisiae initiate a complex growth
transition in response to nitrogen stress, forming
pseudohyphal filaments of elongated and connected cells
that extend outward and downward from a yeast colony
(19,20). This filamentation is thought to be a foraging
mechanism enabling nonmotile yeast to scavenge for nu-
trients. Interestingly, related processes of hyphal develop-
ment are required for virulence in the opportunistic
human fungal pathogen Candida albicans (21,22). In
S. cerevisiae, the pseudohyphal growth response is
regulated by at least four signaling pathways: the target-
of-rapamycin kinase network, the Ras/cAMP-dependent
protein kinase A (PKA) pathway, the Snf1p kinase
pathway and the Kss1p mitogen-activated protein kinase
(MAPK) pathway (20,23). The Ste12p/Tec1p transcrip-
tion factor complex acts downstream of the Kss1p
MAPK pathway, and the Flo8p transcription factor is
phosphorylated and activated by the Tpk2p catalytic
subunit of PKA (23,24). Both factors regulate transcrip-
tion of the MUC1/FLO11 gene encoding a
Glycosylphosphatidylinositol (GPI)-anchored protein im-
portant for the enhanced cell–cell adhesion observed
during filamentous growth (25,26). The filamentous
growth response, however, is extensive and encompasses
several other known transcriptional regulators, such as
Mss11p, Phd1p and Dig1/2p, and hundreds of down-
stream genes and pathways (27,28).
While these works have identified key regulatory

modules that function to transduce conditions of
nitrogen stress into intracellular signals that affect cell
growth/shape, the full scope of the signal transductions
involved in the core regulatory modules has yet to be

determined. The problem is likely to be too complicated
for experimental methods alone, and we believe that an
integration of experimental and computational methods
will be necessary to identify new subpathways within the
filamentous growth network.

Thus, to detect active subpathways underlying biological
processes, we developed the innovative Topology
Enrichment Analysis frameworK (TEAK), which is freely
available at http://code.google.com/p/teak/ for Windows
and MAC. TEAK uses an in-house developed graph tra-
versal algorithm to extract all root to leaf linear
subpathways of a given pathway while it uses a tailor-made
Clique Percolation Method (CPM) (29,30) for nonlinear
subpathways. For subpathways activated under a specific
context or condition, e.g. a single data matrix correspond-
ing to time series data or a set of samples corresponding to
relevantmutants, TEAKdeploys the Bayesian Information
Criterion (BIC) (31) implemented in the Bayes Net
Toolbox (32) to fully capture the topological information
and regulatory relationships inherent in both linear and
nonlinear subpathways. For differential subpathways
between case and control conditions, TEAK instead uses
the Kullback-Leibler (KL) divergence of two Bayesian
networks, i.e. a case subpathway and a control subpathway,
transformed into their multivariate Gaussian forms to score
each subpathway. Thus, TEAKprovides an innovative view
of the data from a fresh angle allowing users to visualize a
subpathway within its respective parent pathway as
illustrated in Supplementary Figure S1.

Here, we utilized TEAK to analyze DNA microarray
data profiling changes in transcript levels for the yeast
genome during nitrogen stress responses. To validate
that TEAK is effective in identifying biologically
relevant pathways and subpathways, we analyzed tran-
scriptional profiles of yeast responses to varying condi-
tions of nitrogen stress (16). As a result, we identified a
set of subpathways within the sphingolipid metabolic
pathway that has not been phenotypically characterized
previously for fitness defects during nitrogen stress, and
through experimental studies, we report that the deletion
of the DPL1 and LAG1 genes within these subpathways
do confer a cell growth defect on low-nitrogen medium.
Furthermore, we performed a microarray experiment and
used TEAK to identify changes in mRNA levels upon
deletion of two transcription factors, Flo8p and Mss11p,
essential for the yeast filamentous growth response. Via
TEAK we observed decreased transcript levels for a subset
of genes within a subpathway involved in glyceropho-
spholipid metabolism upon deletion of the FLO8 and
MSS11 genes. By deletion analysis and phenotypic
profiling, we report that the SLC1 gene within this
subpathway is required for yeast filamentous growth and
that its deletion results in decreased expression of a LacZ
reporter driven by promoter elements responsive to the
filamentous growth MAPK pathway. Collectively, these
laboratory studies validate TEAK’s utility in analyzing
large-scale data sets across multiple conditions. They
also indicate the broad scope of the yeast filamentous
growth response for which wild-type activity of the
glycerol 3-phosphate pathway for de novo biosynthesis
of phosphatidic acid is required.
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MATERIALS AND METHODS

