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Abstract

This paper proposes asymptotic and exact methods for testing the equality of correlations

for multiple bilateral data under Dallal’s model. Three asymptotic test statistics are derived

for large samples. Since they are not applicable to small data, several conditional and

unconditional exact methods are proposed based on these three statistics. Numerical stud-

ies are conducted to compare all these methods with regard to type I error rates (TIEs) and

powers. The results show that the asymptotic score test is the most robust, and two exact

tests have satisfactory TIEs and powers. Some real examples are provided to illustrate the

effectiveness of these tests.

Introduction

In clinical medicine, we often encounter bilateral data taken from paired organs of patients

such as eyes and ears. For the same patient, the intraclass correlation between responses of

paired parts should be considered to avoid misleading results. There have been in the past vari-

ous models to analyze such data. For example, Rosner [1] introduced a positive constant R as a

measure of the dependency by assuming that the probability of a response at one side of the

paired body given a response at the other side is R times to the response rate. Donner [2] pro-

vided an alternative approach and considered the common correlation coefficient in each of

two groups. Under these two models, asymptotic and exact methods have been studied for

many years and achieved significant progress.

Under Rosner’s model, Tang et al. [3] developed exact and approximate procedures when

sample size is small or the data structure is sparse. Qiu et al. [4] derived sample formulas for

testing difference between two proportions. Shan and Ma [5], and Ma et al. [6] presented sev-

eral asymptotic and exact methods to investigate the equality of proportions. Peng et al. [7]

constructed asymptotic confidence intervals (CIs) of proportion ratio for correlated paired

data. Under Donner’s model, Pei et al. [8, 9] used asymptotic methods to analyze test statistics

and CIs in two treated groups. Liu et al. [10, 11] provided exact methods to test the homogene-

ity of prevalence from multiple groups. Generally, asymptotic methods can produce empirical

type I error rates (TIEs) close to the pre-specified nominal level for large samples. However,
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they may yield inflation TIEs for small samples. Thus, exact tests become alternative to deal

with the problem.

Dallal [12] indicated that Rosner’s model may give a poor fit if the characteristic was almost

certain to occur bilaterally with widely varying group-specific prevalence. Suppose the proba-

bility of response at one organ given response at the other organ was independent of its proba-

bility. He introduced likelihood ratio test for large samples. However, the approach performs

poorly with unsatisfactory TIE control in small samples. Up to now, statistical inferences on

Dallal’s model have been less considered, including asymptotic and exact methods. This paper

aims to propose asymptotic and exact methods for testing homogeneity of correlations among

multiple bilateral data under Dallal’s model.

The remainder of the work is organized as follows. In Section 2, we review bilateral data

structure and introduce Dallal’s model. The maximum likelihood estimations (MLEs) are

derived for different hypotheses. Three asymptotic statistics and six exact procedures are pro-

posed in Section 3. In Section 4, some numerical studies are conducted to compare these

methods in terms of TIEs and power. Two examples are provided to illustrate these proposed

approaches in Section 5. Conclusions are given in Section 6.

Dallal’s model and estimators

Suppose that N patients is randomly allocated into g groups. There aremi patients in the ith
(i = 1, . . ., g) group. Letmli be the number of patients who have l(l = 0, 1, 2) organ(s) with

improvement response(s) in the ith (i = 1, . . ., g) group, and Sl be the total number of patients

with l(l = 0, 1, 2) response(s). Obviously,mi ¼
P2

l¼0
mli and Sl ¼

Pg
i¼1
mli. The data structure

is shown in Table 1. Let pli be the probability that a patient has l(l = 0, 1, 2) response(s) in the

ith (i = 1, . . ., g) group. The vector mi≜ (m0i,m1i,m2i)
T follows a multinomial distributionM

(mi;p0i, p1i, p2i). The probability density satisfies

f ðmiÞ ¼
mi!

m0i!m1i!m2i!
pm0i

0i p
m1i
1i p

m2i
2i ; i ¼ 1; . . . ; g:

