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A quantitative analysis of hydraulic 
interaction processes in stream-
aquifer systems
Wenke Wang1, Zhenxue Dai2, Yaqian Zhao1,3, Junting Li1, Lei Duan1, Zhoufeng Wang1  
& Lin Zhu4

The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to 
disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study 
proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection 
to disconnection. A free water table equation is adopted to clarify under what conditions a stream 
starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests 
have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical 
disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and 
the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection 
is established for an analytical solution of the inverted water table movement beneath the stream. 
The result indicates that the maximum distance or thickness of the inverted water table is equal to the 
water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at 
the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow 
near streams and accurately assess surface water and groundwater resources.

Many streams in arid and semiarid areas are hydraulically disconnected from underlying aquifers1. When 
groundwater is pumped from near-stream aquifers for water supply in these areas, hydraulic disconnections 
may occur between streams and aquifers. For several decades, researchers have been modeling the interactions 
between streams and aquifers by both analytical2–6 and numerical7–11 methods. More recently, complex studies on 
stream-aquifer interactions with heterogeneous stream beds and variably saturated models are found in published 
reports12–16.

Generally, once a stream disconnects from the underlying aquifer, an unsaturated zone develops between the 
stream and aquifer16–18. Brunner et al.1 discussed the influence of conceptual assumptions on simulation results of 
the interaction between streams and groundwater by using off-the-shelf software. More research work attempted 
to address the impact of the unsaturated zone on groundwater recharge7,12,13,19–24. Stephens25 conceptually defined 
an inverted water table of the hydraulic disconnection in his book, but he did not give any further mathemat-
ical description of the concept and features. Wang et al.18 experimentally explored the physical processes from 
hydraulic connection to disconnection where a partially penetrated stream-aquifer-well system was built in a 
sandbox in the laboratory. The experiment results indicate that an inverted water table always appears below the 
stream when the hydraulic disconnection occurs, whether the streambed consists of a clogging layer or not. In 
such cases, the disconnected stream-aquifer system mainly includes the stream, inverted saturated zone beneath 
the stream, unsaturated zone, and saturated groundwater zone. Therefore, both the inverted water table and the 
unsaturated flow are key elements in stream-aquifer systems. However, from literature, modeling and evaluation 
of the impact of the conceptual assumptions on the properties of the hydraulic disconnection often ignored the 
inverted water table below the streambed17, which has a large impact on stream seepage (or infiltration) fluxes to 
groundwater. Furthermore, Sophocleous26 stated that most models are incapable of dealing with the local-scale 
hydraulic processes at the interface boundaries between the stream and aquifer.
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This paper presents a mathematical description of the hydraulic processes of the stream-aquifer system with 
a groundwater pumping well near the stream in a symmetrical flow system. Our special focus is on the following 
issues: 1) under what conditions does the stream start to disconnect from the aquifer? 2) what happens between 
the stream and aquifer after the stream disconnects from the aquifer? 3) what equations can be used to appro-
priately describe the movement of the critical point of disconnection below the streambed? 4) what hydraulic 
gradients at the center of the streambed can be reached at a steady state after disconnection? Thereafter, the 
application of the numerical method is presented for a free water-table equation and the analytic approach of 
the boundary-value problem of the inverted water table is discussed to explore the specific hydraulic processes. 
Finally, a validation of the mathematical analysis is conducted against an experimental result to summarize and 
conclude this study.

Results
This study examined the physical processes of the hydraulic connectedness of the stream-aquifer systems from 
connection to disconnection due to groundwater pumping (or drainage) near the stream by using the analytic 
numerical method combined with the sandbox experiments. The main results from this study are as follows:

(1) When a stream disconnects from aquifers, a stream-aquifer system consists of the stream, inverted water table 
beneath stream, unsaturated zone, and saturated groundwater zone. The water table drawdown due to inten-
sive pumping (or drainage) near the stream can potentially reduce saturations in the aquifer between the well 
and stream. The relationship between the stream and aquifer would evolve from the hydraulic connection to 
disconnection if the pumping intensity exceeds the maximum seepage capacity of the stream under a given 
streambed condition.

(2) When hydraulic heads at the free water surface satisfy =∂
∂

0H
x

 and =∂
∂

1H
z

 (where H is hydraulic heads, and 
∂
∂
H
x

 and ∂
∂
H
z

 are hydraulic gradients in the horizontal (x) and vertical (z) directions, respectively) for a sym-
metrical stream-aquifer system, the hydraulic connectedness between the stream and aquifer is at a critical 
disconnection state.

