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Artemisinin (ARS) and its derivatives (ARSs) are recommended as the first-line antimalarial
drugs for the treatment of malaria. Besides antimalarial function, its potent anti-
inflammatory and immunoregulatory properties, as well as the ability to regulate
oxidative stress have brought them to a prominent position. As researchers around the
world are continually exploring the unknown biological activities of ARS derivatives,
experimental studies have shown much progress in renal therapy. This review aims to
give a brief overview of the current research on ARSs applications for kidney treatment
with the evaluation of therapeutic properties and potential molecular mechanisms.
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INTRODUCTION

The imbalance between the molecular mechanisms that govern oxidative stress, inflammation,
immunity, and cell death are important causes of acute kidney injury (AKI) and chronic kidney
diseases (CKD) (Sureshbabu et al., 2015). Both AKI and CKD can lead to diminished kidney
function and are associated with high mortality and morbidity. Accumulated evidence
demonstrated that natural products are alternative sources for treating renal diseases on account
of the conventional experience and multi-target characteristics (Chen et al., 2018).

Artemisinin (ARS) is an effective constituent with a molecular weight of 282 originally extracted from
traditional Chinese medicine Artemisia annua L, which was first discovered by Chinese scientists in
1972. Its chemical structure-sesquiterpene lactone with a peroxide bridge has been demonstrated to exert
an excellent antimalarial effect (White et al., 2015; Chang, 2016). In the presence of heme or free iron, the
production of reactive oxygen species and carbon-centered free radicals generated by the cleavage of the
endoperoxide bridge can directly poison the parasites (Vennerstrom et al., 2004). ARS selectively kills
plasmodium-infected red blood cells without destroying healthy cells, making it the recommended drug
for the treatment of malaria (Lalloo et al., 2016) and more clinically effective than other antimalarial
drugs such as hydroxychloroquine (HCQ) and chloroquine (CQ) (Golenser et al., 2006; Efferth and
Kaina, 2010). ARS has a rapid onset of action and can be rapidly absorbed by the gastrointestinal tract
after oral administration, with half-live ranging from 2 to 5 h. It is mainly distributed in the liver, kidney,
and bile, and approximately 80% of the drug was excreted through the urine and feces within 24 h of
administration (German and Aweeka, 2008; Li, 2012). Currently, a series of ARS derivatives (ARSs) with
improved pharmacological features are used in clinical treatment including artemether (ARM),
artesunate (ART), b-aminoarteether maleate (SM934), and dihydroartemisinin (DHA) (chemical
structures were shown in Figure 1). The half-lives of ARM (2–4 h), ART (< 1 h), DHA (∼1 h) are
in.org March 2020 | Volume 11 | Article 3801

https://www.frontiersin.org/articles/10.3389/fphar.2020.00380/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00380/full
https://loop.frontiersin.org/people/800905
https://loop.frontiersin.org/people/800905
https://loop.frontiersin.org/people/712332
https://loop.frontiersin.org/people/712332
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liuhong618@csu.edu.cn
https://doi.org/10.3389/fphar.2020.00380
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00380
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00380&domain=pdf&date_stamp=2020-03-31


Xia et al. Artemisinins Treatment in Kidney Disease
shorter (Krishna et al., 2004; German and Aweeka, 2008) and oral
intake represents a relatively safe route in the clinic.

In addition to decades of remarkable progress against malaria,
studies have demonstrated a variety of other pharmacological effects
beyond antimalarial, such as anti-virus, anti-neoplastic, anti-
inflammation as well as immunosuppressive effects (An J. et al.,
2017). The properties of ARSs have been intensively reviewed in
systemic lupus erythematosus, rheumatoid, arthritis, multiple
sclerosis, etc (Shi et al., 2015; Mu and Wang, 2018), while the
treatment of kidney disease has not been summarized. This review
will focus on the proposed therapeutic properties and mechanisms
of ARSs in kidney disease, and discuss the potential application of
ARSs as novel agents for future treatment.
SEARCH STRATEGY