Yeast strains and growth conditions

Strains used for the analysis of sphingolipid metabolism
during nitrogen stress were of the nonfilamentous S288c
genetic background derived from BY4742 (MAT� hisD1
leu2D0 lys2D0 ura3D0) (33). For filamentous growth
studies, the strains Y825 and HLY337 were derived from
the �1278b background (19,34). The haploid strain Y825
has the genotype MATa ura3-52 leu2D0, and the haploid
strain HLY337 has the genotype MAT� ura3-52 trp1D.
Standard growth media consisted of YPD prepared using
1% yeast extract, 2% bacto-peptone and 2% glucose.
Synthetic media was prepared using 0.17% yeast nitrogen
base (YNB) without amino acids and ammonia, 2%
glucose and 5mM ammonium sulfate (35). Hyperosmotic
sensitivity was assayed using YPD supplemented with
sterile 1M Sorbitol. Nitrogen deprivation and filamentous
growth phenotypes were assayed using Synthetic Low
Ammonium Dextrose (SLAD) medium consisting of
0.17% YNB, 2% dextrose, 50 mM ammonium sulfate and
supplemented with the necessary amino acids (36). For
plates autoclaved 2% agar was added to the media.

Yeast gene deletions and transformations

Deletion mutants were constructed in strains Y825 and
HLY337 by using a one-step polymerase chain reaction
(PCR)-based gene disruption strategy (37,38) with the
G418 resistance cassette from plasmid pFA6a-KanMX6
(39). After confirming the haploid mutants via PCR, the
strains were allowed to mate on YPD+G418 plates for
�20 h at 30�C. Mated cells were then streaked on
SC-Trp-Leu plates to select for Y825�HLY337
diploids. Yeast transformations were performed according
to standard lithium acetate-mediated protocols (40) with
modifications (41–43).

Microarray experiments and analysis

After culturing the yeast strains as described earlier, RNA
was prepared under standard protocols using the Poly(A)
Purist kit (Ambion, Austin, TX, USA). RNA concentra-
tion and purity were determined spectrophotometrically
and by gel electrophoresis. Microarray hybridization was
performed with the Yeast Genome S98 Array using
standard protocols (Affymetrix, Inc., Santa Clara, CA,
USA). All microarray experiments were performed in
quadruplicate for each strain as described by (27,44).
For preprocessing the data for use by TEAK, we used
GCRMA (45). To detect differentially expressed genes,
we used significance analysis of microarrays (SAM) (46).
For all deletion comparisons in this study, we used SAM’s
two-class unpaired analysis function with significance
thresholds selected so that the corresponding false discov-
ery rate was 0.

Growth assays

Yeast strains were inoculated in 5ml YPD and incubated
overnight at 30�C with constant shaking (250 rpm).
Cultures were diluted the following morning in 5ml
YPD and allowed to grow until the culture reached an

OD600 of �0.6–0.8. A 1-ml aliquot of each strain was
washed once with sterile water and then re-suspended in
sterile water such that all cell titers were equal. Each strain
was then diluted via five 10-fold serial dilutions, and 6 ml
of each dilution was spotted on YPD, YPD+1M
Sorbitol, or SLAD media. The spotted plates were
allowed to dry at room temperature for �15min before
being placed at 30�C for 48 h. Yeast strains were
inoculated in 5ml YPD and incubated overnight at 30�C
with constant shaking (250 rpm). Cultures were back
diluted the following morning in 5ml YPD and allowed
to grow until the culture reached an OD600 of �0.6–0.8.
A 1-ml aliquot of each strain was washed once with sterile
water and re-suspended in 1ml sterile water. Strains were
triplicate loaded into either YPD or SLAD media within a
96-well plate such that the final concentration of each
strain was an OD600 of �0.02 (�40�dilution) in a total
volume of 100 ml. Growth was measured optically every
5min for a period of 30 h with constant shaking at 30�C in
a Synergy HT Multi-Mode microplate reader (BioTek,
Winooski, VT, USA). Time point measurements represent
the average of the three replicates normalized by the
average of the triplicate blank controls.

b-Galactosidase assays for lacZ activity

Yeast strains were inoculated in 5ml SC-URA and
incubated overnight at 30�C with constant shaking
(250 rpm). Cultures were diluted the following morning in
5ml SC-URA or SLAD media and allowed to grow until
the culture reached an OD600 of �0.5–1. b-Galactosidase
assays were performed using the Thermo Scientific Yeast
b-Galactosidase Assay Kit (Thermo Fisher Scientific,
Rockford, IL, USA) according to the manufacturer’s
protocol except that the b-galactosidase reaction was
allowed to continue for a set time of 30min for each
sample before reading the absorbance. Measurements rep-
resent the average of three replicates.