(3) From the simplified boundary-value problem of the inverted water table movement, we deduce that the max-
imum distance (or vertical length) of the inverted water table beneath the stream is the same as the water 
depth in the stream. The maximum rate of stream infiltration (per unit time per area) is equal to two times of 
the hydraulic conductivity of the streambed. This result implies that the maximum hydraulic gradient at the 
streambed center is 2 when the disconnection occurs.

(4) The results of the sandbox experiment, a recent field test and the finite analytic numerical solution are con-
sistent with the mathematical analysis results of the hydraulic disconnection processes. These results will help 
us to understand the hydraulic phenomena of variably saturated flow near streams and to accurately assess 
surface water and groundwater resources.

Discussion
The evolution of hydraulic gradients in the center of the streambed from connection to discon-
nection. To derive our mathematical analysis methods, we develop a lab-scale stream-aquifer system as an 
example for explaining the evolution of hydraulic gradients under the streambed (Fig. 1), where the hydraulic 
relationship of the stream-aquifer system evolves from connection to disconnection. The flow domain is 3 m in 
length, 2 m in height and 1 m in width. The stream is 0.2 m in width and is located along the center line of the 
flow domain. The water depth in the stream is 0.1 m. There are two ditches (which function equivalently as two 
pumping wells) located equidistant 1.4 m from the stream bank on each side. The stream stage is initially the same 
as the water level in both ditches. When the water levels in both ditches were suddenly declined to 0.7 m and then 
remained constant during the period of simulation, the stream-aquifer system were evaluated from connection 
to disconnection and finally reached a steady state. The porous medium in the aquifer is silt-fine sand and the 

Figure 1. The conceptual model of a lab-scale stream-aquifer system for explaining the evolution of 
hydraulic gradients under the streambed. 
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corresponding parameters for the unsaturated water flow are summarized in Table 1. The sediments of streambed 
are the same as the medium in the aquifer.

A finite analytic numerical method developed by Dai et al.27, Wang et al.28, and Zhang et al.29 for the 
saturated-unsaturated flow simulation was adopted in the validation. Relative conductivity functions were 
broadly used by many investigators to simulate water flow in variably saturated zones30–34. For simplicity, here, we 
assume that the soil hydraulic conductivity follows the exponential relative conductivity model35.

β( ) = (− ) ( )K h K hexp 1s

where, h is the soil-water pressure head (m); K(h) is the unsaturated hydraulic conductivity (md−1); Ks is the 
saturated hydraulic conductivity (md−1); β is an arbitrary constant. The value of β can be estimated through curve 
fitting of experimental data, and it is 6.6 in this study.

The ground surface boundary condition of two sides of the stream was assumed to be the boundary of the pre-
scribed negative pressure head with four scenarios. The first scenario assigns a pressure of − 2 m while the second 
and third scenarios are − 1 m and − 0.5 m, respectively. In the fourth scenario, the pressure of the ground surface 
for two sides of stream changes with a uncertain interval between 0 m at stream bank and − 2 m at the ground 
surface edge of two sides of the stream.

The boundary condition of the stream is a prescribed pressure head, which is the same as the water depth 
in the stream. The boundary conditions of the saturated zones on both sides of the ditches are also a prescribed 
pressure head, which is equal to the actual water head in the ditches. Accordingly, the boundary condition of the 
unsaturated zones on both sides of the ditches from the ground to the water surface in the ditches is a prescribed 
negative pressure head, which is given by linear interpolation between negative pressure of the ground and zero 
pressure.

Figure 2a illustrates the evolution of the pressure water head and total water head of seepage field with time 
for the ground surface boundary condition of 2 m negative pressure simulated by the finite analytic numerical 
method of the saturated-unsaturated flow. Figure 2b shows the simulated patterns of the pressure water head and 
total water head of seepage field at steady-state seepage in scenarios 1, 2, 3, and 4 of the ground surface boundary 
conditions.