Comprehensive literature searches for candidate studies were
undertaken in two English and three Chinese biomedical
databases from inception through February 2020. These
databases included PubMed, Springer, Chinese National
Knowledge Infrastructure, WanFang Med Online, and Chinese
Biomedical Databases. Searches were limited to studies in English
and Chinese. The following terms were used in the search:
“artemisinin,” “artemisinins,” “artesunate,” “dihydroartemisinin,”
“artemether,” “SM934,” “b-aminoarteether maleate,” “kidney,”
“renal,” “nephro,” “nephritis,” nephropathy.”
OVERVIEW OF RESEARCHES ON ARSs IN
RENAL DISEASE

The effects of ARSs were mainly studied on animal models and cells,
with two clinical studies targeting lupus nephritis (LN). In a
randomized, 5-year follow-up clinical trial for LN (Lu, 2002), the
treatment group (ARS 0.6 g/d and cordyceps 3–4 g/d) was reported
to improve 24 h urine protein, creatinine clearance rate, level of C3,
and was more effective than the control group (tripterygium
wilfordii polyglycosides tablets 1 mg/kg, three times a day and/or
baoshenkang tablets 150 mg, three times a day). A 2-month
Frontiers in Pharmacology | www.frontiersin.org 2
randomized trial had similar findings (Li et al., 2011), treatment
with ART (50 mg, twice a day) was reported to improve systemic
symptoms and reduce the immunological activity index than either
before treatment or the control group with tripterygium wilfordii
polyglycosides tablets (10 mg, three times a day and/or prednisone
0.5 mg/kg/d). However, these two studies were not blinded and
placebo-controlled, which may result in information bias, and
observations of larger samples are still lacking.

Table 1 summarized the characteristics of animal studies with
ARSs treatment, covering LN, adriamycin nephropathy (AN),
subtotal nephrectomy (SNx), IgA nephropathy (IgAN), diabetic
nephropathy (DN), AKI, unilateral ureteral obstruction (UUO),
pristine or lipopolysaccharide (LPS)-induced nephritis,
nephrotic syndrome (NS), and Heymann nephritis (HN). In
vitro cell models and in vivo animal models investigations for
ARSs efficacy on kidney disease involve various aspects including
oxidative stress, inflammation action, and immune response, we
will describe the effects of ARSs in sections below.
MECHANISM OF ARSs IN KIDNEY

Oxidative Stress Regulation of
Artemisinins
Oxidative stress is an important mediator in the development and
progression of CKD and AKI and its complications due to increased
production of reactive oxygen species (ROS) and diminished
antioxidant capacity (Ruiz et al., 2013). In the condition of a
surplus of ROS, ARSs were reported to exhibit an antioxidant
effect (Kim et al., 2014; Yang et al., 2018; Liu et al., 2019). In
addition, according to the characteristics of ARSs, tumor cells are
more vulnerable due to higher levels of iron (Robert et al., 2005) and
are more susceptible to further ROS insults induced by ARSs
(Hamacher-Brady et al., 2011; Efferth, 2017). Accordingly, ARSs
have the potential to treat kidney cancer, and the emergence of new
technologies such as ARS-based smart nanomedicine offers more
possibilities (Luo et al., 2019).

In Vitro
Receptor-interacting protein kinase 1 (RIP1) is verified to modulate
mitochondrial ROS production via excessive generation of
FIGURE 1 | Chemical structures of artemisinin and its derivatives.
March 2020 | Volume 11 | Article 380

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Xia et al. Artemisinins Treatment in Kidney Disease
TABLE 1 | Study characteristics of animal experiments in kidney disease.

