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Dynamic Control of Topological 
Defects in Artificial Colloidal Ice
A. Libál1,2, C. Nisoli2, C. Reichhardt2 & C. J. Olson Reichhardt2

We demonstrate the use of an external field to stabilize and control defect lines connecting topological 
monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units 
mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can 
grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing 
forces can cause the defect line to ratchet in either direction, making it possible to precisely position the 
line at a desired location. Such manipulation could be employed to achieve mobile information storage 
in these metamaterials.

Systems mimicking the behavior of spin ice have been studied experimentally and theoretically for nanomagnetic 
islands1–11, superconducting vortices12–14, and paramagnetic colloidal particles on photolithographically etched 
surfaces13, 15–17. In each of these particle-based artificial ice systems, the collective lowest energy state is embedded 
into an ice-manifold where all vertices obey the “2-in/2-out” ice rule: two particles are close to each vertex and 
two are far from it. It is possible to write information into such a manifold by using an MFM tip11 or an optical 
tweezer15 to generate topological defects in the ground state arrangement of the spins. These defects consist of 
vertices that violate the ice rule and correspond to 3-in/1-out or 3-out/1-in configurations. In magnetic spin ices, 
such defects are called magnetic monopoles18. In colloidal artificial ice, the defects are not magnetically charged 
but they still carry a topological charge19. This implies that they can only appear in pairs separated by a line of 
polarized ice-rule vertices, and disappear by mutual annihilation. In a square ice geometry, such defect lines are 
themselves excitations and thus possess a tensile strength20, 21 that linearly confines the topological charges and 
can drive them to mutual annihilation, restoring the ground state configuration.

In this paper we show how an additional biasing force can be used to stabilize, control, and move defect lines 
written on the ordered ground state of a square colloidal artificial spin ice system. To make contact with recent 
experimental realizations of this system15, 22, we employ a gravitational bias that can be implemented experi-
mentally by tilting the effectively two-dimensional (2D) sample. We consider the interplay of two completely 
separate control parameters: the tilt that controls the biasing and the perpendicular magnetic field that controls 
the inter-particle repulsive magnetic forces, as in ref. 15. Adjusting these parameters gives us precise control over 
the energetics of the system and makes it possible to control the speed of the shrinking or expansion of a defect 
line. Then, using asymmetrical ac biasing forces and taking advantage of the different mobility of the 1-in and 
3-in defects in colloidal ice, we show that the defect line can be made to ratchet, or undergo a net dc motion, in 
the direction of either of its ends.

The control introduced by the biasing force permits locally stored, compact information to be written into the 
artificial ice metamaterial by a globally applied force, making it possible to create effective information storage 
since the write/read heads need to be situated only at the edge of the memory block. Also, by moving localized 
packets of information with a global force, it is possible to parallelize the information storage and retrieval proce-
dures, increasing the speed in both cases.

Results
Model and its simulation.  In Fig. 1, we show schematics of our system illustrating the interplay between the 
interparticle and biasing forces. The four pinning sites in Fig. 1(a) represent photolithographically etched grooves 
in the surface, each of which acts as a gravitational double well with a distance of d = 10 μm between the two 
minima. At the center of the pinning site is a barrier of height h = 0.87 μm. Four paramagnetic colloidal particles 
are each trapped in the gravitational wells by the combination of their own apparent weight (W = (ρ − ρliquid)gV) 
and the normal force from the wall, where ρ is the density and V is the volume of an individual particle, ρliquid is 
the density of the surrounding liquid, and g is the gravitational constant. A biasing force is introduced by tilting 
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the whole ensemble by α degrees with respect to the horizontal. This creates a biasing force W sin(α) equal to the 
tangential projection of the apparent weight of the particles, providing us with two independent external tuning 
parameters: the tilt of the surface and the external magnetic field.