Method overview

Figure 1 outlines TEAK. Using the KEGG API (1,2),
TEAK first fetches all metabolic and nonmetabolic
pathways for the organism under study. TEAK extracts
a subset of the KEGG pathways consisting of gene
products and/or complexes of gene products as nodes.
For edges TEAK extracts all KEGG enzyme–enzyme re-
lations, protein–protein interactions and gene expression
interactions to create a set of unweighted adjacency
matrices to represent the KEGG pathways (please refer
to Supplementary Table S1 for more details). This
process, including the extraction of linear and nonlinear
subpathways, occurs only once per organism or as needed,
and its results are pre-computed and included by default
for Homo sapiens, Mus musculus and S. cerevisiae.

Subpathway extraction

Subpathways play a major role in biological processes
since only part of a pathway may be activated at a
specific time given an underlying condition. Often times
a biological condition may be controlled by several
specific subpathways, but the subpathways’ contribution
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may be obscured by their parent pathways. As such,
subpathway extraction is an important component of
TEAK. TEAK extracts two types of subpathways: linear
and nonlinear. Linear subpathways are represented by
root to leaf linear paths of a pathway, whereas nonlinear
subpathways are represented by a union of adjacent and
overlapping feed-forward loops.

Algorithm 1: Linear subpathways

1: Input: An unweighted, directed graph G
2: Output: All root to leaf linear subpathways
3: Remove all self-loops from G
4: Convert the graph G into the set of adjacency lists A
5: Set the visit vector V of size jGj to false
6: Find the roots R and leaves L of graph G
7: for j=1, . . . , jRj do
8: Add root rj to the Stack S
9: Set V½rj� to true
10: while S is not empty do

11: Let the node n be the top element of S
12: Remove every child c of n from the adjacency

list A[n] that has V[c] as true
13: if A[n] is not empty then

14: Pop a child c of node n from A[n]
15: Set V[c] to true
16: Add node c to S
17: else

18: if n is a member of L then

19: Append the contents of S as a new
subpathway to the final output

20: else

21: Reconstruct A[n] using the graph G
22: end

23: Pop a node from S
24: Set V[n] to false
25: end

26: end

27: end

28: Return the extracted subpathways as the final output

Algorithm 1, based on the algorithm Network2GeneSets
(47,48), extracts root to leaf linear paths or subpathways
from the directed edges of the KEGG nonmetabolic
pathways. A root r has zero incoming links and a
positive number of outgoing links, whereas a leaf l has a
positive number of incoming links and zero outgoing links
(please refer to Supplementary Figure S3 for an example
of Algorithm 1). Compared with breadth-first search
(BFS) and DFS, whose ‘vanilla’ implementations may be
found in (49), TEAK extracts all linear subpathways as
seen in Figure 2.

From a biological perspective, root to leaf subpathways
are important as they represent one of the possible routes
taken from the beginning of a pathway to its end.
Furthermore, in terms of signaling pathways, we hypothe-
size that root to leaf subpathways effectively model signal
transduction events. In one signal transduction paradigm,
a growth factor binds to a cell membrane receptor that
then propagates a signal via intracellular signaling
pathways to reach the nucleus and cause a change in
gene expression (50). Signal transduction pathways
regulate cell proliferation, survival, motility and differen-
tiation (50) and play vital roles in cancer (51), mammalian
associative conditioning (52) and cellular response to
stress (53). For the KEGG signaling pathways, roots
may be growth factors. For example, the epidermal
growth factor is a root of the H. sapiens MAPK signaling
pathway.

As root to leaf linear subpathways may not effectively
model the underlying biological condition under study for
all of the pathways extracted, a different type of
subpathway is needed. In this case, we chose to adapt
and slightly tweak the CPM (29,30). TEAK implements
CPM with one notable change in which feed-forward
loops, which are directed cliques of size three, are ex-
tracted instead of the maximal cliques of a pathway. We
believe the focus on feed-forward loops is justified since
the feed-forward loop is one of the most common motifs
in biological networks (54). Nevertheless, our method
shares many of the advantages found in the original
CPM: (i) genes may participate in multiple subpathways
whereas most other approaches extract mutually exclusive
subpathways. Biologically, the former approach may be
more relevant as a gene may regulate multiple biological
processes. (ii) There exists no gene or link whose removal
would disjoin a subpathway, i.e. no single cut-node or
cut-link exists in a subpathway.