Let Zijk = 1 if the kth organ of the jth patient has improvement response in the ith group for

k = 1, 2, i = 1, 2, . . ., g, and j = 1, 2, . . .,mi, and 0 otherwise. Under Dallal’s model, we assume

PðZijk ¼ 1Þ ¼ pi; PðZijk ¼ 1jZijð3� kÞ ¼ 1Þ ¼ gi; ð1Þ

where 0� πi, γi� 1. Especially, γi = πi means that two organ responses of each patient are

completely independent, and γi = 1 represents that they are completely dependent in ith
group. By using the Eq (1), the probabilities of no, one or both response(s) are

p0i ¼ 1 � ð2 � giÞpi; p1i ¼ 2pið1 � giÞ; p2i ¼ pigi; i ¼ 1; . . . ; g;

Table 1. Bilateral data structure with g groups.

Response (l) Group Total

1 2 . . . i . . . g
0 m01 m02 . . . m0i . . . m0g S0

1 m11 m12 . . . m1i . . . m1g S1

2 m21 m22 . . . m2i . . . m2g S2

Total m1 m2 . . . mi . . . mg N

https://doi.org/10.1371/journal.pone.0242722.t001
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where 0� pli� 1, p01 + p1i + p2i = 1, and max 0; 1 � 1

2pi
; 2 � 1

pi

n o
� gi � 1. In the work, we

are interested to test whether the correlations of g groups are identical. Thus, the hypotheses

are given by

H0 : g1 ¼ � � � ¼ gg ¼ g versus H1 : gi 6¼ gj for some i 6¼ j 2 f1; 2; . . . ; gg:

Denote m = (m1, . . ., mg), π = (π1, . . ., πg) and γ = (γ1, . . ., γg). Given the observation m, the

log-likelihood function

lðπ; γjmÞ ¼ ln
Yg

i¼1

f ðmiÞ

 !

¼
Xg

i¼1

½m0i ln ð1 � 2pi þ gipiÞ þm1i ln ð2pið1 � giÞÞ

þm2i ln ðpigiÞ� þ C;

ð2Þ

where C ¼ ln
Qg

i¼1

mi !
m0i !m1i !m2i !

� �
. Let p̂i and ĝ i be the unconstrained MLEs of πi and γi underH1.

Differentiate (2) with respect to πi and γi, and set them to 0. The MLEs p̂i and ĝ i are the solu-

tions of the following equations

@l
@pi
¼

m0iðgi � 2Þ

1 � 2pi þ pigi
þ
m1i þm2i

pi
¼ 0;

@l
@gi
¼

m0ipi
1 � 2pi þ pigi

�
m1i

1 � gi
þ
m2i

gi
¼ 0:

8
>>>><

>>>>:

ð3Þ

Then,

p̂i ¼
m1i þ 2m2i

2mi
; ĝ i ¼

2m2i

m1i þ 2m2i
; i ¼ 1; . . . ; g: ð4Þ

Let ~pi and ~g be the constrained MLEs of πi and γ underH0. Similarly, they are the solution

of the equations

@l
@pi
¼

m0iðg � 2Þ

1 � 2pi þ pig
þ
m1i þm2i

pi
¼ 0;

@l
@g
¼

Xg

i¼1

m0ipi
1 � 2pi þ pig

�
m1i

1 � g
þ
m2i

g

� �

¼ 0:

8
>>>><

>>>>:

For the first equation, we have
m0i

1� 2piþpig
¼

m1iþm2i
pið2� gÞ

. The second equation can be simplified as γ

(S1 + 2S2) − 2S2 = 0. Then, the constrained MLEs are obtained

~p i ¼
ðm1i þm2iÞðS1 þ 2S2Þ

2miðS1 þ S2Þ
; i ¼ 1; . . . ; g; ~g ¼

2S2

S1 þ 2S2

: ð5Þ
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Test methods

An information matrix

Denote β = (γ1, . . ., γg, π1, . . ., πg). According to the Eq (3), the second-order derivatives of l
with respect to πi and γi are