The direction of the external magnetic field 
→
B  is indicated by a light arrow in Fig. 1(a). This field is always 

perpendicular to the sample plane, and it induces magnetization vectors → ∝
→

m B  parallel to itself in each of the 
paramagnetic particles. As a result, the particles repel each other with an isotropic force Fpp ∝ B2/r4 that acts in the 
plane. This favors arrangements in which the particles maximize their distance from each other. For an isolated 
vertex the lowest energy configuration is the 4-out arrangement shown in Fig. 1(a); however, in a system of many 
coupled vertices, such an arrangement places an occupancy burden on the neighboring vertices. As a result, a 
multiple-vertex arrangement stabilizes in the low energy ice-rule obeying state illustrated in Fig. 1(c) that is com-
posed of 2-in and 2-out ground state vertices. The four vertex types we observe are shown in Fig. 1(b), where the 
ground state vertex is colored gray, the biased ice-rule obeying vertex is green, the 1-in vertex is blue, and the 3-in 
vertex is red. The 1-in and 3-in monopole states carry an extra magnetic charge and serve as the starting and 
termination vertices for defect lines. It is also possible for 0-in [Fig. 1(a)] and 4-in (not shown) vertices to form, 
but they are highly energetically unfavorable and do not play a role in our defect line study. For small bias (small 
α), the ground state vertex arrangement of Fig. 1(c) is favored, while for large enough α, the system switches to 
the biased 2-in/2-out arrangement shown in Fig. 1(d).

Defect line motion.  Using a 50 × 50 vertex square spin ice sample containing 5000 pinning sites and parti-
cles, we initialize the system in the ground state by placing the particles inside the appropriate substrate minima. 
We then perturb this ground state by introducing a defect line to it, achieved by flipping the effective spins along 

Figure 1.  Schematics of the system. (a) A single vertex is surrounded by four double-well pinning sites. Labels 
indicate the distance d between the minima, the barrier height h, the biasing tilt angle α, the magnetic field B, 
the magnetization m it induces in the paramagnetic particles, and the pairwise magnetic repulsive forces Fpp 
acting in the sample plane. W is the weight of the particle, and the tangential component W sin(α) serves as a 
biasing force. (b) Illustration of four possible vertex arrangements with a nonphysical color placed at the vertex 
center to indicate the vertex type. Ground state (GS, gray), biased state (green), 1-in state (blue), and 3-in state 
(red). (c) The unbiased ground state (gray) in a small segment of the sample for a small bias α. (d) The biased 
ground state (green) in a small segment of the sample for a large bias α.
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a diagonal line connecting neighboring vertices. The defect line is composed of a pair of 1-in and 3-in vertices 
connected by a series of biased ground state vertices. All four possible orientations of the defect line are illustrated 
in Fig. 2(a). We focus on the dynamics of the defect line in the center of the panel; all other lines show the same 
behavior when the direction along which the tilt α is applied is rotated appropriately.

In Fig. 2(b), to illustrate the contraction of the defect line in the absence of a biasing force when magnetic 
fields B of different strengths are applied to the system, we plot the positions = +R x y1 1