The numerical simulation results computed from the saturated-unsaturated flow model27–29 clearly show that, 
as long as the rate of drainage in the ditches exceeds the seepage capacity of the stream under a given stre-
ambed condition, the relationship between the stream and aquifer can be evolved from the hydraulic connection 
to disconnection (Fig. 3). The results of the numerical simulations are consistent with those of the laboratory 
experiments18. This demonstrates that the numerical approach proposed in this study can be used to describe 
the stream-aquifer relationship, which includes three hydrologic steps from connection to disconnection: con-
nection (Fig. 2a,b), critical disconnection (Fig. 2c), and entire disconnection (Fig. 2e,f). Note that Lamontagne  
et al.15 developed a nomogram to estimate the height of the groundwater mound without the limiting assumption 
of horizontal flow. With their approach, the steep gradients right in the center of the mound can be simulated 
and their results are the same as those shown in Fig. 2c,d,f in this study. By inspecting the flow patterns of the 
stream-aquifer system for the four ground surface boundary conditions in Fig. 3a,d, we can see that the boundary 
conditions have a great impact not only on the flow patterns or hydraulic gradients of the stream-aquifer system, 
but also on the river recharge to aquifer. The hydraulic gradients at the streambed can be used to assess its influ-
ence on the stream recharge to the underlying aquifer.

Figure 4a describes the variations of the hydraulic gradients at the center of the streambed with stream water 
depth of 0.1 m, ditch discharge level of 0.7 m, and four different ground surface boundary conditions. By assum-
ing a ground surface pressure of − 2 m, we analyze the change in the hydraulic gradients from the hydraulic con-
nection to disconnection. Figure 4a shows that the hydraulic gradient quickly increases during the period of 0 to 
0.0198 d. During that time the stream keeps connected with the aquifer. When time reaches 0.0198 d, the relation-
ship between stream and aquifer becomes the critical disconnection state. At that time the curve of the hydraulic 
gradient shows an obvious turning point. From 0.0198 to 0.05 d the stream disconnects from the aquifer, and the 
hydraulic gradient increases slightly. From 0.05 to 0.125 d the hydraulic gradient shows very little change. After 
0.125 d the flow of the stream-aquifer system reaches to a steady state, and the hydraulic gradient reaches to the 
maximum value (approximately 2 at the center of the streambed). Similar trend in the hydraulic gradient varia-
tion for the ground surface pressure of − 1 m can be seen in Fig. 4a. When the ground surface pressure is assumed 
to be − 0.5 m, the hydraulic gradient at the center of streambed is slightly less than 2 after disconnection. The 
reason is that there is some unsaturated water flowing into the stream-aquifer system from the ground surface 
boundary (see Fig. 3c). This reduces the river recharge to aquifer compared with the cases which have higher 
negative pressures. Therefore, the less of the negative pressure on the ground surface boundary, the more water 
flows into the aquifer from the ground surface boundary and much less hydraulic gradient at the center of stre-
ambed after disconnection (see Figs 3c,d and 4a). More significantly, the maximum capacity of stream recharge 
to aquifer per unit area per time is no more than K2 (K is the hydraulic conductivity of the streambed) when the 
stream disconnects from aquifer at the steady state. This result is consistent with that obtained by the analytic 
method.

Medium type Residual water content (θr) Saturated water content (θs) Saturated hydraulic conductivity ks (cm/h)

Silt- fine sand 0.045 0.43 7.13

Table 1. The parameters of the silt-fine sand for unsaturated and saturated conditions.
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The hydraulic gradient variation with time on the symmetrical line. Figure 4b shows the 
time-variation of the hydraulic gradient on the symmetrical line from streambed center to impermeable base 
of aquifer from hydraulic connection to disconnection. The figure presents cases of a 0.1 m water depth in the 
stream, a 0.7 m discharge level in both of ditches, and a − 2 m pressure at the ground surface, respectively. The 
curves with time 0.003 d and 0.01 d indicate the variation tendency of the hydraulic gradient on the symmetrical 
line while the curve with 0.0198 d shows the hydraulic gradient at the critical disconnection state. Accordingly, 
the curves with time 0.0555, 0.2055 and 2 days are the variation trend of the hydraulic gradient for disconnection 
state, especially the curve with time 2 days indicates an entire disconnection situation at the steady state.