@
2l

@g2
i

¼ �
m2i

g2
i

�
m1i

ðgi � 1Þ
2
�

m0ip
2
i

ðgipi � 2pi þ 1Þ
2
;

@
2l

@gi@pi
¼

@
2l

@pi@gi
¼

m0i

ðgipi � 2pi þ 1Þ
2
;

@
2l

@p2
i

¼ �
m1i þm2i

p2
i

�
m0iðgi � 2Þ

2

ðgipi � 2pi þ 1Þ
2

for i = 1, . . ., g, and @2 l
@gi@gj
¼ @2 l

@gj@gi
¼ @2 l

@gi@pj
¼ @2 l

@pi@gj
¼ @2l

@pi@pj
¼ @2 l

@pj@pi
¼ 0 for i 6¼ j. Thus, the informa-

tion matrix Iβ with respect to β is

Iβ≜

I11 � � � 0 Iðgþ1Þ1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � Igg 0 � � � Ið2gÞg

I1ðgþ1Þ � � � 0 Iðgþ1Þðgþ1Þ � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � Igð2gÞ 0 � � � Ið2gÞð2gÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where

Iii ¼ � E
@

2l
@g2

i

� �

¼ �
mipiðgi � 2pi þ 1Þ

giðgi � 1Þðgipi � 2pi þ 1Þ
; i ¼ 1; . . . ; g;

Iij ¼ Iji ¼ � E
@

2l
@gi@pj

 !

¼ �
mi

gipj � 2pj þ 1
; ði; jÞ 2 fð1; g þ 1Þ; . . . ; ðg; 2gÞg;

Ijj ¼ � E
@

2l
@p2

j

 !

¼ �
mjðgj � 2Þ

pjðgjpj � 2pj þ 1Þ
; j ¼ g þ 1; . . . ; 2g:
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Otherwise, Iij = 0. By calculation, its inverse matrix is

I� 1

β ¼

a1 � � � 0 c1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � ag 0 � � � cg

c1 � � � 0 b1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � cg 0 � � � bg

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð6Þ

where

ai ¼
giðgi � 1Þðgi � 2Þ

2mipi
; bi ¼

pið1þ gi � 2piÞ

2mi
; ci ¼ �

giðgi � 1Þ

2mi

for i = 1, . . ., g.

Asymptotic test statistics

In this section, we propose three asymptotic tests for large samples based on the unconstrained

and constrained MLEs.

(i) Likelihood ratio test. Let p̂i, ĝ i be the unconstrained MLEs, and ~p i, ~g be the constrained

MLEs underH0. Denote π̂ ¼ ðp̂1; . . . ; p̂gÞ, γ̂ ¼ ðĝ1; . . . ; ĝgÞ and ~π ¼ ð~p1; . . . ; ~pgÞ.

Given observation m, likelihood ratio statistic is given by

TL ¼ 2flðπ̂; γ̂ jmÞ � l0ð~π; ~gjmÞg;

where l(π, γ|m) is defined in (2) and

l0ðπ; gjmÞ ¼
Xg

i¼1

½m0i ln ð1 � 2pi þ gpiÞ þm1i ln ð2pið1 � gÞÞ

þm2i lnpig� þ C:

From (4) and (5), likelihood ratio test can be represented as

TL ¼ 2
Xg

i¼1

ln
m1i

S1

� �m1i m2i

S2

� �m2i S1 þ S2

m1i þm2i

� �m1iþm2i
� �

:

(ii) Score test. Denote UðβÞ ¼ @l
@g1
; . . . ; @l

@gg
; 0; . . . ; 0

� �
: UnderH0, score test statistic can be

defined as

TSC ¼ UðβÞI � 1
β UðβÞ

T
jg1¼g2¼���¼gg¼~g ;pi¼~p i

:
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A direct calculation shows that the simplified form of TSC is

TSC ¼
Xg

i¼1

ðS1m2i � S2m1iÞ
2

S1S2ðm1i þm2iÞ
:

(iii) Wald-type test. Let β̂ ¼ ðĝ1; . . . ; ĝg; p̂1; . . . ; p̂gÞ. The null hypothesis H0: γ1 = . . . = γg is

equivalent to C βT = 0, where 0 is a zero vector, and

C ¼

1 � 1 0 � � � 0 0 0 . . . 0

0 1 � 1 � � � 0 0 0 . . . 0

..

