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1.	 Introduction

Cruciferous vegetables, including cauliflower, cabbage, and broc-
coli have been found to prevent the development of cancer [1-3].  
Once cruciferous vegetables are cut, crushed, or chewed, a special 
odor metabolite-isothiocyanate (ITC) is produced [4-6].  ITCs are 
derived from glucosinolates and are effective chemo-preventive 
agents in tissues and organs, including the lungs, esophagus, 
chest, liver, small intestine, large intestine, pancreas, and blad-
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ABSTRACT

Benzyl isothiocyanate (BITC), a component of dietary food, possesses a powerful anticancer activity.  Pre-
vious studies have shown that BITC produces a large number of intracellular reactive oxygen species (ROS) 
and increases intracellular Ca2+ release from endoplasmic reticulum (ER), leading to the activation of the 
apoptotic mechanism in tumor cells.  However, there is not much known regarding the inhibitory effect of 
BITC on cisplatin-resistant oral cancer cells.  The purpose of this study was to examine the anticancer effect 
and molecular mechanism of BITC on human cisplatin-resistant oral cancer CAR cells.  Our results demon-
strated that BITC significantly reduced cell viability of CAR cells in a concentration- and time-dependent 
manner.  BITC was found to cause apoptotic cell shrinkage and DNA fragmentation by morphologic obser-
vation and TUNEL/DAPI staining.  Pretreatment of cells with a specific inhibitor of pan-caspase signifi-
cantly reduced cell death caused by BITC.  Colorimetric assay analyses also showed that the activities of 
caspase-3 and caspase-9 were elevated in BITC-treated CAR cells.  An increase in ROS production and loss 
of mitochondria membrane potential (ΔΨm) occurred due to BITC exposure and was observed via flow cy-
tometric analysis.  Western blotting analyses demonstrated that the protein levels of Bax, Bad, cytochrome c, 
and cleaved caspase-3 were up-regulated, while those of Bcl-2, Bcl-xL and pro-caspase-9 were down-regu-
lated in CAR cells after BITC challenge.  In sum, the mitochondria-dependent pathway might contribute to 
BITC-induced apoptosis in human cisplatin-resistant oral cancer CAR cells.

der, for carcinogen-induced cancer [4-6].  In addition, ITCs have 
been found to induce apoptosis and autophagy in various types of 
cancer cells [7-9].  Common ITC derivatives [allyl isothiocyanate 
(AITC), benzyl isothiocyanate (BITC), phenethyl isothiocyanate 
(PEITC), and sulforaphane (SFN)] have been shown to have anti-
cancer cell growth and apoptosis-inducing effects [10-24].  How-
ever, what is not fully understood is the mechanism of action of 
ITC on human cisplatin-resistant oral cancer cells.

Evading apoptosis is defined as a hallmark of cancer, and its 
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pase-3, and anti-β-actin, as well as anti-rabbit IgG or anti-mouse 
horseradish peroxidase (HRP)-linked antibodies were all bought 
from GeneTex (Hsinchu, Taiwan).

2.2.	 Cell culture

The cisplatin-resistant oral cancer CAR cells were established 
via gradient induction of increasing concentrations (10-80 μM) 
of cisplatin up to 80 μM in parental human tongue squamous cell 
carcinoma cell line CAL 27 (American Type Culture Collection, 
ATCC, Manassas, VA, USA), as previously described [36-38].  
CAR cells were cultured in DMEM with 10% FBS, 2 mM L-
glutamine, and 1% antibiotics (100 Unit/ml penicillin and 100 μg/
ml streptomycin) at 37°C in a 5% CO2 humidified incubator.

2.3.	 Cell viability via MTT assay

CAR cells were seeded in 96-well plates at a density of 1 × 104 
cells per well in 100 μl and then exposed to 0, 2.5, 5, 10, and 20 
μM of BITC for 24 or 48 h before pre-incubation with or without 
10 μM Z-VAD-fmk (a pan-caspase inhibitor) for 1 h.  After that, 
cells were incubated with 0.5 mg/ml MTT solution for additional 
2 h.  The medium was removed, and 100 μl DMSO was added to 
dissolve the blue formazan.  The optical density was measured at 
the absorbance of 570 nm using a spectrophotometer, as previ-
ously described [39].