The subpathway algorithms and the Bayesian networks
used by TEAK are only applicable to directed networks.
For undirected networks, TEAK first extracts the longest
shortest paths that are not contained within other shortest
paths. For example, for the set of shortest paths
{1$ 2$ 3, 4$ 3$ 2, 1$ 2$ 3$ 4}, TEAK extracts
the shortest path 1$ 2$ 3$ 4 that contains the other
two shortest paths. For directionality, TEAK then
selects one of two directed linear paths that most closely
resemble root to leaf linear subpathways. For the shortest
path 1$ 2$ 3$ 4, the two directed linear paths are
1! 2! 3! 4 and 4! 3! 2! 1. They may be
obtained by fixing one terminal end of the shortest path
as a root and the other terminal end of the shortest path as

Figure 1. TEAK overview. TEAK requires gene expression data using
one of the many label systems supported by KEGG including Entrez,
NCBI-GI and ORF (for S. cerevisiae) as input. By default TEAK
includes a set of subpathways for H. sapiens, M. musculus and
S. cerevisiae. For other organisms, the extraction of subpathways
from the KEGG pathways needs to be done once or as needed. For
context specific data, TEAK uses the BIC to score the Bayesian
network fitted for each subpathway. For case–control data, TEAK
first fits two Bayesian networks, a case network and a control
network, for each subpathway. After transforming each Bayesian
network into its equivalent multivariate Gaussian form, TEAK then
scores each pair of transformations per subpathway using the KL di-
vergence. Via TEAK’s GUI (Supplementary Figure S2), a user can then
display a subpathway highlighted in its parent pathway as seen in
Supplementary Figure S1.
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a leaf as further illustrated in Figure 3. Since the pair of
directed linear subpathways is I-equivalent, i.e. they can
be represented by the same set of conditional independ-
ence assertions (55), either one can serve as a ‘root to leaf’
subpathway corresponding to the original shortest path.
Then, for extracting directed nonlinear subpathways from
an undirected pathway, TEAK extracts cliques of size 3. It
then selects one of six I-equivalent feed-forward loops cor-
responding to the clique as seen in Figure 3.

Subpathway ranking

To rank the linear and nonlinear subpathways, TEAK
first uses the Bayes Net Toolbox (32) to fit a context
specific Gaussian Bayesian network for each subpathway.
Briefly, a Gaussian Bayesian network is a Bayesian
network in which all of its nodes are linear Gaussians.
In other words, for a continuous node Y with m continu-
ous parents X1, . . . ,Xm, the Conditional Probability
Distribution of Y is

pðYjx1, . . . ,xmÞ ¼ Nð�0+�1x1+� � �+�mxm; �2Þ ð1Þ

where b0, . . . , bm are the regression coefficients and s2 is
the variance (55). It should be noted that Bayesian
networks are only applicable to directed acyclic graphs.
However, as all the subpathways extracted by TEAK are
directed acyclic graphs, this limitation is not applicable.
We also further justify our choice of Bayesian networks
since they have already been used to discover networks
from gene expression data (56,57).

For scoring TEAK takes one of two approaches. For
context specific data, TEAK fits a single Bayesian network
for each subpathway and uses the BIC (31) implemented

in the Bayes Net Toolbox for scoring each Bayesian
network. Briefly, the Bayes Net Toolbox implements
BIC as

ScoreBIC ¼ logPðDj�̂Þ � 0:5 d logN ð2Þ

where D corresponds to the gene expression data, �̂ cor-
responds to the maximum likelihood estimate of the par-
ameters used to represent the linear Gaussian node, d is
the number of parameters and N is the number of samples
in the gene expression data. As BIC is decomposable, i.e.
each node’s score is calculated individually and then
summed to return the final score, we normalize each
subpathway by its number of nodes so that the scores
are comparable.
Given that most researchers nowadays have case–

control data, TEAK also supports case–control data, i.e.
two data matrices, by fitting two Bayesian networks, one
for each data matrix. It then transforms each context
specific Bayesian network into its equivalent multivariate
Gaussian form [please refer to the appendix of (58) for
details and (59,60) for examples]. TEAK then calculates
the KL divergence of the case multivariate Gaussian, q,
from the control multivariate Gaussian, p, as

KLðqjjpÞ ¼
1

2
log
j�pj

j�qj
+

1

2
Tr ��1p �q

� �

+
1

2
ð�q � �pÞ

T��1p ð�q � �pÞ �
h

2

ð3Þ

where m is the mean vector, � is the covariance matrix, j�j
is the determinant of the covariance matrix, Tr is the trace
of a matrix and h is the number of nodes [please refer to
the appendix of (61) for more details].

Figure 2. Extracting linear subpathways from a feed-forward loop. (A) By extracting shortest paths via BFS, the linear subpathways 1! 2 and
2! 3 are not root to leaf linear subpathways of the feed-forward loop. (B) DFS produces two different trees with two different sets of outputs,
respectively. For the first set of outputs, 1! 2 is not a root to leaf linear subpathway. For the second set of outputs, the linear subpathway 1! 3 is
missing. For more complex networks, the number of DFS trees may also be exponential such that combining and pruning their outputs may not be
feasible. (C) TEAK properly extracts all root to leaf linear subpathways of the feed-forward loop.
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RESULTS

Wild-type sphingolipid metabolism is required for efficient
yeast cell growth during nitrogen stress