. ..
. . .

. . .
. ..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1 � 1 0 . . . 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ðg� 1Þ�ð2gÞ

:

Hence, Wald-type test statistic can be written as

TW ¼ ðβCTÞðCI
� 1

β C
TÞ
� 1
ðCβTÞjβ¼β̂ ¼ ðβ̂CTÞðCI

� 1

β̂ C
TÞ
� 1
ðCβ̂TÞ;

where I� 1β is defined in (6). Let

âi ¼
ĝ iðĝ i � 1Þðĝ i � 2Þ

2mip̂i
¼

4m1im2iðm1i þm2iÞ

ðm1i þ 2m2iÞ
4

; i ¼ 1; . . . ; g: ð7Þ

Then,

CI� 1

β̂ C
T ¼

â1 þ â2 � â2 0 � � � 0 0

� â2 â2 þ â3 � â3 0 � � � 0 0

0 � â3 â3 þ â4 � â4 � � � 0 0

..

. ..
. . .

. . .
. . .

. ..
. ..

.

0 0 � � � � � � � � � � âg� 1 âg� 1 þ âg

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

:

For convenience, denote A ¼ CI� 1

β̂ C
T . Obviously, A is a symmetric tridiagonal matrix of

order g − 1. Let dg� 1 ¼ âg� 1 þ âg , dj ¼ âj þ âjþ1 �
â2
jþ1

djþ1
for j = 2, . . ., g − 1, and d1 ¼ â1 þ â2,

di ¼ âi þ âiþ1 �
â2
i

di� 1
; i ¼ g � 2; . . . ; 1. Following [13], A−1 is also a symmetric matrix denoted

by

A� 1 ¼

z11 z12 � � � z1ðg� 1Þ

z12 z22 � � � z2ðg� 1Þ

..

. ..
. . .

. ..
.

z1ðg� 1Þ z2ðg� 1Þ � � � zðg� 1Þðg� 1Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

PLOS ONE Asymptotic and exact methods under Dallal’s model

PLOS ONE | https://doi.org/10.1371/journal.pone.0242722 November 30, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0242722


where

zij ¼

ðuiþ1 � � � ujÞðdjþ1 � � � djÞ
di � � � dg� 1

; j > i; i; j ¼ 1; . . . ; g � 1;

diþ1 � � � dg� 1

di � � � dg� 1

; i ¼ 1; . . . ; g � 1:

8
>>>>><

>>>>>:

Since β̂CT ¼ ðĝ1 � ĝ2; ĝ2 � ĝ3; . . . ; ĝg� 1 � ĝgÞ, we obtain the simplified form

TW ¼
Xg� 1

i¼1

Xg� 1

j¼1

ðĝ i � ĝ iþ1Þðĝ j � ĝ jþ1Þzij:

Next we provide the expressions of TW for g = 2, 3, 4. If g = 2, it follows that

TW ¼
ðĝ1 � ĝ2Þ

2

â1 þ â2

¼
4ðm11m22 � m12m21Þ

2

4ðm11 þ 2m21Þ
2
ðm12 þ 2m22Þ

2P2

i¼1

m1im2iðm1iþm2iÞ

ðm1iþ2m2iÞ
4

:

If g = 3, we have

TW ¼
â1ðĝ2 � ĝ3Þ

2
þ â2ðĝ1 � ĝ3Þ

2
þ â3ðĝ1 � ĝ2Þ

2

â1â2 þ â1â3 þ â2â3

:

Denote â ¼ â1â2â3 þ â1â2â4 þ â1â3â4 þ â2â3â4. If g = 4, then

TW ¼
1

â
½ðĝ3 � ĝ4Þððĝ3 � ĝ4Þðâ1â2 þ â1â3 þ â2â3Þ þ ðĝ2 � ĝ3Þâ3ðâ1 þ â2Þ

þðĝ1 � ĝ2Þâ2â3Þ þ ðĝ1 � ĝ2Þððĝ1 � ĝ4Þâ2â3 þ ðĝ1 � ĝ3Þâ2â4

þðĝ1 � ĝ2Þâ3â4Þ þ ðĝ2 � ĝ3Þððĝ2 � ĝ4Þâ1â3 þ ðĝ1 � ĝ4Þâ2â3

þðĝ2 � ĝ3Þâ1â4 þ ðĝ1 � ĝ3Þâ2â4Þ�;

where ai is defined in (7).

UnderH0, test statistic Tl(= TL, TSC or TW) has asymptotic chi-square distribution with

g − 1 degrees of freedom. Let w2
g� 1;1� a

be the (1 − α)th quantile of the chi-square distribution

with g − 1 degree of freedom. Given the nominal level α, the null hypothesis H0 will be rejected

if the value of Tl is larger than w2
g� 1;1� a

.

Exact methods

Given the observed data m = (m1, . . ., mg), let Tl(m) be the value of the aforementioned statis-

tic Tl(l = L, SC,W). The asymptotic (A) p-values of these statistics are defined by

pAl ðm
�Þ ¼ PðTlðm�Þ � w2

g� 1;1� a
Þ; l ¼ L; SC;W; ð8Þ

where m� is an observed data of m. For convenience, we call pAL , pASC and pAW as “A approach”

based on statistics TL, TSC and TW. Asymptotic tests work well when the sample size is large.

However, they have some limitations if the sample size is relatively small. Several exact condi-

tional and unconditional methods are proposed for small samples based on these statistics.

An exact conditional method is introduced under the assumption that all ofmi(i = 1, . . ., g)
and Sl(l = 0, 1, 2) are fixed in Table 1. Thus, the cell values of the table follow a hypergeometric
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distribution. Define the tail area of statistics TL, TSC and TW as

Clðm�Þ ¼ fm : TlðmÞ � Tlðm�Þ;m 2 Sðm�Þg; l ¼ L; SC;W;

where Sðm�Þ ¼ fm : Sl ¼ S�l ; l ¼ 0; 1; 2g. According to the tail area Cl(m�), the exact condi-

tional (C) p-values can be calculated by

pCl ðm
�Þ ¼

X

m2Clðm�Þ

Qg
i¼1

mi !
m0i !m1i !m2i !

N!

S�
0
!S�

1
!S�

2
!

 !

; l ¼ L; SC;W: ð9Þ

Here, pCL ; p
C
SC and pCW are described as “C approach” based on statistics TL, TSC and TW.

Another exact p-value is from Basu’s maximization approach [14]. It can be obtained by

maximizing the tail probability over all nuisance parameters instead of the constrained MLEs

underH0. In this case, we define the tail area of statistic Tl(l = L, SC,W) as

Olðm�Þ ¼ fm : TlðmÞ � Tlðm�Þg; l ¼ L; SC;W

for a given table m�. Denote Θ = {π: πi 2 [0, 1], i = 1, . . ., g} and

L ¼ fγ : maxf0; 1 �
1

2pi
; 2 �

1

pi
g � gi � 1; pi 2 ½0; 1�; i ¼ 1; . . . ; gg ;

where π = (π1, . . ., πg) and γ = (γ1, . . ., γg). Hence, under maximization (M) method, three

exact unconditional p-value of are given by

pMl ðm
�Þ ¼ sup

π2Y;γ2L

X

m2Olðm�Þ

Lðπ; γjmÞ

( )

; l ¼ L; SC;W; ð10Þ

where L(π, γ|m) = exp(l(π, γ|m)) and l(π, γ|m) is defined in (2). Corresponding to “A

approach” and “C approach”, pML , pMSC and pMW are called “M approach” based on TL, TSC and

TW.