As can be seen from Fig. 4b, no matter the stream is disconnected with aquifer or not, the time-variation of the 
hydraulic gradient on the symmetrical line from streambed center to impermeable base can be divided into three 
zones. The first zone (termed as the inverted water table zone) is located at the certain depth below streambed (see 
Fig. 4b section AB). The essential features of the first zone are: 1) The depth of the zone is nearly equal to stream 
water depth; 2) The time-variation of the hydraulic gradient shows a slightly growing trend from connection to 
disconnection; 3) The vertical hydraulic gradient is linear with the vertical coordinate distance z; 4) The vertical 
hydraulic gradient at the streambed center reaches 2 at the steady state after disconnection.

The second zone (termed as the saturated zone) is located at the certain height above the impermeable base 
(see Fig. 4b section C′ D). The time-variation of vertical hydraulic gradient shows a slightly decreasing trend from 
connection to disconnection. The vertical hydraulic gradient is also linear with the vertical coordinate distance z, 
but with moderated slopes compared with that of the first zone.

Figure 2. The simulated seepage fields for the ground surface boundary condition with 2 m negative 
pressure at time of : (a) 0.012d, (b) 0.0185d, (c) 0.0198d, (d) 0.02d, (e) 0.022d, and (f) 2d. (The pressure water 
heads are in black and red. The red line represents zero pressure which indicates the water table and the inverted 
water table curves respectively. Total water head is in green and flow directions are indicated in arrow).
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The third zone (termed as the unsaturated zone) is located between the first and the second zones (see Fig. 4b 
section BC and BC′ ). There are several essential features in the seepage flow: 1) The vertical gradient has bigger 
amplitude of variation from connection to disconnection, especially under disconnection condition; 2) When 
stream disconnects from aquifer, there exists an unsaturated zone between the inverted zone and the saturation 
zone. Unsaturated flow in this zone dominates in the flow and transport processes of the stream-aquifer system. 
The nonlinear flow in the unsaturated area depends on the relative conductivity functions which are variable 
with moisture contents and hydraulic pressures. This may be the reason to cause a larger variation amplitude of 
the vertical hydraulic gradient in the unsaturated zone than that in the saturated zone; 3) The vertical hydraulic 
gradient in this zone is nonlinear with the vertical coordinate distance z.

The variation of vertical hydraulic gradient at the free water surface of the regional water 
table. Figure 5a shows the time-variation of the vertical hydraulic gradient ∂

∂
H
z

 at the free water surface on the 
symmetrical line from the critical disconnection to the entire disconnection. The results were obtained by using 
the finite analytic numerical method under the conditions of 0.1 m water depth in the stream, 0.7 m discharge 
level in both of ditches, and − 2 m pressure of the ground surface. The gradient ∂

∂
H
z

 at the free water surface on the 
symmetrical line is equal to 1 for the critical disconnection at 0.0198 days. After this moment the gradient ∂

∂
H
z

 is 
gradually reduced because the ground-water mound of stream recharge drops in response to drainage from both 
sides of ditches. Interestingly, as discussed previously, when the hydraulic head at the free water surface meets 
=∂

∂
0H

x
 and =∂

∂
1H

z
 for a symmetrical stream-aquifer system, the hydraulic connectedness of the stream-aquifer 

reaches the critical disconnection state.

The maximum thickness of the inverted water table zone beneath the stream. Figure 5b,c show 
that the maximum thickness of the inverted water table zone beneath the stream varies with the water depth in 
the stream at the steady state for entire disconnection by using the laboratory sandbox experiment and finite ana-
lytic numerical method, respectively. It can be seen that the higher the stream stage, the thicker the inverted water 
table zone. In addition, the slopes of the curves in Fig. 5b,c are nearly equal to 1. This implies that the maximum 
thickness of the inverted water table zone is the same as the water depth in the stream at the steady state for entire 
disconnection, which agrees with the above conclusion obtained by the analytic method.

In addition, a recent field test in the Ordos Basin, China, was designed to see if there is an inverted water 
table beneath the stream, and if its maximum thickness is equal to the water depth in the stream (at the steady 
state under the condition of streambed sediments being the same as the underlying aquifer materials). A site was 
selected in an area with uniform fine sand in the unsaturated zone, where the depth of groundwater is about 8 m 
according to observation wells near the testing site. A quadrate test tank (1 ×  1 ×  1 m3) held a bed of uniform 
fine sand. Three boreholes with a diameter of 40 mm located at the center line of the tank, 0.3 m and 0.5 m from 
another side of the tank, respectively, were drilled from the ground surface to 2.7 m deep. These boreholes were 