The yeast cell response to nitrogen stress is extensive, en-
compassing changes at the mRNA level for hundreds of
genes. Toward this point, Gasch et al. (16) profiled tran-
scriptional changes in yeast upon exposure to conditions
of nitrogen stress over 10 time points ranging from 30min
to 5 days. To consider specific pathways differentially
regulated at the level of transcription during nitrogen
stress, we analyzed these microarray data sets using
TEAK for subpathways collectively showing significant
changes in mRNA levels of constituent genes across the
time points.
Here, we focused our studies on linear subpathways

since genes within a linear subpathway are more likely
to share a common phenotype and, consequently, are
more amenable to genetic analysis. By TEAK a sphingo-
lipid synthesis metabolic subpathway was highly ranked
(within the top 25) with higher-ranking subpathways cor-
responding to processes that were already known to be
important for cell growth during nitrogen stress (e.g.
GPI-anchor biosynthesis and the yeast cell cycle). In eu-
karyotes, sphingolipids are an abundant membrane com-
ponent, filling a structural role in membrane support and
an increasingly well-studied role as bioactive compounds
involved in signal transduction; sphingolipid functions in
yeast are reviewed in (62). We were particularly intrigued
by the identification of the sphingolipid metabolic
pathway by TEAK since previous studies have reported
that the modulation of sphingolipid synthesis impacts
yeast lifespan and the regulation of the yeast high osmo-
larity stress-responsive pathway (63,64). Consequently, we
chose to use TEAK to investigate subpathways of the

sphingolipid metabolism pathway that may contribute to
yeast cell survival during nitrogen stress. By sampling
subpathways strictly within the sphingolipid metabolic
pathway, TEAK identified a gene set encompassing
LCB3, LCB5, YDC1, LAG1 and DPL1; these genes
were consistently identified in the subpathways extracted
by TEAK. We subsequently analyzed these genes further
for a possible role in the yeast nitrogen stress response.

The genes selected for phenotypic analysis include
LCB5, which along with LCB4 encode long chain base
kinases that catalyze formation of the phosphorylated
long chain bases (LCBPs) dihydrosphingosine
1-phosphate and phytosphingosine 1-phosphate (65).
Lcb3p is a phosphatase that dephosphorylates LCBPs
(66). YDC1 encodes an alkaline ceramidase that is
specific for dihydroceramide (67). Dpl1p is an LCBP
lyase that cleaves LCBPs at the C2–3 bond to yield a
long chain aldehyde and ethanolamine phosphate (68).
Lag1p is a component of ceramide synthase, synthesizing
ceramide from C26(acyl)-coenzyme A and dihydrosph-
ingosine or phytosphingosine (69). Interestingly, LCBs,
dihydrosphingosine and phytosphingosine have been
identified as important second messengers in signaling
pathways that regulate cellular responses to heat stress,
and LCBPs, phytoceramide and additional sphingolipid
metabolic intermediates contribute to the regulation of
cell growth (70,71). It is important to note that a role in
yeast cell growth under conditions of nitrogen stress had
not been determined for these genes.

Consequently, we analyzed homozygous diploid yeast
strains singly deleted for each of these genes in a
nonfilamentous genetic background to assess their ability
to grow under conditions of nitrogen stress. As indicated
in Figure 4, deletion of DPL1 and LAG1 yields a strong
reduction in cell growth under conditions of nitrogen

Figure 3. (Top) For the undirected linear graph 1$ 2$ 3, there are two possible directed graphs starting at one of the two ends, namely 1! 2! 3
and 3! 2! 1. Both linear graphs are I-equivalent, and the result holds in general for linear graphs of arbitrary sizes. (Bottom) The six possible
feed-forward loops for a clique of size 3. All six feed-forward loops are I-equivalent.
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stress, both by colony assay and by spectrophotometric
analysis of yeast cell growth in liquid culture. This result
indicates that wild-type activity of subpathways regulating
sphingolipid synthesis and catabolism is required for effi-
cient cell growth during conditions of nitrogen stress while
validating TEAK’s utility in extracting biologically
relevant subpathways from large-scale data sets.

Transcriptional programs regulated by the filamentous
growth transcription factors Flo8p and Mss11p

In filamentous strains of S. cerevisiae, nitrogen stress also
elicits a complex morphogenetic program resulting in the

transition to a filamentous form of growth. The transcrip-
tion factors Flo8p and Mss11p are both required for this
filamentous growth transition in that homozygous diploid
flo8D/D and mss11D/D strains do not undergo fila-
mentation under conditions of nitrogen stress (72,73).
Flo8p is phosphorylated and activated by Tpk2p, a cata-
lytic subunit of PKA (23), and is known to directly
regulate transcription from the MUC1/FLO11 promoter
(Figure 5). Flo8p-binding sites have been assessed by
chromatin immunoprecipitation/microarray studies (74),
indicating hundreds of target sites across the yeast
genome. Collectively, the DNA recognition pattern

