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Abstract

Objective: Fluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, 

independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored 

the added value of quantitative [18F]FDG-PET features combined with clinical variables, including 

electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) 

qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 

± 3.77 years).

Methods: Machine learning predictive models of surgical outcome were created using a random 

forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe 

epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program 
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(2003–2016). Quantitative features were calculated from asymmetry features derived from image 

processing using Advanced Normalization Tools (ANTs).

Results: The best-performing model used quantification and had an out-of-bag accuracy of 0.71 

in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using 

qualitative clinical data by 10%. This model is shared through open-source software for research 

use. In addition, several asymmetry features in temporal and extratemporal regions that were 

significantly associated with seizure freedom are identified for future study.

Significance: Complex quantitative [18F]FDG-PET imaging features can predict seizure 

recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a 

cohort with long-term follow-up suggest that using quantitative imaging features from regions in 

the epileptogenic network can inform the clinical decision-making process.
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1. Introduction

Epilepsy affects 65 million people in the world of which 20–40% are refractory to medical 

therapy [1]. Surgical resection has been the mainstay of therapy for these patients and 

identifying patients at risk of suboptimal surgical outcome can allow clinicians to provide 

them with alternative therapies that continue to be improved, such as responsive 

neurostimulation, vagal nerve stimulation, and deep brain stimulation. Despite significant 

advances in imaging techniques, the use of neuroimaging in epilepsy as a predictive 

biomarker of both medical and surgical interventions has yet to be fully realized [2].

For patients with intractable epilepsy being considered for surgery, testing at tertiary centers 

can include interictal brain [18F]fluorodeoxyglucose (FDG)-positron emission tomography 

(PET), structural brain magnetic resonance imaging (MRI), seizure semiology evaluation, 

neuropsychological testing, and scalp and intracranial electrocorticography. Together, these 

tests are used to best delineate the seizure onset zone for resection. While qualitative visual 

[18F]FDG-PET interpretation is important to the clinical workup for surgical candidates, 

quantitative imaging features derived from these studies can be used when other clinical and 

imaging tests do not unequivocally localize the seizure focus. In these situations, [18F]FDG-

PET has shown promise in being able to better identify patients who may not be ideal 

candidates for surgery. Several studies have identified important temporal and extratemporal 

regions on functional and structural imaging that predict prognosis [3–7]. A recent study 

suggests that lateralized hypometabolism and extent of resection are strong indicators of 

seizure recurrence with differential outcomes based on seizure lateralization [8]. 

Quantification has the advantage of precision and objectivity over qualitative visual 

[18F]FDG-PET interpretation, potentially improving presurgical planning.

Application of robust, machine learning-based, semiautomated, and generalizable models in 

clinical epilepsy practice remains largely unexplored. Most previous investigations of 

[18F]FDG-PET in intractable epilepsy have been limited by sample size, minimizing broad 
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applicability. Two recent studies used larger populations and more quantitative approaches 

[8,9]. Although six- to twelve-month surgical outcome are Engel 1 in 70–90% of patients 

following temporal lobectomy, long-term outcomes are highly variable in epilepsy surgery, 

with better outcomes in patients with focal findings on MRI or PET [10–12]. To evaluate 

such an application, we identified quantitative [18F]FDG-PET imaging features predictive of 

surgical recurrence in a cohort of temporal lobe epilepsy patients, relying on asymmetry 

measurements derived from automated image analysis. We present additional preliminary 

findings in a small cohort of extratemporal epilepsy patients in the supplementary material. 

We also measured the importance of quantitative PET features relative to traditional clinical 

data, such as EEG and qualitative visual PET interpretation, in improving prediction of 

seizure recurrence. These models were applied and cross-validated to a dataset with patient 

outcomes measured at least 6 months after epilepsy surgery, most having outcome measures 

at least 2 years after surgery (mean 5.9 ± 3.8 years follow-up). All models used to compute 

these features are made publicly available via open-source software for both research and 

clinical use. Translating these models into routine clinical practice could potentially improve 

quality of life for many epilepsy patients by enabling physicians and researchers to 

incorporate quantitative PET information into the decision-making process.