2
1
2  and = +R x y3 3

2
3
2  

of the endmost 1-in and 3-in vertices, respectively, as a function of time. We can distinguish several stages of the 
contraction process. For very low B, particle-particle interactions are very weak and the defect line remains static, 
as shown by the constant values of R1 and R3 for B = 10 mT. For small fields in the range of 12 mT < B < 16 mT, the 
3-in end of the defect contracts while the 1-in end of the defect remains static, as shown for B = 12 and 14 mT. For 
16 mT ≤ B ≤ 18.5 mT, both ends of the defect contract, as illustrated for B = 16, 17, 18, and 18.5 mT. For 
B > 18.5 mT, the defect line cannot contract as fast as the rate dictated by the field, and as a result the line breaks 
up into 1-in/3-in vertex pairs along its length. In a narrow range of fields just above 18.5 mT, pair formation 
occurs only near the lower mobility 1-in end of the defect line, since only this end of the line cannot keep up with 
the contraction speed. At slightly higher fields, the 3-in end of the defect line also lags behind the contraction 
speed and nucleation of 1-in/3-in pairs occurs along the whole length of the line. In this regime, the defect line 
shrinks by eliminating the small lines into which it has broken instead of by a step-by-step contraction along its 
length. Nucleation events that occur close to the end of the line induce sudden large jumps in R1 and/or R3 in 
Fig. 2(b). Here, the shrinking process eliminates the short segment at the end of the defect line, causing a sudden 
change in identity of the endmost vertex, which shifts the location of R1 or R3 to the end of the surviving portion 
of the defect line. The jumps follow the nucleation events after a delay corresponding to the amount of time 
required for the endmost small line to annihilate by having its two ends contact each other.

We determine the velocity v1(3) of the two defect ends from a linear fit of the R1(3)(t) curves, and plot v1 and v3 
versus B in Fig. 2(c). For B < 15 mT only the 3-in end moves, as illustrated in Fig. 2(d). Both ends are mobile for 
15 mT ≤ B ≤ 18.5 mT, but v3 > v1, as shown in Fig. 2(e). For B > 18.5 mT, defect line fracturing and spontaneous 
1-in/3-in pair creation along the defect line occur, as illustrated in Fig. 2(f).

Naively one would expect both ends of the defect line to have the same mobility, v1 = v3, as occurs in magnetic 
spin ices. To understand the difference between v1 and v3, note that although in magnetic spin ice the 1-in and 
3-in vertices have the same energy, in colloidal spin ice they do not. In dipolar magnetic artificial spin ice8, frus-
tration occurs at the vertex level and consists of a frustration of the pairwise interaction. In contrast, in colloidal 
spin ice the frustration is a collective effect arising from the fact that topological charge conservation prevents 
vertices from adopting the lowest single-vertex energy configurations, the 0-in or 1-in states19. Thus the colloidal 
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Figure 2.  Defect line images and motion. (a) The four possible arrangements of the defect lines in a portion of 
the sample. Red: 3-in vertex; blue: 1-in vertex; green: biased ground state vertex; gray: unbiased ground state 
vertex. (b) The position R1 of the 1-in (bottom lines) and R3 of the 3-in (top lines) ends of a defect line vs time at 
magnetic fields B = 20, 19.2, 19, 18.85, 18.8, 18.5, 18, 17, 16, 14, 12, and 10 mT, from left to right. (c) The velocity 
v1 (blue) and v3 (red) of the defect ends calculated with a linear fit vs B. (d–f) Illustrations of the different modes 
of defect line contraction in a portion of the sample. Open circles indicate the original positions of the 3-in and 
1-in ends, while closed circles show the final positions. (d) Contraction of only the 3-in end. (e) Contraction of 
both ends. (f) Contraction of both ends accompanied by nucleation of new defect vertices along the defect line.
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ice-manifold is composed of vertices that are not, by themselves, the lowest energy vertices, yet that produce the lowest 
energy manifold19.

To illustrate this point, in Table 1 we list the energy of each possible vertex configuration in our colloidal spin 
ice at an external field of B = 16 mT. The table shows that for the defect line to shrink by moving its 1-in end, the 
1-in vertex must undergo an energetically unfavorable transformation into a ground state vertex while a biased 
vertex makes an energetically favorable transformation into a 1-in vertex. In contrast, when the 3-in end moves, 
a 3-in vertex undergoes an energetically favorable transformation into a ground state vertex while a biased vertex 
makes an energetically unfavorable transition to a 3-in vertex. The total energy gain is equal to the transformation 
energy of changing a biased vertex into a ground state vertex in each case, but the initiating transition is energet-
ically favorable for the 3-in end and unfavorable for the 1-in end, so that v3 > v1.