2.4.	 Dynamic cell confluence assay

CAR cells (1 × 104 cells per well) were plated in a 96-well plate 
and then treated with 0, 5, 10, and 20 μM of BITC for 48 h.  The 
cell confluence experiment was conducted over 48 h using an 
IncuCyte ZOOM System instrument (Essen BioScience, Ann Ar-
bor, MI, USA).  Data collection was performed every 2 h, and the 
morphological image was recorded and photographed every 12 h, 
as previously described [38, 40].

2.5.	 TUNEL/DAPI staining

CAR cells (1×105 cells/ml) in 12-well plates were harvested fol-
lowing treatment with 0, 2.5, 5, and 10 μM of BITC for 48 h.  
Cells were fixed in 100% methanol at room temperature for 10 
min, and then stained with 4’-6-diamidino-2-phenylindole (DAPI) 
solution (1 μg/ml).  DNA breaks were detected with an In Situ 
Cell Death Detection Kit, Fluorescein (Roche Diagnostics GmbH; 
Sigma-Aldrich) according to the manufacturer's instructions.  
Apoptotic cells were observed and photographed under a fluores-
cent microscope, as previously described [39].

2.6.	 Cell morphology changes

CAR cells (1 × 104 cells/100 μl) in 96-well plates were treated 
with or without 10 μM BITC for 48 h after pre-incubation with 
10 μM Z-VAD-fmk (a pan-caspase inhibitor) for 1 h.  After that, 
cells were visualized and photographed under a phase-contrast 
microscope as previously described [27].

2.7.	 Colorimetric assays analyses of caspase-3/-9 activities 

CAR cells (5 × 106 cells per 75T flask) were treated with 0, 2.5, 5, 
and 10 μM of BITC for 48 h.  Cell lysates were harvested, the su-
pernatants were incubated with the supplied reaction buffer with 

anti-apoptotic ability has emerged as a criterion for mainstream 
drug development [25-28].  Apoptosis signaling can be divided 
into two distinct pathways: The intrinsic and the extrinsic cell 
death signaling pathways [28].  The intrinsic machinery is trig-
gered by cellular stresses through either mitochondria or endo-
plasmic reticulum, resulting in the alteration of the Bcl-2 family 
molecules and caspases proteins [29].  The Bcl-2 family members 
consists of three groups: Pro-apoptotic proteins (such as Bax and 
Bak), anti-apoptotic proteins (such as Bcl-2 and Bcl-xL), and 
Bcl-2 regulators (also known as BH3-only proteins) [29, 30].  
Upon cell stimulation, anti-apoptotic proteins play the important 
roles of maintaining mitochondrial integrity and preventing cyto-
chrome c release, while pro-apoptotic proteins move to the mito-
chondria and cause mitochondrial membrane potential changes, 
leading to cytochrome c release [28-31].  Cytochrome c and 
apoptotic protease-activating factor-1 (Apaf-1) form a complex 
called apoptosome [28, 30].  Apoptosome cleaves pro-caspase-9 
and then activates downstream caspase-3, which leads to apopto-
sis.  In addition, anti-apoptotic proteins block apoptosis-inducing 
factor (AIF), and endonuclease G (Endo G) release from the 
mitochondria into the cytosol.  The release of both AIF and Endo 
G also causes DNA fragmentation and induces cell apoptosis [6,  
8, 31].