Numerical studies

In this section, we investigate the performance of the proposed asymptotic and exact tests in

terms of TIEs and powers under different parameter settings.

We first compare asymptotic methods TL, TSC and TW with empirical TIEs. Let g = 2, 3, 4, π
= 0.3: 0.02: 0.5, γ = 0.3: 0.02: 0.8 andm =m1 = � � � =mg = 15, 50, 100. Here, a: b: cmeans

increasing from a to c by b. For each parameter setting, 10,000 samples are randomly generated

from the null hypothesisH0. Given the nominal level α = 0.05, empirical TIE is calculated by

the proportion of rejectingH0, i.e., the number of rejections/10,000. Figs 1, 2 and 3 show the

distribution surfaces of empirical TIEs for all the tests under πi = π and γi = γ(i = 1, 2, . . ., g;
g = 2, 3, 4). According to Tang et al. [3], a test is liberal if its empirical TIE is greater than 0.06,

conservative if it is less than 0.04, otherwise it is robust. We observe that score test is more

robust than other tests since its TIEs are closer to the pre-determined level α = 0.05. All the

tests work well for larger sample size. However, likelihood ratio and Wald-type tests have

inflated TIEs and are especially liberal when sample size is small. Some of their TIEs may be

less than 0.04 or greater than 0.06.

Next we calculate the empirical powers of these tests according to the parameter settings for

m = 15, 50, 100: (i) g = 2, π = (0.2, 0.3), γ1 = 0.2: 0.05: 0.95, γ2 = 0.1, (ii) g = 3, π = (0.2, 0.3, 0.3),

γ1 = 0.2: 0.05: 0.95, γ2 = γ3 = 0.1, and (iii) g = 4, π = (0.2, 0.3, 0.3, 0.3), γ1 = 0.2: 0.05: 0.95, γ2 =

γ3 = γ4 = 0.1. For each parameter setting, we randomly choose 10,000 samples from the
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alternative hypothesis H1. The empirical power is computed by the proportion of rejectingH0

for all samples. Fig 4 reflects the empirical powers of three proposed tests for g = 2, 3, 4. The

powers will increase when sample size is larger or the group number increases. Especially, the

powers of all the tests are very close whenm = 50, 100. However, there exists some differences

between these tests for smaller samples. Wald-type test has higher power and likelihood ratio

test has lower power.

Considering the limitations of asymptotic methods, we analyse A, C andM approaches for

small samples. Unlike 10,000 random samples of asymptotic tests, we need to generate all pos-

sible tables with random cell values. Form = 10 and g = 2, 3, there are totally 4,356 and 287,492

tables. The TIEs and powers are obtained form =m1 = � � � =mg = 10 and g = 2, 3 according to

the cases: π = 0: 0.04: 1, γ = 0: 0.04: 1, satisfying 0� pli� 1(l = 0, 1, 2, i = 2, 3). At the given

nominal level α = 0.05, the probabilities are calculated by the log-likelihood (2) of all possible

tables. We will reject the null hypothesis H0 if the probability is less than 0.05. Figs 5 and 6

Fig 1. Empirical TIE surfaces of asymptotic tests for g = 2, πi = π and γi = γ.

https://doi.org/10.1371/journal.pone.0242722.g001
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show TIE surfaces of all the exact methods for πi = π and γi = γ (i = 1, . . ., g; g = 2, 3). We

observe that A approach pASC is closer to the pre-specified nominal level α = 0.05 form = 10 and

g = 2, 3. However, pAL and pAW have the inflated TIEs. For C approach, pCW is better than pCL and

pCSC since they have the inflated TIEs. TheM approaches pML and pMSC can produce satisfactory

TIEs.