Animal
model

Drug and dose Application
mode

Targets Reference

LN mice ARS (150 mg/kg/d) p.o. for 8 weeks ↓TNF-a, ↓IL-6 in serum; ↓NF-kB, ↓NF-kB p65, ↓TGF-b1 in
renal tissue

Wu X. et al., 2010

LN mice ARS (150 mg/kg/d) + prednisone
(3.225 mg/kg/d)

p.o. for 8 weeks ↑GRa, ↓GRb in PBMC; ↑P300/CBP in renal tissue Wu X. L. et al., 2011

LN mice ARS (5.55 mg/kg/d) + HCQ
(16.6 mg/kg/d)

p.o. for 8 weeks ↓Anti-dsDNA, ↓ANA, ↓IgG, ↓IFN-g, ↓TNF-a, ↑TGF-b1 in
serum; ↑KLF15, ↓NF-kB in renal tissue

Liang et al., 2018

LN mice ART (125 mg/kg/d) p.o. for 16 weeks ↓Anti dsDNA, ↓ANA, ↓MCP-1 in serum; ↓VEGF in renal tissue Jin et al., 2007; Jin et al., 2009;
LN mice ART (50 mg/kg/d) p.o. for 16 weeks ↓ICAM-1 in renal tissue Wang et al., 2010;
LN mice SM934 (10 mg/kg/d) p.o. for 4 weeks ↓IL-2, ↓IL-17, ↓IFN-g, ↓Anti-dsDNA IgG in serum; ↓STAT-1,

↓STAT 3, ↓STAT5, ↓CD3+B220+CD4-CD8- T cells, ↓Th1,
↓Th17, ↑Treg in splenocytes

Hou et al., 2011

LN mice SM934 (2.5, 5, 10 mg/kg/d) p.o. for 8 weeks ↓IL-6, ↓IL-10, ↓IL-17, ↓IL-21 in serum;
↑B cell, ↑germinal center B cells, ↓activated B cells, ↓plasma
cells in splenocytes; ↓Blimp-1, ↑BCL-6, ↓TLR7/9 in renal
tissue

Gui et al., 2019

LN mice DHA (5, 25, 125 mg/kg/d) p.o. for 10 d ↓NF-kB, ↓NF-kB p65 in renal tissue Dong et al., 2003
LN mice DHA (5, 25, 125 mg/kg/d) p.o. for 10 d ↓TNF-a in serum; ↓NF-kB, ↓NF-kB p65, ↑IkB-a in renal

tissue
Li et al., 2006

LN mice DHA (60 mg/kg/d); DHA (60 mg/
kg/d) +
Prednisolone (9 mg/kg/d)

p.o. for 8 weeks ↓Fractalkine, ↓NF-kB, ↓NF-kB p65 in renal tissue You et al., 2014

LN mice DHA (25, 50, 100 mg/kg/d) p.o. for 12 weeks ↑SIGIR, ↓TLR4/NF-kB in renal tissue Huang et al., 2015
AKI mice DHA (20, 40, 80 mg/kg) p.o. for 10 d

(pretreated)
↓MDA, ↑GSH, ↑SOD activity in renal tissue An Y. et al., 2017

AKI mice DHA (50 mg/kg/d) p.o. for 1 d ↑Occludin, ↓TNF-a in renal tissue Cheng et al., 2018
AKI mice DHA (20 mg/kg/d) p.o. for 3 d

(pretreated)
↓Apaf-1, ↓cleaved-caspase-3, ↓IL-1b, ↓IL-5, ↓IL-6, ↓IL-17A,
↓IFN-g, ↓TNF-a, ↓CXCL1, ↓MCP-1, ↓MIP-2 in serum; ↓NF-
kBp65, ↓MDA, ↓NO, ↑GSH, ↑CAT, ↑SOD activity in renal
tissue

Liu et al., 2019

DN rats ARS (300 mg/kg/d) i.p. for 3, 6 weeks ↓PDGF-B, ↓TIMP-2, ↑MMP-2, ↓PKC activation in renal tissue Zhang et al., 2014a; Zhang et al.,
2014b; Zhang et al., 2014c

DN rats ARS (300 mg/kg/d) i.p. for 4 weeks ↓DNA binding activity of NF−kB, ↓c-fos, ↓c-jun, ↓DNA binding
activity of AP-1 in renal tissue