Taking into account the overdamped dynamics of the system, the mechanism for the asymmetry in v1 and v3 
can be understood more clearly by considering the forces acting on an individual particle. During the transition 
of the particle from one trap minimum to the other, both the local force, given by Fpp in Eq. (1), and the substrate 
force, given by Fs in Eq. (1), depend on the position r  of the particle in the trap. A contraction of the defect line 
can occur when the local force is large enough to overcome the substrate force, Fpp > Fs. For simplicity, consider 
Fpp

c
,1 and Fpp

c
,3, which are the projections of the local forces acting on the particle parallel to the trap axis for con-

traction of the defect line at the 1-in or 3-in end, respectively. As shown schematically in Fig. 3, it is clear that at 
the beginning of the switching transition, ≈F F2pp

c
pp
c

,3 ,1 since the repulsive force acting on the switching particle 
is produced by two particles at the 3-in end but by only one particle at the 1-in end. As a result, v3 > v1.

The local forces βFpp
c

, , where β = 1, 3, depend quadratically on the applied magnetic field, allowing us to write 
=β βF k Bpp

c
,

2 with <k kc c
1 3 . For small enough βFpp

c
, , there is a position r  at which <βF r F r( ) ( )pp

c
s, . Writing 

=F F r( )strap , we see that when B is small enough, both Fpp,1 and Fpp,3 are smaller than Ftrap and v1 = v3 = 0, giving 
a stable (S) defect line. When < <F k B F k/ /c c

trap 3
2

trap 1 , v3 > 0 but v1 = 0 as in Fig. 2(d), producing a one-sided slow 
contraction (SC3) state. For >B F k/ c2

trap 1 , v3 > 0 and v3 > 0 as in Fig. 2(e), giving two-sided slow contraction (SC). 
There is an even higher critical value for B above which the local forces acting on the particles within the defect line 
exceed Ftrap, permitting the line to disintegrate via the nucleation of monopole-antimonopole couples.

Effect of biasing force.  If we apply a biasing force Fb along a diagonal direction, as shown in Fig. 1(a), we 
can change the energy balance between the ground state and biased ground state vertices. At sufficiently large 

=F Fb b
0, the biased and ground state vertices have the same energy so the defect line is stable and does not con-

tract. For >F Fb b
0, the biased state becomes energetically more favorable than the ground state and the defect line 

Vertex Type Particle Configuration Energy [10−18 J]

0-in 0 0 0 0 (×1) 10.007

1-in 0 0 0 1 (×4) 15.568

ground state 0 1 0 1 (×2) 24.727

biased 2-in 0 0 1 1 (×4) 32.905

3-in 0 1 1 1 (×4) 53.837

4-in 1 1 1 1 (×1) 86.542

Table 1.  Magnetostatic energy for each vertex type at B = 16 mT. An example configuration for each vertex is 
listed. “1” (“0”) indicates a colloid close to (far from) the vertex and (×n) indicates that n different equivalent 
configurations can be obtained by rotation.

Figure 3.  Schematic showing the forces that are responsible for contracting and extending the defect line. The 
1-in and 3-in ends of the line are marked blue and red, respectively, while the biased ground state vertices along 
the defect line are marked green. Particle-particle forces that act to extend (e, green lettering and arrows) or 
contract (c, red lettering and arrows) the defect are marked for the 1-in end, Fpp