2. Methods

2.1. Patients

This study was approved by the Hospital of the University of Pennsylvania (HUP) 

Institutional Review Board. Subjects were screened using electronic records and included in 

the study based on the following criteria: sequential patients at HUP who underwent 

epilepsy surgery between 2003 and 2016; clinical evaluation by members of the Epilepsy 

Surgery program; and available histopathologic and neuroimaging assessment by applicable 

board-certified pathologists, nuclear medicine physicians, and radiologists. Patients were 

excluded if they lacked preoperative interictal brain [18F]FDG-PET, scalp-EEG, or formal 

image interpretation (Fig. 1). Of note, [18F]FDG-PET was implemented as a standard of 

care. As a result, this study used inclusion criteria that delineate a clinically representative 

cohort and do not bias the cohort toward subpopulations with only discordant findings or 

bilateral foci. Clinical data were obtained from electronic and paper medical records and 

included the following: gender, date of birth, date of epilepsy surgery, date of seizure onset, 

scalp-EEG findings, neuroimaging findings, clinical seizure lateralization and localization, 

region of surgical resection, and surgical outcome by Engel classification. Extensive 

presurgical evaluation, as part of the evaluation process for potential surgery at HUP, 

included detailed clinical examinations, scalp- and invasive- (subdural and depth electrode) 

EEG, MRI, and interictal [18F]FDG-PET. Resection margins were not extended to remove 

hypometabolic regions beyond the apparent EEG/MRI “focus” identified by the clinical 

team. His-tological examination was completed after surgical resection. Seizure outcome for 

each patient was determined by epileptologists blinded to the results of this study (M-G.B., 

K.A.D.). For the purposes of this study, the binary seizure recurrence variable was based on 

surgical outcome classified according to the Engel system. Since the majority of the patient 

population had seizure onset in the temporal lobe, the main analysis was performed on only 

temporal onset patients and a separate subanalysis was performed with extratemporal 
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neocortical epilepsy patients added to the study population. The results of all patients are 

reported in the supplementary section.

2.2. Image acquisition and processing

Details regarding [18F]FDG-PET acquisition, processing, and the computation of 

quantitative image preprocessing variables are provided in the supplementary section (Table 

S1). The PET imaging computational pipeline is outlined in Fig. 2, filtering out any 

corrupted images or images that could not be processed. A sample feature image is shown in 

Fig. 3. In addition, the codification of clinical variables, specifically scalp-EEG, MRI 

findings, and PET findings is also described in the supplementary text.

2.3. Outcome variable

The most recent outpatient visit (5.9 ± 3.8 years post-op) was used to calculate the binary 

seizure recurrence outcome variable following surgical resection: The Engel outcome 

variable was coded as 1 for seizure recurrence (Engel IB-D, II, III, IV) or 0 if entirely 

seizure free (Engel IA). For the purposes of defining outcomes, Engel IA was solely 

considered as “seizure free” since Engel IB outcome may indicate nondisabling simple 

partial seizures which could potentially result from a surgical resection or image 

interpretation failing to completely delineate the boundaries of the seizure focus. Engel IA 

outcome better corresponds to the ILAE classification scale that separates auras into a 

separate class (a scale that would have been used if not for the limitations of determining 

seizure days retrospectively) [13].

2.4. Statistical analysis and machine learning

Pearson’s chi-squared tests were used to compare clinical variables to outcomes for 

categorical variables: resected region, MRI lesion status, pathology, and qualitative visual 

[18F]FDG-PET interpretation. Clinical imaging variables were based on qualitative nuclear 

medicine and neuroradiology interpretations. Extent of [18F]FDG-PET hypometabolism was 

classified as normal, focal, subtle, multifocal, or diffuse. This was based on expert review of 

the nuclear medicine report for each patient with attention to specific language including 

“diffuse”, “multiple foci,” or “subtle/mild asymmetry” in the report findings and impression.