Figure 4. (A) A simplified representation of the sphingolipid metabolism pathway. The shaded genes were selected from TEAK for phenotypic
analysis. (B) Colony assays of yeast cell growth in liquid culture under YPD (normal nitrogen) and SLAD (low nitrogen) across 10-fold dilutions.
(C) Spectrophotometric analysis of yeast cell growth in liquid culture under YPD and SLAD. As seen in B and C, deletion of the genes DPL1 and
LAG1 greatly reduces yeast cell growth under nitrogen stress.
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suggests regulation of a broad set of cellular processes
although the downstream effects on mRNA levels of
FLO8 deletion have not been investigated extensively.
By genetic analyses, Mss11p is thought to play a central
role in the yeast filamentous growth response, putatively
acting in concert with both the filamentous growth MAPK
and PKA pathways (72) and also acting directly on the
MUC1 promoter. Mss11p target sites have not been
assessed by chromatin immunoprecipitation/microarray
analysis although mRNA levels have been profiled in a
haploid mss11D strain under normal growth conditions
(75). In addition to their role in regulating the filamentous
growth response, Flo8p and Mss11p bind cooperatively to
the STA1 gene promoter under conditions of glucose de-
pletion, regulating the transcription of this extracellular
glucoamylase important for starch degradation (76).
Thus, we expect that Flo8p and Mss11p mediate extensive
and diverse transcriptional programs required for
wild-type filamentous growth.
Here, we used DNA microarray analysis to profile

changes in mRNA levels in homozygous diploid strains
of the filamentous �1278b genetic background deleted
for FLO8 and MSS11, respectively, under conditions of

nitrogen stress. The results of this analysis are summarized
in Figure 5. As indicated, deletion of FLO8 resulted in
decreased mRNA levels of 67 genes during nitrogen
stress, and 178 genes exhibited decreased transcript abun-
dance in the mss11D/D strain. A smaller set of genes
showing increased transcript levels were also observed in
the homozygous diploid deletion strains, and these genes
can be accessed from the microarray data files provided
(NCBI GEO Accession Number GSE40530). By a simple
over-representation approach, we analyzed the resulting
gene sets for enrichment of associated gene ontology
(GO) biological process terms (Figure 5; Supplementary
Figure S4). The smaller gene set exhibiting increased tran-
script levels showed little enrichment for informative GO
terms, but the genes showing decreased mRNA levels were
significantly enriched for several cellular processes
involved in filamentation. From this analysis, FLO8
deletion is likely to affect the biosynthesis/metabolism of
sulfur-containing and nitrogenous compounds while also
impairing wild-type transport of nitrogenous compounds.
MSS11 deletion resulted in decreased transcript levels for
an overrepresented set of genes mediating cell–cell
adhesion, b-glucan biosynthesis, cytoskeletal organiza-
tion, and, more generally, signal transduction. These
processes are known to be involved in the filamentous
growth response, and the results validate the essential
roles of both transcription factors during pseudohyphal
development.

Interestingly, a relatively small set of genes was
identified with differential mRNA levels in both the
flo8D/D and mss11D/D strains (Figure 5). Within this
small gene set, no GO term enrichment was observed,
and the results may speak to the point that under condi-
tions of nitrogen stress, Flo8p and Mss11p may not
co-regulate an extensive set of gene targets.

Glycerophospholipid metabolism and the SLC1 gene
contribute to yeast pseudohyphal growth

To supplement the overrepresentation approach utilized
earlier, we further analyzed the mRNA profiles of the
flo8D/D and mss11D/D strains by TEAK. Here, we specif-
ically focused on nonlinear subpathways as we expected
that nonlinear relationships would be most prevalent in
the highly interconnected cell processes underlying fila-
mentous growth. The resulting TEAK analysis identified
a gene set mediating glycerophospholipid metabolism
as the top-ranking subpathway within the data sets
(Figure 6). The corresponding GO biological process
terms were not identified as being enriched in the data
sets by the overrepresentation analysis. To identify a
putative functional role for this subpathway within the
filamentous growth response, we focused on the gene
SLC1.

As indicated in Figure 6, SLC1 encodes a 1-acyl-sn-
glycerol-3-phosphate acetyltransferase catalyzing the acyl-
ation of lyso-phosphatidic acid to form the key
glycerolipid biosynthesis intermediate phosphatidic acid
(77). Deletion of SLC1 does not abolish this enzymatic
activity, however, as Ale1p also provides lysophospholipid
acetyltransferase activity (78). Interestingly, Slc1p

Figure 5. (A) Flop and Mss11p regulate the MUC1/FLO11 promoter
required for wild-type filamentous growth. (B) DNA microarray
analysis to profile mRNA level changes in homozygous diploid
strains of the filamentous �1278b genetic background deleted for
FLO8 and MSS11, respectively.