Zhou et al., 2014a; Zhou et al.,
2014b; Zhou et al., 2014c

DN rats ARS (300 mg/kg/d) p.o. for 4 weeks Differentially gene expression profile Xiang et al., 2019
DN rats ART (10, 30 mg/kg/d) p.o. for 12 weeks ↓TLR4, ↓IL-8 in renal tissue Nie et al., 2015
DN rats ARM (670 mg/kg/d) p.o. for 12 weeks ↓H2O2, ↑PGC-1a in serum and urine; ↑mitochondrial MPC

content in renal tissue
Han et al., 2019

IgAN rats ARS (16.7 mg/kg/d) + HCQ
(16.7 mg/kg/d);
ARS (8.3 mg/kg/d) + HCQ (25
mg/kg/d)

p.o. for 90 d ↓Deposition of IgA immune complexes and C3 in renal tissue Lin et al., 2016

IgAN rats ARS (33.33 mg/kg/d); HCQ
(33.33 mg/kg/d); AH (16.65 mg/
kg/d, 33.33 mg/kg/d, 66.66 mg/
kg/d, ARS: HCQ=1:3)

p.o. for 4 weeks ↓IL-4, ↓IL-17, ↑IFN-g, ↓Th2, ↓Th17, ↑Th1, ↑Treg proportion in
peripheral blood and spleen; ↓deposition of IgA immune
complexes and C3 in renal tissue

Bai et al., 2019

IgAN rats ART (25, 50 mg/kg/d) p.o. for 4 weeks ↓MCP-1 in renal tissue Mi et al., 2009
IgAN rats ART (25, 50 mg/kg/d) p.o. for 4 weeks ↓IL-2, ↓IL-6 in serum Ma et al., 2009
UUO mice ART (25, 50 mg/kg/d) p.o. for 3, 7, 14,

21 d
↓a-SMA, ↓CTGF in renal tissue Mi et al., 2007

UUO mice ART (25, 50 mg/kg/d) p.o. for 3, 7 d ↓NF-kB p65, ↑IkB-a, ↑Smad7 in renal tissue Ma et al., 2010
UUO mice ART (15, 30, 60 mg/kg/d) p.o. for 14 d ↓Fibronectin, ↓collagen I, ↓a-SMA, ↑E-cadherin, ↓USAG-1,

↑BMP-7 in renal tissue
Cao et al., 2016

UUO mice DHA (40 mg/kg/d) p.o. for 14 d ↓Collagen I, ↓collagen III, ↓Fibronectin,
↓TGF-b1, ↓PCNA, ↓a-SMA, ↓P13k/AKT in renal tissue

Zhang et al., 2019

NS rats ART (5 mg/kg/d) i.p. for 28 d ↓Triglyceride, ↑albumin in serum; ↓polymorphonuclear and
mononuclear cells infiltration in renal tissue

Razavi et al., 2007

Nephritis
mice

DHA (20 mg/kg/d) i.p. for 48 h ↓TNF-a, ↓IL-6 in serum Wu P. et al., 2011

Nephritis
mice

ART (28.8 mg/kg/d) p.o. for 6 weeks ↓TNF-a, ↓IL-6 in serum; ↓a-SMA, ↓TLR4, ↓MyD88, ↓NF-kB
p65, ↓TGF-b1, ↓caspase-3 in renal tissue

Wan and Li, 2017

AN rats ARS (150 mg/kg/d) p.o. for 4 weeks ↑Nephrin, ↑podocin in renal tissue Wu et al., 2014
HN rats ARS (100 mg/kg/d) p.o. for 4 weeks ↑Podocyte, ↑nephrin, ↑podocin in urine Liu et al., 2017

(Continued)
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mitochondrial superoxide and depletion of GSH (Zhou et al., 2017).
ART was reported to induce ROS production and cell death in
human renal carcinoma cells, while pretreatment with RIP1
inhibitor or knockdown of RIP1 reverted ART-induced
cytotoxicity (Chauhan et al., 2017).