The extrinsic pathway initiates the binding of extrinsic signals 
to the death receptors (DRs) [28, 32].  For example, Fas, a mem-
ber of the tumor necrosis factor receptors (TNFRs), binds to Fas 
ligand (FasL) and recruits downstream the Fas-associated death 
domain (FADD), and this forms a death-inducing signaling com-
plex (DISC) and activates caspase-8 [9, 33].  Caspase-8 activation 
turns on the downstream effector caspase-3 and induces apoptosis.  
TNFRs include TNFR1, DR3, DR4 (tumor necrosis factor-related 
apoptosis-inducing ligand receptor 1, TRIAL R1), DR5 (TRIAL 
R2), and DR6.  Previous studies have shown that caspase-8 ac-
tivation cleaves Bid (a pro-apoptotic protein) and blocks Bcl-2, 
which results in cytochrome c release and triggers apoptosis [32, 
34, 35].  Therefore, a potential approach to fighting cancer cells 
may be through the induction of apoptotic signaling [28, 32, 34].  
In the present study, we investigated the oral anticancer effect and 
the possible molecular mechanism of BITC-induced apoptosis on 
human cisplatin-resistant oral cancer CAR cells.

2.	 Materials and methods

2.1.	 Chemicals, reagents, and antibodies

Benzyl isothiocyanate (BITC), cisplatin, dimethyl sulfoxide 
(DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT), and other chemicals of analytical grade were 
acquired from Sigma-Aldrich (St. Louis, MO, USA) unless oth-
erwise specified.  Dulbecco’s modified Eagles medium (DMEM), 
fetal bovine serum (FBS), L-glutamine, and penicillin/strepto-
mycin were purchased from HyClone (Logan, UT, USA).  Z-
VAD-fmk (a pan-caspase inhibitor) was purchased from Merck 
Millipore (Billerica, MA, USA).  Caspase-3 and Caspase-9 
Colorimetric Assay Kits were obtained from R&D Systems (Min-
neapolis, MN, USA). 2’,7’-Dichlorodihydrofluorescein diacetate 
(H2DCFDA) (an ROS indicator) and 3,3’-dihexyloxacarbocyanine 
iodide [DiOC6(3)] [a mitochondrial membrane potential (ΔΨm) 
detector] were purchased from Molecular Probes/Thermo Fisher 
Scientific (Waltham, MA, USA).  The anti-Bax, anti-Bad, anti-
Bcl-2, anti-Bcl-xL, anti-cytochrome c, anti-caspase-9, anti-cas-
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dithiothreitol and DEAD-pNA (for caspase-3) or LEHD-pNA (for 
caspase-9) as substrates at 37°C for 2 h as per the manufacturer’s 
protocols (Caspase-3 and Caspase-9 Colorimetric Assay Kits, 
R&D System Inc., Minneapolis, MN, USA).

2.8.	 Assays of ROS production and mitochondrial membrane 
potential (ΔΨm) by flow cytometry

CAR cells (2 × 105 cells/ml) in 12-well plates were incubated with 0, 
2.5, 5, and 10 μM of BITC for 48 h.  The cells were harvested and 
probed with 500 μl of 10 μM H2DCF-DA (an ROS dye) and 50 nM 
DiOC6(3) (a cell-permeant ΔΨm probe), respectively, for 30 min at 
37°C by flow cytometry, as previously described [41, 42].

2.9.	 Western blotting

CAR cells (5 × 106 cells per 75T flask) were treated with 0, 2.5, 
5, and 10 μM of BITC for 48 h.  The cells were harvested and 
lysed in the Trident RIPA Lysis Buffer (GeneTex), and the protein 
concentration was detected using a Pierce BCA protein assay 
kit (Thermo Fisher Scientific).  An equal amount of the protein 
sample (40 μg) was resolved by a 10-12% SDS-PAGE, and then 
transferred to an Immobilon-P Transfer Membrane (Merck Mil-
lipore), as previously described [34, 42].  The membrane was 
incubated overnight with the following antibodies: Bax, Bad, 
Bcl-2, Bcl-xL, cytochrome c, caspase-9, and caspase-3 after be-
ing blocked with 5% skim milk for 1 h.  The appropriate HRP-
conjugated secondary antibodies were thereafter applied and in-
cubated for 1 h to check the targeted protein using an Immobilon 
Western Chemiluminescent HRP Substrate (Merck Millipore), as 
previously described [43].  Densitometry analysis was performed 
using NIH ImageJ 1.47 software, and all bands were normalized 
to β-actin.