Figure 3. The behaviors of steady state seepage fields for different ground surface boundary conditions 
after disconnection ((a–d) correspond to scenarios of 1, 2, 3, and 4, respectively).
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used to measure moisture contents by TDR during the test period. Several overflow holes are designed on one 
side of the tank, which are used to keep the artificial stream stage at a constant level with the tank. The height from 
the tank bottom (similar to streambed surface) to the overflow hole represents the simulated water depth in the 
stream. The moisture contents were firstly measured as the initial condition. Then water is added to the tank at a 
sufficient large rate so that the water in the tank is kept at a constant level (0.4 m in this test). The saturated water 
content of fine sand is 0.322 cm3/cm3. The moisture contents were measured from three holes at 10–20 minutes 
intervals over the entire test period. The test was stopped until the steady state was reached. A sketch of the field 
test is shown in Fig. 6(a,b). Figure 6c shows the distributions of the moisture contents in the three boreholes at dif-
ferent depths. It can be seen that there exists a saturated zone below the tank bottom in the centre borehole at the 
steady state. The thickness of the saturated zone below the tank bottom in the centre borehole is almost equal to 
the water depth in the tank, which validates the result of Eq. (19) in the method section. This is equivalent to the 
maximum hydraulic gradient with a value of 2 at the streambed under steady-state condition for the disconnected 
stream. The measured moisture contents in another two boreholes remain no change during the test.

Methods
The prerequisite of the total water head at the water table for the critical disconnection condi-
tion. Brunner et al.12–13 and Wang et al.18 have discussed the hydrogeological controls of disconnection and 
transient effect during the transition from connection to disconnection in great detail. The point when the 
water-table curve starts to divide into two parts can be termed as the critical disconnection point. At this point, 
the water-table curve converges at a spot P0 (see Fig. 7a) on the central axis below the streambed for a symmetri-
cal flow system. There are two water-table curves at the critical disconnection point (P0) in the vertical profile. 
One is located above P0 spot which is called the inverted water table18, and the other is called the regional water 
table which is located below P0 spot. Actually, the differences of the different water table curves are mainly the 
variations of the hydraulic gradients along the water table curves, which cause changes in the geometric shape of 
water table curves.

From the theory of the differential geometry, P0 spot at the critical disconnection state is a singular point on 
the vertical profile of the water table curve. As long as the first and second-order derivatives of the curve exist, the 

Figure 4. The hydraulic gradient variations with time at the center of the streambed for different ground 
boundary conditions (a) and the hydraulic gradient variations with time (from hydraulic connection to 
disconnection) on the symmetrical line (b).
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prerequisite can be obtained while the horizontal and vertical hydraulic gradients of the water table curve in the 
vertical profile reaches certain values at the critical disconnection state.

The free water surface equation can be used to estimate the prerequisite when P0 is reached. The equation for 
an isotropic, homogeneous, unconfined aquifer in the vertical profile at the steady state can be expressed as36

(
∂
∂
) + (

∂
∂
) − + ( , )

∂
∂
+ ( , ) = ( )K H

x
K H

z
K W x z H

z
W x z[ ] 0 2

2 2

where, K  is the hydraulic conductivity (m/d), ( , )H x z  is the total water head in the vertical profile (m), and ∂
∂
H
x

 
and ∂

∂
H
z

 are the hydraulic gradients in the horizontal (x) and vertical (z) directions at the water table curve, respec-
tively, and ( , )W x z  is a vertical exchange rate per unit area per unit time at the water table for a given discharge 
level at the steady state (m3/m2.d). Eq. (2) can be reorganized as
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The left hand in Eq. (3) represents the ratio of the vertical exchange at the water table to the hydraulic conduc-
tivity of the aquifer for a given steady-state discharge level in the ditch. The right hand, which is only relevant to 
∂
∂
H
x

 and ∂
∂
H
z

, represents variations of hydraulic gradients in the x and z directions at the water table. Both sides of 

Figure 5. The time-variation of the vertical hydraulic gradient ∂
∂
H
z

 at the free water surface of regional water 
table on the symmetrical line from the critical disconnection to entire disconnection (a), the relationship 
between the maximum thickness of inverted water table zone below streambed and the water depth in stream at 
steady state for entire disconnection observed by the laboratory sandbox experiment (b), and by the finite 
analytic numerical method (c).
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Eq. (3) are dimensionless. It is known from the calculus, once ∂
∂
H
x

 and ∂
∂
H
z

 are determined, the position of water 
table and the shape of water table curve in the vertical profile can be known in conjunction with the boundary 
condition ( =H z). So the right hand of Eq. (3) actually describes variations of the water table curves in the verti-
cal profile, which is driven by the term of ( , )W x z