In Vivo
Pretreated DHA or ARS could ameliorate oxidative stress in AKI
mice by restoring malonyl dialdehyde (MDA), nitric oxide (NO),
glutathione peroxidase (GSH), catalase (CAT), and superoxide
dismutase (SOD) activity in the kidney (An Y. et al., 2017; Liu
et al., 2019). In addition, ARM was shown to reduce the serum
H2O2 level and elevated renal cortical PGC-1a expression, but it did
not exert obvious effects on CAT and SOD expression in the renal
cortex in DN (Han et al., 2019). In normal rats without oxidative
stress, orally taken artemether-lumefantrine (1.14/6.86 mg/kg/d,
twice a day) or artesunate-amodiaquine (2.86/8.58 mg/kg/d, twice
a day) for 7 d did not apparently alter renal antioxidant status
compared with the control. Although there was no significant
alteration in kidney, liver, lung, and brain weights, the artesunate-
amodiaquine group showed cardiotoxicity (decreased heart weight
by 27.2% compared with control) (Otuechere et al., 2012).

To date, ARSs could trigger cell death by inducing oxidative
stress, and could also resist oxidation to reduce cell damage.
Detailed understanding of the molecular mechanisms and the
events by which ARSs regulate oxidative stress to control cellular
processes in different cells remain to be explored.

Anti-Inflammation Effect of ARSs
Inflammation plays a pivotal role in the pathophysiological
processes of kidney diseases and associated with renal injury
(Ernandez and Mayadas, 2016). The anti-inflammatory effects of
ARS have been widely recognized, including repression of nuclear
factor-kB (NF-kB), toll-like receptors (TLRs), signal transducer and
activator of transcription (STAT), and phosphatidylinositol-3-
kinase (PI3K)/protein kinase B (AKT) activity (Aldieri et al.,
2003; Ho et al., 2014; Shi et al., 2015), which are key factors
Frontiers in Pharmacology | www.frontiersin.org 4
mediating immune-inflammatory response and are associated
with kidney disease progression (Ruiz-Andres et al., 2016).

In Vitro
ART ameliorated high glucose-induced injury by suppressing
TLR4/NF-kB/nod-like receptor protein 3 (NLRP3) inflammasome
pathway in rat glomerular mesangial cell (Sun et al., 2018).

In Vivo
For LN mice, it has been reported that treatment with ARSs could
decrease interferon-gamma (IFN-g), tumor necrosis factor-alpha
(TNF-a), interleukin-6 (IL-6) in serum, and blocked intercellular
adhesion molecule-1 (ICAM-1), fractalkine, NF-kB signaling
pathway in renal (Dong et al., 2003; Li et al., 2006; Wang et al.,
2010; Wu X. et al., 2010; You et al., 2014; Liang et al., 2018). A
similar effect was observed in the nephritis and septic AKI models
(Wu P. et al., 2011; Wan and Li, 2017; Liu et al., 2019). Also, ARSs
were reported to inhibit disease progression via downregulating
renal monocyte chemoattractant protein 1 (MCP-1) expression in
LN, IgAN, and septic AKI models (Mi et al., 2009; Jin et al., 2009;
Ma et al., 2009; Liu et al., 2019). In addition, ARSs were proved to
alleviate the tubule-interstitial inflammation and fibrosis by
inhibiting NF‐kB and mothers against decapentaplegic homolog
(Smad) signaling pathway in SNx rats, Heymann nephritis rats and
UUOmodels (Ma et al., 2010; Li et al., 2015;Wen et al., 2019). ARSs
were also reported to reduce diabetic kidney damage by inhibiting
TLR4, IL-8, and the DNA-binding activity of NF−kB in renal (Zhou
et al., 2014a; Nie et al., 2015).

These data indicate that ARSs act as anti-inflammatory drugs
at multiple components of inflammation signals and have a
potential therapeutic effect on disease activity.