2.10.  Statistical analysis.

Data are presented as the mean ± standard deviation (SD), and all 
experiments were performed in triplicate.  All statistical analysis 
was assessed through one-way ANOVA using SPSS 14.0 software 

(SPSS, Inc., Chicago, IL, USA), followed by Dunnett's test.  Any 
P value < 0.05 was considered to be statistically significant.

3.	 Results

3.1.	 BITC reduces the viability of human cisplatin-resistant 
oral cancer CAR cells

CAR cells were treated with different concentrations (0, 2.5, 5, 
10, and 20 μM) of BITC for 24 and 48 h, followed by an MTT as-
say.  The results of this process indicated that BITC inhibited the 
cell growth of CAR cells in a concentration-dependent manner 
(Fig. 1A).  Similarly, after 48 h exposure, BITC dramatically de-
creased CAR cell viability, and this effect was time- and concen-
tration-dependent (Fig. 1B).  Further analysis by cell confluence 
was performed using an IncuCyte ZOOM System instrument, 
where CAR cells after exposure to 0, 5, 10, and 20 μM of BITC 
were monitored up to 48 h.  Our results demonstrated that BITC 
markedly suppressed the cell number after 12 h exposure, and the 
image was photographed at the 12-h mark in CAR cells (Fig. 2A).  
The inhibitory effect of CAR cell confluence was observed after 
BITC challenge, when compared to the control up to 48 h (Fig. 
2B and Supplementary data).  These findings indicate that BITC 
potentiates cell death and reduces the viability of CAR cells.

3.2.	 BITC triggers apoptosis and DNA breaks in CAR cells

To determine whether BITC-induced suppression of CAR cell 
viability was associated with apoptosis, we further examined the 
effects of BITC on nuclear morphology and DNA damage as evi-
denced through the use of DAPI staining and a terminal deoxy-
nucleotidyl transferase dUTP nick end labeling (TUNEL) assay.  
The results showed that BITC increased the number of apoptotic 
CAR cells with DNA condensation (a characteristic of apoptosis) 
and generated more blue fluorescence, which means an increase 
in apoptotic cells.  BITC also caused fragmented nuclei to form 
green fluorescence, indicating DNA breaks and cell apoptosis, 
when compared with untreated control cells (Fig. 3A).  The quan-
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Fig. 1 - Effects of BITC on cell viability in CAR cells.  Cells were placed in 96-well plates at a density of 1 × 104 cells/well and 
were treated with 0, 2.5, 5, 10, and 20 μM of BITC for 24 (A) and 48 h (B).  Cell viability was determined by an MTT assay. Each 
data point was shown as the means ± SD and independently repeated for three times. ***p < 0.001 compared with the untreated 
control group.
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titative data of BITC-induced apoptosis in CAR cells was carried 
out (Fig. 3B).  The data showed that BITC strongly suppressed 
cell viability and induced apoptosis in CAR cells.

3.3.	 BITC elicits caspase-dependent apoptosis in CAR cells

To further test whether the BITC-caused apoptosis is mediated 
through caspase cascade signaling, the CAR cells were pre-
incubated with 10 μM Z-VAD-fmk (a pan-caspase inhibitor) and 
then treated with 10 μM BITC for 48 h.  The results, gathered by 
a phase-contrast microscope, showed that Z-VAD-fmk signifi-
cantly blocked BITC-induced apoptotic cell death and morpho-
logic changes (Fig. 4A).  In addition, Z-VAD-fmk reversed BITC-
caused inhibition of cell viability in CAR cells (Fig. 4B).  We can 
thus suggest that the apoptotic mechanism of BITC was involved 
in the caspase cascade pathway in CAR cells.