e
,1 and Fpp

c
,1, and for the 3-in end, 

Fpp
e

,3, Fpp
c

,3.
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begins to grow. A very high biasing force causes defect lines to nucleate spontaneously and spread throughout the 
system until every vertex has switched to the biased state. In Fig. 4(a) we plot the time-dependent position of the 
1-in and 3-in ends of a defect line at different biasing forces. For high Fb, we find a fast contraction (FC) in which, 
in addition to the contraction of the line at each end, we observe spontaneous nucleation of 1-in/3-in vertex pairs 
along the line that speed up the contraction. At very large |Fb|, we observe a global nucleation (GN) of 1-in/3-in 
pairs that spontaneously produce defect lines in the bulk which propagate through the system until the entire 
sample reaches a biased ground state. This process appears after 98 seconds in the Fb = 1.1 sample in Fig. 4(a), 
where R3 suddenly drops from R3 = 2 to R3 = 1.4. At larger values of Fb, the nucleation process occurs more rap-
idly. In Fig. 4(b) we quantify the line contraction by plotting the total number Nbiased of biased ground state verti-
ces in the system. This measure shows the shrinking, stabilization, and growth of defect lines for different biasing 
forces, and can also capture the behavior of the system when spontaneous nucleation comes into play, either along 
the defect line in the case of fast contraction, or everywhere in the sample in the GN regime.

The interplay between the particle-particle interactions and the biasing force produces a rich phase diagram, 
shown in Fig. 4(c) as a function of Fb versus B. Consider the effects of Fpp

c
,1 and Fpp

c
,3 in the presence of a stabilizing 

biasing force Fb. The 1-in end is stabilized when > −F F Fb pp
c

,1 trap. Thus, the SC3-SC transition follows the line 
= −F k B Fb

c
1

2
trap. Similarly, the 3-in end is stabilized when > −F F Fb pp

c
,3 trap, so the SC3-S transition can be 

described by = −F k B Fb
c
3

2
trap, keeping in mind that <k kc c

1 3 .
If Fb is large enough, rather than merely stabilizing the defect line it can cause the line to grow. Figure 4(c) 

shows regimes of one-sided slow expansion (SE3) on only the 3-in end, as well as slow expansion (SE) on both 
ends of the defect line. We introduce =F k Bpp

e e
,3 3

2 and =F k Bpp
e e

,1 1
2, which are the forces acting on the particles 

that drive the extension rather than the contraction of the 3-in and 1-in ends, respectively. An elongation of the 
defect line on the 3-in side occurs when > −F F Fb pp

e
trap ,3, so that = −F F k Bb

e
trap 3

2 describes the S-SE3 transi-
tion. Similarly, = −F F k Bb

e
trap 3

2 describes the SE3-SE transition line. For extreme values of Fb in Fig. 4(c), the 
biasing force is so strong that the behavior cannot be described in terms of one-body motion. Instead, the whole 
sample switches to the biased state by global nucleation of 1-in/3-in vertex pairs and the spreading of defect lines 
(GN).
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Figure 4.  Biased systems. (a) The positions R1 (bottom lines) and R3 (top lines) of the ends of a defect line vs 
time in a sample with B = 16 mT for varied biasing forces Fb = −0.3, −0.27, −0.25, −0.24, −0.2, −0.1, 0 (thick 
light blue line), 0.1, 0.2, 0.3, 0.5 (thick green line), 0.7, 0.8, 0.9, 1.0, and 1.1, from left to right. (b) Nbiased, the 
number of vertices in the biased ground state, vs time in the same system for the same biasing forces as in panel 
(a), Fb = −0.3, … 1.1 from left to right. (c) Phase diagram as a function of Fb vs B showing the different phases 
of defect line contraction and expansion. Dark blue: Global nucleation of 1-in/3-in and biased ground state 
vertices (GN). Medium blue: Fast contraction with nucleation of 1-in/3-in vertex pairs along the defect line 
(FC). Light blue: Slow contraction on both ends of the defect line (SC). Light green: Slow contraction of only the 
3-in end (SC3). Dark green: Stable defect string (S). Olive: Slow expansion of only the 3-in end (SE3). Yellow: 
Slow expansion on both ends of the line (SE). Red: Global nucleation of 1-in/3-in and biased ground state 
vertices (GN). The arrows indicate possible biasing force combinations that can be applied in order to generate 
a forward or backward ratcheting defect line. The series of white circles indicate the values of Fb = −0.25, 0, 0.3, 
0.5, 0.8 and 1.1 at B = 16 mT.
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Ratchet motion under an ac bias.  By tilting the sample back and forth over an appropriate range of 
angles, we can generate an ac external biasing force that causes the defect lines to oscillate by repeatedly growing 
and shrinking. If we allow the biasing force to switch instantaneously, or at least faster than typical defect speeds, 
between values Fb