Immunoregulatory Effect of ARSs
Under physiological conditions, the kidney contributes to
immune homeostasis, assist in the removal of metabolic wastes
and toxins, and maintain peripheral tolerance. The disruption of
immune homeostasis an autoimmune response, such as the
occurrence of LN and IgAN, resulting in the loss of renal
TABLE 1 | Continued

Animal
model

Drug and dose Application
mode

Targets Reference

HN rats SM934 (12.5, 25 mg/kg/d) p.o. for 28 d ↑Podocin, ↑nephrin, ↑desmin, ↓TGF-b1, ↓Smad2/3
phosphorylation, ↑Smad7, ↓EMT in renal tissue

Li et al., 2015

SNx rats ARS (100 mg/kg/d) p.o. for 16 weeks ↓TGF‐b1, ↓FSP1, ↓CTGF, ↓NLRP3 activation, ↓ASC, ↓NF‐kB
signaling pathway in renal tissue

Wen et al., 2019
Marc
LN, lupus nephritis; AN, adriamycin nephropathy; SNx, subtotal nephrectomy; IgAN, IgA nephropathy; DN, diabetic nephropathy; AKI, acute kidney injury; UUO, unilateral ureteral
obstruction; NS, nephrotic syndrome; HN, Heymann nephritis; ARS, artemisinin; DHA, dihydroartemisinin; ART, artesunate; ARM, artemether; HCQ, hydroxychloroquine; AH, artemisinin
combined with hydroxychloroquine; TNF-a, tumor necrosis factor alpha; BAFF, B cell activating factor; GRa, glucocorticoid receptors alpha; GRb, glucocorticoid receptors beta; IFN-g,
interferon-gamma; IkB-a, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha; Apaf-1, apoptotic protease activating factor-1; CXCL1, chemokine (C-X-C
motif) ligand 1; IL-1b, interleukin-1 beta; IL-2, interleukin-2; IL-6, interleukin-6; IL-5, interleukin-5; IL-17A, interleukin-17A; KLF15, Krüppel-like factor 15; MCP-1, monocyte chemoattractant
protein 1; MyD88, myeloid differentiation primary response 88; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NF-kB p65, nuclear factor-kB protein 65; P300,
EP300 or E1A binding protein p300; CBP, CREB binding protein, STAT-1,-3,-5, signal transducer and activator of transcription-1,-3,-5, TGF-b1, transforming growth factor beta 1; Th1, T
helper 1 cells; Th2, T helper 2 cells; Th17, T helper 17 cells; Treg, T regulatory cell; TLR4, toll-like receptor 4; anti-dsDNA, anti-double-stranded DNA; ANA, antinuclear antibody; FSP1,
fibroblast specific protein; CTGF, connective tissue growth factor; NLRP3, nod-like receptor protein 3; ASC, apoptosis-associated speck-like protein containing CARD; MIP-2,
macrophage inflammatory protein-2; MDA, malonyldialdehyde; NO, nitric oxide; GSH, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; PCNA, proliferating cell nuclear
antigen; a-SMA, a-smooth muscle actin; PI3K/AKT, phosphatidylinositol-3-kinase/protein kinase B; USAG-1, uterine sensitization-associated gene-1; BMP-7, bone morphogenetic
protein-7; PGC-1a, peroxisome proliferator-activated receptor g coactivator 1a; MPC, mitochondrial pyruvate carrier; EMT, epithelial-mesenchymal trans; Smad-2,-3,-7, mothers against
decapentaplegic homolog-2,3,7. significance of ↓ and ↑ are at the 0.05 level.
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function (Tecklenborg et al., 2018). T cells, B cells, and
macrophages, as well as cytokines, are involved in immune
regulation and are activated to varying degrees depending on
disease pattern. The activated pathogenic cells are more likely to
lead the breakdown of the peroxide bridge structure of ARS (Shi
et al., 2015).