3.4.	 BITC-induced apoptosis is caspase-3/-9-dependent in 
CAR cells

We further investigated if BITC-induced apoptosis is medicated 
through an intrinsic pathway in CAR cells.  Cells were treated 
with 2.5, 5, and 10 μM of BITC for 48 h, and the activities of cas-

pase-3 and -9 were individually determined by a colorimetric as-
say.  What we found was that BITC at 5 and 10 μM significantly 
stimulated caspase-3 activity in a concentration-dependent man-
ner (Fig. 5A).  Furthermore, the similar results also demonstrated 
that the promotion of caspase-9 activity was observed in BITC-
treated CAR cells (Fig. 5B).  Our results suggested that BITC 
induced apoptosis, and that the activation of caspase-9/-3 was 
involved in mitochondria-mediated apoptotic pathway in CAR 
cells.

3.5.	 BITC induced ROS production and loss of mitochondria 
membrane potential (ΔΨm) as well as altered the levels of 
apoptosis-related proteins in CAR cells.

We have demonstrated that BITC induced apoptosis is caspase-
3/-9-dependent.  To further investigate the upstream of associated 
signaling molecular in BITC-treated CAR cells, the cells were ex-
posed to various concentrations (2.5, 5, and 10 μM) of BITC for 
24 h to detect the levels of ROS production and ΔΨm, which was 
done via a flow cytometric assay.  Our results indicated that BITC 
promoted the production of ROS (Fig. 6A) as well as a loss of 
ΔΨm (Fig. 6B) in CAR cells in a concentration-dependent effect.  
Therefore, we suggest that mitochondrial dysfunction and ROS 
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production contributed to BITC-induced caspase-3/-9-dependent 
apoptosis in CAR cells.  To understand the mechanism of apop-
tosis in BITC-treated CAR cells, Bcl-2 family molecules and in-
trinsic signaling were determined by western blot.  BITC at 2.5, 5, 
and 10 μM for 48 h increased the protein levels of Bax, Bad, and 

cytochrome c, but it decreased Bcl-2 and Bcl-xL in CAR cells (Fig. 
7).  Our findings from immunoblotting analysis indicated that 
BITC induced mitochondria-dependent apoptosis in CAR cells.  
Collectively, our results revealed that BITC modulated Bcl-2 fam-
ily signaling and promoted the release of cytochrome c by activat-
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ing intrinsic apoptotic cascade in CAR cells (Fig. 8).

4.	 Discussion

Many natural dietary foods and Chinese herbal medicines have 
been shown to exert obviously useful and therapeutic properties 
for human health [44].  The anticancer activity of isothiocyanates 
(ITCs) has been widely proofed [3, 44, 45].  In preclinical studies, 
the cancer-preventive efficacy of ITC treatments has been ob-
served [6, 46, 47].  The anticancer mechanisms of ITC have been 
broadly investigated, including cell cycle arrest, anti-oxidation 
action, enhancement of DNA damage and repair, induction of 
apoptosis and autophagy, anti-metastasis, and elimination of can-
cer stem cells [6, 45, 46, 48].  Benzyl isothiocyanate (BITC) is 
one of the ITCs.  BITC is a naturally-occurring constituent of cru-
ciferous vegetable and found in Alliaria petiolata, pilu oil, cauli-
flower, cabbage, broccoli, and papaya seeds [1-3, 49, 50].  BITC 
has been found to induce apoptosis in various cancer cell lines, 
including breast cancer cells (MCF-7, HBL-100 and MDA-MB-