K
. As ( , )W x z

K
 varies with the discharge level in the ditch, the shape 

of water table curve changes accordingly. In addition, Eq. (3) can also be used to determine a vertical water 
exchange, i.e. ( , )W x z  of the free water surface at steady state in the ditch. Actually, ( , )W x z  is the water balance 
at the water table and

Figure 6. A sketch and the results of the field test. (Part (a) is the plane section while (b) is the cross section 
of the field test site, and (c) is the distributions of moisture contents in the three boreholes at different depths 
during the test).
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Eq. (4) can be used to analyze variations of the water table curves at different discharge levels in the ditch. 
Therefore, a new function of ( , )f X Z  is defined, which is the shape function of the water table curve in the −x z 
profile. It describes the shape of the water table curve at steady state for given boundary conditions in a flow 
domain. ( , )f X Z  can be written as

( , ) =
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=
+ −
− ( )f X Z W x z

K
X Z Z

Z 1 5
2 2

where, = ∂
∂

X H
x

 and = ∂
∂

Z H
z

. It is expected to use the shape function to sort out the important query: under what 
conditions the stream starts to disconnect from aquifer. For doing so, the partial derivatives and the mixed partial 
derivatives respect to variables of X and Z of the function ( , )f X Z  are conducted as:
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Letting = ( , )A f X ZXX , = ( , )B f X ZXZ  and = ( , )C f X ZZZ , we have

− = . ( )AC B 0 62

According to differentiable function properties and criterion37,38, Equation (6) indicates that the point of X = 0 
and Z = 1 is a singularity point marked as P0 on the water table curve defined by ( , ) =f X Z 0, where the water 
table curve starts to separate into two curves (one is the inverted water table and the other is the regional ground-
water table), and the point P0 is the critical point for disconnection. Therefore, = =∂

∂
X 0H

x
 and = =∂

∂
Z 1H

z
 are 

the prerequisite conditions for hydraulic disconnection, which corresponds to a general solution of ( , )H x z  =  C1 
and ( , )H x z  =  z +  C2, where C1 and C2 are constants. If all of the initial-boundary conditions are known, we may 
compute the values of the two constants.

As such, the two free water table curves exactly converge at a spot ( = , = )P X Z0 10  on the central axis below 
the streambed for a symmetrical stream-aquifer system. When the inverted water table and the regional 

Figure 7. The water-table curves in the vertical profile at the critical disconnection state. (a) and the 
inverted water table below streambed at different times for a symmetrical stream-aquifer system (b).
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groundwater table are tangent at P0 point, the exchange flux between the two free water tables is equal to ∂
∂

K H
z

. 
This is consistent with the Darcy’s law. Above mathematical derivations demonstrate that the hydraulic connect-
edness of the stream-aquifer system is at the critical disconnection point when the hydraulic head at the water 
table curve satisfies =∂

∂
0H

x
 and =∂

∂
1H

z
 for a symmetrical stream-aquifer system, in which the aquifer is an iso-

tropic and homogeneous system with two ditches (or pumping wells) located equidistantly (L) on each side of the 
stream with an equal drainage (or pumping) rate.

The boundary-value problem for the inverted water table and its movement in a hydraulically 
disconnected stream-aquifer system. There exists an inverted water table below the streambed when the 
stream disconnects hydraulically from the underlying aquifer12,13,18. In order to derive the equations of the 
inverted water table movement and its properties, several assumptions can be made for a reverse disconnection 
case: (1) The stream is initially disconnected from an aquifer, where the groundwater depth is much deeper than 
the streambed. The sediments of streambed are the same as aquifer materials and are isotropic and homogeneous. 
There is no clogging layer in the streambed. (2) The stream channel is dry at time t = 0, and then the water flow 
occurs through channel with depth d0. For a period of time, an inverted water table is gradually formed below the 
streambed (Fig. 7b). This situation usually exists in the arid areas where ephemeral streams flow through alluvial 
fans and the depth of groundwater can be more than 100 m in the upstream areas and 3–5 m in the downstream 
areas for the stream disconnected from groundwater39. To obtain the boundary-value problem of the inverted 
water table (Here we take the streambed center as the original point of the horizontal and vertical coordinates), 
the free water surface equation of the inverted water table should be determined firstly at the unsteady state, 
which is one of the boundary conditions in the boundary-value problem.