In Vitro
Chemokine ligand 2 (CCL2) and single immunoglobulin IL-1-
related receptor (SIGIRR) are involved in the inflammatory
pathogenesis of LN, DHA was reported to inhibit CCL2
secretion and increase SIGIRR expression and protect LPS-
induced HK-2 inflammation (Huang et al., 2015).

In Vivo
ARS combined with prednisone was reported to increase the
sensitivity of glucocorticoid compared to the group
administrated glucocorticoid only in LN (Wu X.L et al., 2011),
which may offer a possibility of alleviating the common side
effects of existing glucocorticoids or immunosuppressants.
SM934 was shown to protect LN mice by inhibiting both Th1
cells and Th17 cells responses (Hou et al., 2011) and reduce the
number of activated B cells by inhibiting the expression of TLR7/
9 (Gui et al., 2019). SIGIRR, as an inhibitor of TLR signal
transduction, could be elevated by DHA. This might be a
negative immune-modulating way for DHA to slow the
progression of LN (Huang et al., 2015). In addition, ARS
combined with HCQ was shown to improve IgAN rats
immunity (Lin et al., 2016), possibly via inhibiting the
differentiation of Th2 and Th17 cells while promoting Th1 and
Treg cells differential (Bai et al., 2019).

All these studies suggest that ARS family drugs are able to
perform immunosuppressive functions primarily through
suppressing the activation of pathogenic immune cells and have a
regulatory effect on autoimmune diseases.

Other Effects
Anti-Fibrosis
Myofibroblasts can be differentiated by the epithelial-mesenchymal
transformation (EMT) process, and are primarily responsible for
excessive extracellular matrix production. TGF-b1, smooth muscle
actin (a-SMA) and connective tissue growth factor (CTGF),
metalloprotease (MMP), bone morphogenetic protein (BMP) are
all considered to be major regulators of EMT and renal fibrosis (Liu
et al., 2018). For UUO, both in vitro and in vivo study showed anti-
fibrosis effect of ARSs related to the inhibition of EMT, fibroblast
proliferation, and collagen synthesis (Zhang et al., 2017). And
upregulating BMP-7 and downregulating BMP antagonist-uterine
sensitization-associated gene-1 (USAG-1) (Cao et al., 2016), or
mitigating CTGF, a-SMA (Mi et al., 2007), or PI3K/AKT
pathway (Zhang et al., 2019) are all possible mechanisms.

Anti-Proliferation
Glomerular mesangial cell proliferation is a common pathological
change of glomerular disease, effective control of mesangial cell
proliferation is of great clinical significance. ARSs were reported to
exert an inhibitory effect on the proliferation of rat mesangial cells
Frontiers in Pharmacology | www.frontiersin.org 5
(MA et al., 2007a; Ma et al., 2007b), possibly by inducing apoptosis
and downregulating inflammatory cytokines TNF-a and IL-6
(Wang et al., 2016) or enhance caspase-3 activity (Wu X.L. et al.,
2010). Our team recently demonstrated that DHA could inhibit the
proliferation of aIgA1-induced human mesangial cells through the
mTOR signaling pathway in vitro (Xia et al., 2020). In addition,
ARSs were found to inhibit renal carcinoma cell proliferation by
inhibiting the expression of fascin (Zhang et al., 2018), meanwhile
inhibiting colony formation, migration, invasion, and tumorigenesis
(Yu et al., 2019).

Regulate Glomerular Filtration
Glomerular permeability is regulated by the glomerular filtration
barrier (GFB), which composed of glomerular endothelium, the
glomerular basement membrane, and the podocyte layer. The
dysfunction of intercellular adhesion and connection will result in
the loss of the structural and functional integrity of GFB and the
occurrence of proteinuria (Mehta and Malik, 2006). ART was
proved to reduce glomerular permeability and improve
proteinuria in LN mice by inhibiting vascular endothelial growth
factor (VEGF) (Jin et al., 2007). Studies also showed that DHA
ameliorated the hyperpermeability of GFB by inhibiting TNF-a and
maintaining occludin expression (Cheng et al., 2018) or elevation of
vascular endothelial (VE)-cadherin expression in endothelial cells
(Li et al., 2018). In addition, ARS was observed to attenuate
podocyte effacement and fusion via nephrin and podocin
regulation in adriamycin-induced nephropathy (Wu et al., 2014),
and reduce the shedding of podocyte and excretion of nephrin and
podocin in Heymann nephritis (Liu et al., 2017).