231) [51, 52], breast cancer stem cells (bCSC) [53], colon cancer 
cells (HCT-116) [54], gefitinib-resistant lung cancer cells (PC9/
BB4) [55], glioma cells (U87MG) [56], hepatocellular carcinoma 
cells (Bel 7402 and HLE) [57], osteosarcoma cells (U-2 OS) [11], 
lung cancer cells (A549, SK-MES-1 and H661) [58], melanoma 
cells (A375.S2) [59], epidermoid carcinoma cells (A431) [60], 
pancreatic cancer cells (L3.6pL, MIA-PaCa2, and Panc1) [61], 
prostate cancer cells (Rv1 and PC3) [9], gastric cancer cells (AGS) 
[12], and oral cancer cells (OC2) [62].  Yeh et al. [62] reported 
that BITC inhibited cell growth, promoted G2/M phase arrest, 
and triggered apoptosis of oral cancer OC2 cells, with a minimal 
toxicity to normal PBMCs.  In addition, Sehrawat et al. [51] 
showed that BITC induced apoptosis in breast cancer cells but did 
not affect normal breast MCF-10A cells.  Those studies suggest 
that BITC exerted non-toxicity in normal cells.  The molecular 
mechanisms of BITC-induced cell death in cisplatin-resistant oral 
cancer CAR cells are not yet fully understood.  Nevertheless, our 
results are in accordance with those of a study by Yeh et al, which 
demonstrated that BITC inhibited cell growth and triggered apop-
tosis of human oral cancer OC2 cells [62].
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In said Yeh et al’s study, BITC-induced apoptosis was medi-
tated by the reduction of Mcl-1 and Bcl-2 protein levels, disrup-
tion of mitochondria membrane potential (ΔΨm), and an increase 
of ROS production and PARP cleavage level in oral cancer OC2 
cells [62].  Several studies have demonstrated that intracellular 
ROS and disruption of mitochondria membrane potential can 
effectively induce cancer cell death, including apoptosis and au-
tophagy [63-65].  The disruption of mitochondrial function (loss 
of ΔΨm) and an increase of ROS production eventually leads to 
the apoptosis of cancer cells [9, 28, 31, 32].  Previous studies us-
ing brain glioblastoma cells (GBM-8401), prostate cancer cells 
(PC-3), breast cancer cells (MCF-7 and MDA-MB-361), melano-
ma cells (A375.S2), and osteogenic sarcoma cells (U-2 OS) have 
demonstrated that BITC-induced apoptosis is associated with the 
generation of ROS [9, 11, 61, 66].  Our results showed that 5-10 
μM of BITC significantly inhibited the cell growth of cisplatin-
resistant CAR cells (Fig. 1, Fig. 2, and Supplementary data).  
Significant DNA condensation, DNA fragmentation (Fig. 3), and 
caspase-3/-9 activation were observed in BITC-treated cells (Fig. 
5A and B), indicating that BITC can induce caspase-dependent 
apoptosis in CAR cells.  We investigated the possible role of ROS 
generation and mitochondrial function in BITC-induced apoptosis 
of CAR cells via flow cytometry following staining with H2DCF-
DA and DiOC6(3) (specific detection of ROS and mitochondria 
membrane potential, respectively).  The results in Fig. 6 show 
that BITC significantly induced ROS generation (Fig. 6A) and 
disruption of mitochondria membrane potential (Fig. 6B) in a 
concentration-dependent manner in CAR cells.  Our findings 
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Fig. 7 - Effects of BITC on apoptotic signaling of CAR 
cells.  Cells were treated without or with 2.5, 5, and 10 μM 
of BITC for 48 h, and cell lysates were collected and blotted 
using specific antibodies, including Bax, Bad, Bcl-2, Bcl-xL, 
cytochrome c, caspase-9 and caspase-3 by immunoblotting 
analysis as described in the Materials and Methods section.  
Each lane of protein signaling was normalized to β-actin.

showed that BITC significantly disrupted mitochondria mem-
brane potential (Fig. 6B), aided the release of cytochrome c and 
caspase-9 (Fig. 7 and 5B) and then activated the caspase-3 (Fig. 7 
and 5C) for apoptosis in CAR cells.  Our results in this study sug-
gest that BITC provokes caspase-dependent and mitochondria-
mediated apoptosis in CAR cells.  What we found provides new 
insights into the oral anticancer activity of BITC in cisplatin-
resistant CAR cells.

5.	 Conclusions

Our results support the findings that BITC-caused intrinsic apop-
tosis is mediated through ROS production and mitochondrial dys-
function in CAR cells.  The proposed integrated model of the mo-
lecular signaling induced by BITC in CAR cells is summarized in 
Fig. 8.  As far as we are aware, this study is the first to show that 
BITC represents a promising candidate as an adjuvant treatment 
for oral anticancer, and it might be a potential agent for patients 
with drug-resistant oral cancer in the future.
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