Fig 7 provides the powers of exact methods according to parameter settings form = 10: (i)

g = 2, π = (0.2, 0.3), γ1 = 0.2: 0.05: 0.9 and γ2 = 0.1, and (ii) g = 3, π = (0.2, 0.3, 0.3), γ1 = 0.2:

0.05: 0.9 and γ2 = γ3 = 0.1. We observe that the powers will increase whenm or γ1 increases

under other fixed parameters. The powers of A, C andM approaches are relatively close based

on statistics Tl(l = L, SC).

Fig 2. Empirical TIE surfaces of asymptotic tests for g = 3, πi = π and γi = γ.

https://doi.org/10.1371/journal.pone.0242722.g002
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Note that all parameter settings of asymptotic and exact methods are studied under bal-

anced designs, that is,m =m1 = � � � =mg. For unbalanced case, we can handle it through some

examples.

Real examples

In this section, two real examples with unbalanced designs are provided to illustrate our pro-

posed methods at the nominal level α = 0.05. We first show an example with large samples

based on asymptotic test statistics.

Example 1 [15] There were 216 patients aged 20-39 with retinitis pigmentosa (RP) at the

Massachusetts Eye and Ear infirmary. They were divided into four genetic groups (Table 2):

autosomal dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL) and isolate

RP (ISO).

Fig 3. Empirical TIE surfaces of asymptotic tests for g = 4, πi = π and γi = γ.

https://doi.org/10.1371/journal.pone.0242722.g003

PLOS ONE Asymptotic and exact methods under Dallal’s model

PLOS ONE | https://doi.org/10.1371/journal.pone.0242722 November 30, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0242722.g003
https://doi.org/10.1371/journal.pone.0242722


Letmli be the number of patients with l(l = 0, 1, 2) affected eyes in the ith (i = 1, 2, 3, 4)

group. Under Dallal’s model, we are interested to test if the correlations of these four

groups are equal, i.e.,H0 : g1 ¼ g2 ¼ g3 ¼ g4≜g. Table 3 provides the results of statistics,

p-values and constrained MLEs. Moreover, the unconstrained MLEs π̂ ¼ ðp̂1; p̂2; p̂3; p̂4Þ ¼

ð0:3571; 0:5476; 0:7895; 0:4662Þ and γ̂ ¼ ðĝ1; ĝ2; ĝ3; ĝ4Þ ¼ ð0:7000; 0:7826; 0:9333; 0:8261Þ.

Given the nominal level α = 0.05, TL, TW, TSC< w2
3;0:95

= 7.81 and p-values are greater than

0.05. Thus, there is no evidence to rejectH0. That is to say, the correlations of four groups are

equal: γ1 = γ2 = γ3 = γ4 = 0.8246.

For small sample case, we provide another example to compare the effectiveness of asymp-

totic and exact methods.

Example 2 [16] A double-blind clinical trial was conducted to study amoxicillin treatment

of acute otitis media with effusion (OME) in twenty-four children at 14 days. Each child

underwent no, unilateral or bilateral OME and was assigned into three groups according to

ages:<2, 2-5 and�6 years (Table 4). Denote m� = (2, 2, 11, 5, 1, 3, 6, 0, 7). Next we apply

asymptotic and exact methods to testH0: γ1 = γ2 = γ3 = γ.

Through calculating (4) and (5), the unconstrained MLEs π̂ ¼ ð0:8000; 0:3889; 0:1179Þ,

ĝ ¼ ð0:9167; 0:8571; 0:9524Þ, and the constrained MLEs ~π ¼ ð0:7924; 0:4064; 0:1417Þ,

~g ¼ 0:9063 under H0. Then, TL(m�) = 0.2445, TSC(m�) = 0.2525 and TW(m�) = 0.2285.

Table 5 provides the comparison of asymptotic and exact methods. The result shows that

there is no significant difference among the correlations of two groups regardless of any

approaches.