Anti-Virus
ARS was shown to be effective in inhibiting polyomavirus BK
replication in primary human kidney cells (Sharma et al., 2014).

Renal-Protective.
ART was reported to ameliorate proteinuria and suppress the
progression of NS (Razavi et al., 2007). Studies also showed that
ARS could relieve renal lesions in DN rats, through inhibiting
platelet-derived growth factor-B (PDGF-B) expression (Zhang et al.,
2014a), metalloproteinase tissue inhibitor-2 (TIMP-2) (Zhang et al.,
2014b), spatiotemporal dynamics activation of protein kinase c
(PKC) (Zhang et al., 2014c) and its downstream c-fos and c-jun
(Zhou et al., 2014b), and their heterodimer activator protein (AP-1)
(Zhou et al., 2014c). The results from the high-throughput sequence
from DN rats treated with ARS may identifying promising targets
for future treatment (Xiang et al., 2019). In addition, kidney
function was found to be improved in cases of malarial
nephropathy after treatment with ARSs (Ezzedine et al., 2007;
Calitri et al., 2014; Gleeson et al., 2019).
INTERACTION, SAFETY, AND SIDE
EFFECTS

The toxicity of ARSs in cell culture, animals (mice, rats, rabbits,
dogs, monkeys), and human clinical trials were well described
(Efferth and Kaina, 2010). Large clinical studies and meta-
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analyses did not show serious side effects, despite mild and self-
limited effects including mild nausea, vomiting, and diarrhea
(Mssusa et al., 2016). Individual patients may appear transient
transaminase elevated and mild rash. Non-hematological side
effects include mild hepatitis, neurological, renal, cutaneous, and
cardiac manifestations were uncommon (Roussel et al., 2017).
Rare severe adverse events include prolongation of the QTc
interval and cardiac arrhythmias (in LiverTox, 2012).

In addition, animal studies showed that artesunate can reduce
glomerular filtration rate, increase renal blood flow, and has
certain organ toxicity (Campos et al., 2001; Otuechere et al.,
2012), while in a clinical study, liver function, kidney function,
and routine blood tests remained normal in most patients treated
with artesunate (von Hagens et al., 2017). A systematic review
and meta-analysis showed that the use of ARS-based
combination therapy in adults, children, and pregnant women
in the 2nd or 3rd trimester was relatively safe (Kovacs et al.,
2016). The drug interactions of ARSs are relatively unknown,
more rigorous and comprehensive studies of interaction
mechanisms are needed, as well as monitoring the safety of
ARSs, especially concerning the genotoxicity and embryotoxicity
(Amorim et al., 2013).
CONCLUSION AND FUTURE DIRECTIONS

Much knowledge has been gained about the antimalarial drugs in
recent years, and more attention has been paid to ARSs
application for renal damages. Many years of laboratory
applications and research proved that ARSs have excellent
anti-inflammatory and immunoregulatory functions. It is also
Frontiers in Pharmacology | www.frontiersin.org 6
a good regulator of the balance between oxidation and oxidation
resistance. The regulation of the glomerular barrier highlights a
unique aspect of the use of ARSs in kidney disease.

Despite accumulating evidence on the use of ARSs, the
literature on its potential as a treatment for renal disease is still
insufficient due to the lack of randomized controlled clinical
trials. The additive effects of ARSs in combined administration
with immunosuppressants and the structure-activity relationship
need to be further clarified. Investigation of the improved
properties of ARSs analogs also facilitates the discovery of
novel drug targets for kidney disease (Santos et al., 2015; Zuma
et al., 2016; de Lange et al., 2018).
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