a and Fb
b, we can select pairs of biasing forces (Fb

a, Fb
b) for which v1 ≠ v3, permitting the creation 

of a ratchet effect. Here we assume that the colloidal particles remain in contact with the trap potential at all times 
and are not pressed into or away from the trap potential by the angular acceleration produced by the mechanical 
tilting process. The magnitude of the angular acceleration at which this assumption breaks down depends on the 
viscosity of the surrounding fluid and the density of the colloidal particles. In Fig. 5 we show R1 and R3 versus time 
under an alternating biasing force where Fb

a is applied for τa = 50 s and Fb
b is applied for τb = 250 s per cycle. Here 

the defect line ratchets in the direction of the 3-in end through a wriggling motion that is composed of two simple 
phases. The biasing force Fb

a places the sample in the SC regime where both ends of the line contract with v3 > v1. 
Then, under the biasing force Fb

b, the sample enters the SE3 regime where the line expands only on the 3-in end. 
As a result, over successive biasing force cycles the entire defect line translates in the direction of its 3-in end. It is 
also possible to choose the biasing forces in such a way that under Fb

a the sample is in the SE regime, where both 
ends expand with v3 > v1, while under Fb

b contraction occurs at only the 3-in end in the SC3 regime. Under these 
conditions, the defect line translates in the direction of its 1-in end, as shown in Fig. 5(b). By adjusting the timing 
of the expansion and shrinking drives (τa and τb), we can slowly shrink, grow or maintain a constant defect line 
length as the line ratchets. This makes it possible to re-position defect segments inside the sample by varying an 
applied uniform external force.

Discussion
We have shown that a defect line in a colloidal spin ice system contracts spontaneously at a rate which increases 
as the colloid-colloid interaction strength is increased. The line can be stabilized by the addition of a uniform 
global biasing force. It is possible to control the length and the position of the defect line by cycling this biasing 
force to create oscillations and defect movement through a ratchet effect. The ratcheting allows us to reposition 
defect line segments inside the sample to desired locations after nucleating them at the sample edge, making it 
possible to write information into the spin ice. If the uniform spin ice lattice were replaced by a specifically tai-
lored landscape, it is possible to imagine the creation of logic gates and fan-out positions where defect lines can 
merge or split. Thus it could be possible to construct a device capable of storing and manipulating the information 
described by these defect lines through the creation of “defectronics” in spin ice that could be the focus of a future 
study building on defect line mobility and control in spin ices. Although we concentrate on magnetic colloidal 
particles, our results could also be applied to charge-stabilized colloidal systems with Yukawa interactions, for 
which it is possible to create large scale optical trapping arrays23, 24 and double-well traps25, and where biasing 
could be introduced by means of an applied electric field26. Compared to atomic spin ices, our colloidal spin ice 
has relatively low density and, if it were used for information storage, would have relatively low write speeds. If the 
processes we model here can be introduced into a magnetic spin ice material, it would be possible to create a very 
high density information storage unit surpassing currently available densities by several orders of magnitude.