Fig 4. Empirical power curves of asymptotic tests for g = 2, 3, 4.

https://doi.org/10.1371/journal.pone.0242722.g004
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Fig 5. TIE surfaces of exact approaches for m = 10, g = 2, πi = π and γi = γ.

https://doi.org/10.1371/journal.pone.0242722.g005
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Fig 6. TIE surfaces of exact approaches for m = 10, g = 3, πi = π and γi = γ.

https://doi.org/10.1371/journal.pone.0242722.g006
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Fig 7. Power curves of exact approaches for m = 10 and g = 2, 3.

https://doi.org/10.1371/journal.pone.0242722.g007

Table 2. The number of patients for genetic types.

Response DOM AR SL ISO Total

0 15 7 3 67 92

1 6 5 2 24 37

2 7 9 14 57 87

Total 28 21 19 148 216

https://doi.org/10.1371/journal.pone.0242722.t002

Table 3. Test statistics, p-values and constrained MLEs under H0.

Value Test statistics ~p ¼ ð~p1; ~p2; ~p3; ~p4Þ ~g

TL TSC TW

Statistic value 4.4569 4.1831 5.7594 (0.3950, 0.5675, 0.7165, 0.4656) 0.8246

p-value 0.2162 0.2424 0.1239

https://doi.org/10.1371/journal.pone.0242722.t003

Table 4. 14-day OME status.

Response < 2 years 2-5 years �6 years Total

0 2 5 6 13

1 2 1 0 3

2 11 3 1 15

Total 15 9 7 31

https://doi.org/10.1371/journal.pone.0242722.t004
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Conclusions

In this paper, we propose asymptotic statistics and exact procedures to test if the correlations

of multiple bilateral data are equal under Dallal’s model. Three asymptotic test statistics are

likelihood ratio TL, score TSC and Wald-type TW for large sample. The explicit expressions of

these tests are obtained, and their asymptotic p-values pAl ðl ¼ L; SC;WÞ are denoted by A
approach. For small sample, six exact methods are derived based on statistics TL, TSC and TW,

including three conditional exact C procedures pCl ðl ¼ L; SC;WÞ and three unconditional

exactM approaches pMl ðl ¼ L; SC;WÞ.
Numerical studies are conducted to investigate the performance of asymptotic and exact

methods in terms of TIEs and powers. When the samples is larger, empirical TIEs and powers

of TL, TSC and TW are close to each other. In general, score test TSC is more robust than other

two tests. However, these tests may produce unacceptable TIEs such as Wald-type test when

the samples is smaller. The results are similar to those of Rosner’s and Donner’s models, see

Ma et al. [6] and Liu et al. [10]. For small sample, we obtain TIE surfaces and power curves of

exact C andM approaches with two and three groups, comparing with A approach. As for

TIEs, the A approaches pAL and pAW are liberal, and pASC is close to the nominal level 0.05 under

different parameter configurations. The C approaches pCL and pCSC tend to be more inflated than

pCW . TheM approach PMSC is better than pML and pMW . On the other hand, the powers of exact

methods are very close based on likelihood ratio TL and score TSC. For C approach, pCW has

higher power, while pCl ðl ¼ L; SCÞ has lower power. Moreover, pMSC has higher power, but pMW
has lower power inM approach.

The ideas of asymptotic and exact methods can be extended other data structures with

larger or small samples such as crash data. For example, Zeng et al. [17–19] proposed some

models for the analysis of crash rates by injury severity. Dong et al. [20] introduced mixed

logit model to investigate the difference between single- and multi-vehicle accident probabil-

ity. Chen et al. [21–23] analyzed unbalance panel models by using real-time environmental

and traffic big data. For these problems, we will leave these for future research.
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Table 5. Comparison of asymptotic and exact p-values.

Method A approach C approach M approach
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L pA
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W pC

L pC
SC pC

W pM
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SC pM
W
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