1432 Nucleic Acids Research, 2013, Vol. 41, No. 3

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1299/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1299/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1299/-/DC1


additionally exhibits magnesium-dependent acetyltrans-
ferase activity toward lyso forms of phosphatidylserine
and phosphatidylinositol (77). While these functions of
Slc1p are well established, its contributions toward fila-
mentous growth had not been investigated previously,
and its role, if any, in this stress response was unknown.

To determine if SLC1 is involved in the yeast
pseudohyphal response to nitrogen stress, we generated
a homozygous diploid deletion of the SLC1 gene and
analyzed the resulting mutant for the ability to form
surface-spread filaments under conditions of nitrogen
stress. Strikingly, on low-nitrogen medium, the slc1D/D
mutant exhibited a loss of pseudohyphal filamentation
(Figure 6). To assess whether this loss of filamentous
growth occurs at least in part through decreased activity
of the Kss1p MAPK pathway, we introduced a
plasmid-based filamentation and invasion response
element (FRE)-driven lacZ reporter in the slc1D/D
mutant (79). The FRE promoter sequence is recognized
by the Ste12p-Tec1p transcription factor complex that
acts downstream of the Kss1p MAPK pathway; thus, ex-
pression of this reporter is a good indicator of filamentous
growth MAPK pathway activity. Under conditions of
nitrogen stress in the slc1D/D mutant, we observed a sig-
nificant decrease in lacZ-encoded b-galactosidase activity
relative to wild type, indicating decreased activity of the
filamentous growth MAPK pathway upon deletion of
SLC1 during nitrogen deprivation. Thus, SLC1 and
glycerophospholipid metabolism do contribute to the
yeast pseudohyphal response although the mechanism of
this Flo8p- and Mss11p-mediated effect needs to be
elucidated further. In addition, TEAK was indeed effect-
ive in extracting biologically relevant subpathways from
the transcriptional profiling data sets.

Method comparison

We also ran SPIA (12) and SM (14) on the differentially
expressed gene sets in Figure 5B. Table 1 presents TEAK’s
top 20 nonlinear subpathway results. In the top ranked
nonlinear glycerophospholipid metabolism subpathway
identified by TEAK alone, we experimentally validated
that the SLC1 gene is necessary for filamentous growth
under SLAD growth conditions as seen in Figure 6B. In
Supplementary Tables S2–S12, TEAK’s top 20 linear
subpathway results and SPIA and SM results are
provided.

DISCUSSION AND CONCLUSION

TEAK, freely available at code.google.com/p/teak for
Windows and MAC, is an innovative approach to detect
activated subpathways. First, TEAK uses an in-house
graph traversal algorithm to extract all root to leaf
linear subpathways of a given pathway. Its major contri-
butions include fully accounting for the topological infor-
mation of subpathways and its ability to provide an
interactive view of the data in the KEGG pathways.
Furthermore, TEAK’s GUI allows easy accessibility
for a diverse set of users, and it implements an efficient
algorithm to extract root-to-leaf linear subpathways where
BFS and DFS algorithms may fail. Compared with
previous approaches, TEAK also does not use differential
gene expression analysis to determine modules of interest
and is thus not sensitive to threshold values. Finally, by
integrating the computational TEAK with experimental
approaches, we have discovered and experimentally
validated previously uncharacterized subpathways

Figure 6. (A) A simplified representation of the glycerophospholipid metabolism pathway. (B) Deletion of the gene SLC1 leads to loss of filamentous
growth under SLAD growth conditions.
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involved in the yeast stress response to nitrogen
starvation.
While our approach is effective for the extraction of

biologically informative subpathways from large-scale
data sets, the work presented here does possess three limi-
tations. First, the microarray analysis of the flo8D/D and
ms11D/D strains will identify both direct and indirect tran-
scription factor targets. As the indirect targets are useful in
defining the broader scope of processes affected by
each transcription factor, this is not necessarily a major
limitation as long as the results are interpreted with
this in mind. Second, the current application of TEAK
draws upon KEGG annotations as the pathway
resource. Annotations of pathways, particularly regula-
tory pathways, cannot be considered to be all-inclusive
in KEGG; however, the KEGG resource is the largest
resource of yeast pathway data at present and the best
option for this analysis to date. Third, the study presented
here does not extend beyond transcriptional analyses of
the events underlying yeast cellular responses to nitrogen
stress. While it is obviously true that post-transcriptional
regulatory mechanisms contribute significantly to all eu-
karyotic stress responses, transcriptional regulation is also
a major control mechanism in modulating gene function
during the yeast response to nitrogen stress. Furthermore,
it should be noted that the TEAK approach can be
applied easily to data sets other than transcriptional
profiles. Thus, the applications of TEAK are not limited
in this way.
The identification of sphingolipid metabolic pathways