Methods
Numerical simulation details.  Using Brownian dynamics, we simulate an experimentally feasible system15 
of paramagnetic colloids placed on an etched substrate of pinning sites. The spherical, monodisperse particles 
have a radius of R = 5.15 μm, a volume of V = 572.15 μm3 and a density of ρ = 1.9 × 103 kg/m3. They are 

0 200 400 600 800

0.5

1

1.5

2

R
1,R

3[m
m

]

0 200 400 600 800
Time [s]

0

0.5

1

1.5

2

R
1,R

3[m
m

]

τ
a

τ
b

a)

b)

Figure 5.  Ratcheting defect lines. R1 (bottom lines) and R3 (top lines), in mm, vs time in samples with 
B = 16 mT for alternating drive intervals with bias Fb

a applied for τa = 50 s and Fb
b applied for τa = 250 s during 

each cycle. (a) Forward ratchet effect for (Fb
a, Fb

b) values of (−0.18, 0.76), (−0.16, 0.77), (−0.14, 0.78), (−0.12, 
0.79), (−0.10, 0.8), (−0.08, 0.81), (−0.06, 0.82), (−0.04, 0.83) and (−0.02, 0.84), from blue to red. (b) Reverse 
ratchet effect for (Fb

a, Fb
b) values of (0.96, 0.22), (0.98, 0.23), (1.0, 0.24), (1.02, 0.25), (1.04, 0.26), (1.06, 0.27), 

(1.08, 0.28), (1.1, 0.29) and (1.12, 0.3), from blue to red.
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suspended in water, giving them a relative weight of W = 5.0515 pN. Gravity serves as a pinning force for the 
particles placed in the etched double-well pinning sites and also generates a uniform biasing force Fb = W sin(α) 
on all particles when the entire sample is tilted by α degrees. Typically, α ~ 10°. The double well pinning sites 
[Fig. 1(a)] representing the spins in the spin ice are etched into the substrate in the 2D square spin ice configura-
tion [Fig. 1(c,d)] with an interwell spacing of a = 29 μm. Each pinning site contains two minima that are 
d = 10 μm apart. We place one particle in each pinning site, which can be achieved experimentally by using an 
optical tweezer to position individual particles. The pinning force Fs acting on the particle is represented by a 
spring that is linearly dependent on the distance from the minimum, so that = ∆⊥ ⊥F kW r2s , where 
k = 1.2 × 10−4 nm−1 is the spring constant, and ∆ ⊥r  is the perpendicular distance from the particle to the line 
connecting the two minima. When the particle is inside one of the minima, = ∆F kW r2s , where ∆r  is the 
distance from the particle to the closest minimum along the line connecting them, while when the particle is 
between the minima, = ∆F h d W r8 /s

2 , where h = 0.87 μm is the magnitude of the barrier separating the minima 
and ∆r  is the distance between the particle and the barrier maximum parallel to the line connecting the two 
minima. During the simulation, the particles are always attached with these spring forces to their original pinning 
sites.

The inter-particle repulsive interaction arises from the magnetization induced by the external magnetic field 
that is applied perpendicular to the pinning site plane. Each particle acquires a magnetization of m = BχV/μ0, 
where B is the magnetic field in the range of 0 to 30 mT, χ = 0.061 is the magnetic susceptibility of the particles, 
and μ0 = 4π × 105 pN/A2 is the magnetic permeability of vacuum. The repulsive force between particles is given 
by Fpp = 3 μ0m2/(2πr4), and since it has a 1/r4 dependence in a 2D system we can safely cut it off at finite range. 
We choose a very conservative cutoff distance of rc = 60 μm to include next-nearest neighbor interactions (even 
though they are negligibly small).

During the simulation we solve the discretized Brownian dynamics equation:

µ
∆
∆

=
∆

+ + +
x
t D t

k TN F F F1 2 [0, 1]
(1)

i
B pp

i
s
i

b
i

where Fpp, Fs and Fb are the previously described particle-particle, particle-substrate, and biasing forces, 
kBT = 4.047371 pN · nm is the thermal energy, D = 7000 nm2/s is the diffusion constant, μ = D/(kBT) is the mobil-
ity of the particles, N[0, 1] is a Gaussian distributed random number with mean of 0 and standard deviation of 1, 
and Δ = 1 ms is the size of a simulation time step.
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