Take z as the vertical coordinate distance and the upward represents positive, and let = ( , , , ) =F F x y z t 0 
represent the implicit equation at the free water surface of the inverted water table. The total water head on the 
free water surface is equal to the vertical coordinate of any point on the free surface of the inverted water table, i.e. 
( , , , ) =H x y z t z

Similarly, for a homogeneous and isotropic medium, the free water surface equation of the inverted water table 
can be written as36,
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∂
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Here, we do not intend to solve the Equation (7), but try to use it to estimate the movement velocity of the 
inverted water table and to explore the relationship of the related parameters at the a disconnection state. When 
x, y, and z are close to the critical point of disconnection, or a singularity point at the inverted water table, we may 
assume that the second order of derivatives ( )∂∂Hx

2
, ( )∂∂Hy

2
 and ( )∂∂Hz

2
can be neglected in Eq. (7) because there 

terms are approached to zero when x, y, and z are close to the critical point . Thus, Eq. (7) can be approximately 
expressed as:

µ∂
∂
= −

∂
∂ ( )

H
t

K H
z 8

Here, µ is specific yield. Because of symmetry, only the symmetrical line from the streambed center to aquifer 
bottom in Fig. 7b needs to be considered. This simplifies the problem (7) to be a one-dimensional equation to 
describe the movement of the critical point of disconnection. If the water depth in the stream is a constant d0 for 
a period of time, the flow system near the critical point can be described mathematically as follows.
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The term ( )l t  represents the moving distance of the inverted water table front at time t in the boundary-value 
problem of Eq. (9)–(13).

Integrating Eq. (9) and using the boundary condition (11), (12) and (13), and noting that = − ( )z l t  
and = − ( )H l t , we obtain Eq. (14) as

µ µ
′( ) ( ) − ( ) − = .

( )
l t l t K l t d K 0

14
0

The nonlinear differential equation (14) represents a mathematical relationship of the moving velocity and 
distance for the inverted water table front. The analytic solution of the differential Equation (14) subjecting to 
Eqs. (10) to (13) is
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Letting η=( )l t
d0

, the front movement equation for the critical point in the symmetrical line can be expressed 
by

η η
µ

− ( + ) =
( )

K
d

tln 1
160

Eq. (15) and (16) indicate that (1) Both of ( )l t
d0

 and 
µ

tK
d0

 are dimensionless factors. Both sides in Eq. (16) repre-
sent dimensional homogeneity; (2) Because upward in z direction is positive, it appears ( ) <l t 0, or the inverted 
water table moves downward to the regional groundwater table. If ( ) <l t d0, both sides in Eq. (16) have the 
same mark symbol sign; (3) If =t 0, ( ) =l t 0, ( )l t  represents the initial condition in Eq. (11); and (5) In the 
steady-state condition, the velocity of the free water surface movement is ( ) =′l t 0, and by using Eqs (14) and (16) 
becomes:

µ µ
− ( ) = , ( ) = −

( )
K l t d K l t d

17
0

0

Therefore, under the one-dimension and steady-state circumstance, the front moving maximum depth of the 
inverted water table zone is equal to the stream water depth (here, it does not contain the capillary height rise hr, 
if it contains hr, then ( ) = −( + )l t d hr0 ), and below this distance there is a unsaturated zone until the regional 
groundwater table.

The maximum hydraulic gradient at the streambed under a steady-state condition. By com-
bining Darcy’s Law and the free water surface movement Eq. (17), the downward flow velocity through streambed 
into the inverted water table zone at steady-state condition is:

= −
+
= − = −

( )
v K d l

l
K d

d
K2 2

18
0 0

0

Eq. (18) clearly indicates that when a stream is disconnected with groundwater level under a steady-state 
condition, the maximum critical velocity for the stream recharging the unsaturated zone (per unit area per unit 
time) is not larger than two times of the streambed hydraulic conductivity. This result implies that the maximum 
hydraulic gradient in the center of the streambed is 2 for the disconnected stream under a steady-state condition.
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