as a component of the yeast nitrogen stress response is
interesting given the important role of sphingolipids as
second messengers. Recently, decreased sphingolipid syn-
thesis has been reported to increase yeast cell lifespan

through processes involving reduced Sch9p kinase
activity and reduced chromosomal mutations (64). More
to the point, previous studies have established that inhib-
ition of the de novo sphingolipid synthesis pathway acti-
vates the MAPK pathway mediating the yeast response to
high osmolarity (the HOG pathway) (63). HOG pathway
activity inhibits the yeast filamentous growth response to
nitrogen stress (80,81), which suggests that sphingolipid
accumulation may be an activating signal toward
pseudohyphal growth. This hypothesis can be tested in a
filamentous strain of S. cerevisiae.

Our article focuses significantly on the pseudohyphal
response to nitrogen stress in a filamentation-competent
strain of S. cerevisiae. We specifically chose to study the
filamentous growth transcription factors Flo8p and
Mss11p because (i) they are required for wild-type fila-
mentous growth; (ii) their respective transcriptional
programs remain to be fully delineated; and (iii) they
may function cooperatively during pseudohyphal develop-
ment. By the microarray-based approach employed here,
we detect changes in mRNA level that occur as both direct
and indirect effects of FLO8 and MSS11 deletion. With
respect to the transcriptional program controlled by
Flo8p, the distinction between direct and indirect effects
can be studied by comparing the results presented here
with published chromatin immunoprecipitation/micro-
array analysis of Flo8p binding (74). As the latter
method should be highly enriched for direct transcription
factor-promoter interactions, additional transcript level
changes reported here are likely to be enriched in
indirect effects. Furthermore, the overlap between the
data sets provides a high confidence set of Flo8p targets.
In total, 15 genes were identified in common through both
methods of study including the following genes required
for wild-type filamentous growth: MUC1, HMS1, NDE1,
PDR11 and CLN1.

Interestingly, Flo8p and Mss11p are known to bind co-
operatively to a short inverted repeat sequence in the
STA1 gene promoter under conditions of glucose limita-
tion (76). Presumably, the transcription factors also co-
operatively bind additional promoters and promoter
elements. This suggests that we may observe a significant
degree of overlap between the genes exhibiting differential
transcript levels upon FLO8 and MSS11 deletion. In our
analysis, however, we only observed 16 such genes in
common between the two data sets. This overlapping set
does include MUC1/FLO11 whose promoter is known to
be recognized by both factors during nitrogen stress-
induced filamentous growth. In this case, though, Flo8p
and Mss11p bind to Ste12p and Tec1p, which collectively
recognize the FRE sequence in the MUC1 promoter (76).
Further chromatin immuniprecipitation/sequencing
studies will be helpful in determining the binding
dynamics of Flo8p and Mss11p.

The transcriptional profiles of flo8D and mss11D strains
indicate a broad range of cellular processes encompassed
within these transcriptional programs. Although
additional transcription factors contribute to the full tran-
scriptional regulation underlying filamentous differenti-
ation, the gene set reported here is reflective of the
broad scope of this growth transition. The development

Table 1. TEAK’s top 20 nonlinear subpathway results

Name SPIA SM

Glycerophospholipid metabolism No No
Starch and sucrose metabolism No Yes
Glutathione metabolism No No
Terpenoid backbone biosynthesis No No
Cysteine and methionine metabolism No No
Purine metabolism No No
Cysteine and methionine metabolism No No
Arginine and proline metabolism No No
Cysteine and methionine metabolism No No
Sphingolipid metabolism No No
Terpenoid backbone biosynthesis No No
Alanine, aspartate and glutamate metabolism No No
Pentose phosphate pathway No No
Starch and sucrose metabolism No Yes
Purine metabolism No No
Purine metabolism No No
Pentose phosphate pathway No No
Sphingolipid metabolism No No
Fructose and mannose metabolism No No
MAPK signaling pathway—yeast Yes No

In the SPIA (12) and SM (14) columns, ‘No’ means that the result was
absent from a method’s top 20 results, ‘Yes’ otherwise. In Figure 6B,
we experimentally validated the SLC1 gene in the top ranked
glycerophospholipid metabolism subpathway is necessary for filament-
ous growth under SLAD growth conditions.
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of pseudohyphal filaments requires the output of complex
processes regulating cell polarity, cell cycle progression,
cell morphology, cell–cell adhesion, cytoskeletal organiza-
tion and numerous metabolic systems. Consequently,
genomics has been and continues to be very useful in iden-
tifying these higher-order processes for subsequent
detailed follow-up analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Tables 1–12 and Supplementary Figures 1–4.
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