Four models were computed to measure the added benefit of including quantitative imaging 

features: clinical EEG and MRI lesion status with the addition of qualitative [18F]FDG-PET 

read which represents a standard of care (Model A), clinical EEG and MRI lesion status 

with the addition of quantitative PET asymmetry features (Model B), all clinical variables 

and quantitative PET features together (Model C), and clinical EEG and MRI lesion status 

alone (Model D). The clinical variables were scalp-EEG localization, lesion status based on 

MRI lesion status read, and qualitative [18F] FDG-PET read (extent of interictal 

hypometabolism). All models were random forest classifiers using optimal number of 

decision tree estimators, splitting at every node based on Gini importance [14]. Random 

forests (RF) are a combination of decision tree classifiers that minimize generalization error 

by splitting on randomly selected features. A preanalysis variable selection step was 

performed in the dataset to create a short list of quantitative imaging biomarkers from the 

large set of features described in the quantitative imaging preprocessing section in the 
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supplementary section. One step of feature selection was used with features that were ranked 

highly by a marginal F test comparing the mean feature value across outcomes, constituting 

the final shortlist of features. This method of feature selection has been used in a study that 

applied machine learning models to diagnose Alzheimer’s disease to avoid overfitting and 

identify useful imaging features from a larger set of predictors [15].

Sensitivity/specificity analyses were performed on the cohort using Python and R. By 

sampling approximately 90% of the cohorts, 1000 bootstraps were conducted and the out-of-

bag accuracy was calculated. The feature reduction step described above was performed 

repeatedly within each bootstrap subsample and resulted in different sets of features each 

time. Confidence intervals were reported for difference in out-of-bag accuracy (which 

measures accuracy on samples that were not used in the training of predictor trees in the 

forest) between models, focusing mostly on comparison to standard of care, Model A, to 

determine the value of adding quantitative PET imaging features to currently used clinical 

features: EEG, MRI, and qualitative PET reads. Fig. 1 shows an outline of the pipeline.

2.5. Data availability statement

Retrospective clinical and imaging data collected and analyzed during this study are securely 

and anonymously stored and will be shared upon request from any qualified investigator. 

Requests should be made via email to the corresponding author. Furthermore, we share our 

open-source computational pipeline, as described in Section 3.2 on “Open-Source Shared 

Tool for Feature Computation.”

3. Results

3.1. Patient demographics

In the main study using only temporal lobe patients, there were 89 patients. Table 1 

summarizes the demographics of all 96 total patients included in full study (89 temporal and 

7 extratemporal cases). Outcome was determined from last clinical encounter (mean follow-

up of 5.9 ± 3.8 years after surgery). Eighty-eight of the 96 total patients had Engel outcome 

measured at least 1 year after surgery, 76 had Engel outcome measured at least 2 years after 

surgery, and 43 had Engel outcome measured at least 5 years after surgery. Four patients 

with temporal onset had outcomes measured less than a year after resection, two of which 

were evaluated >10 months after surgery. Of these 4 patients, 3 were Engel I (IA, IB, and 

ID) and 1 was Engel IV. The one Engel IV patient was a 49-year-old woman who died with 

autopsy-confirmed SUDEP (Sudden Unexpected Death in Epilepsy). This patient had left 

mesiotemporal sclerosis on MRI evaluation and focal left anterior temporal hypometabolism 

on PET. Fig. 4 shows surgical outcomes for all patients as function of time of Engel outcome 

evaluation in years, with major timepoints after resection color-coded according to outcome 

at most recent office visit (used for subsequent analyses).

In the full patient cohort, surgery was performed ipsilateral to the hypometabolic temporal 

lobe in 75 (78 %) patients (27 were Engel IA at last follow-up). Remaining patients had 

normal qualitative PET reads (4 were Engel IA at last follow-up). Among patients who had 

favorable outcomes (Engel IA), 16 had left-temporal lobe resections (LTL) and 16 had right-
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temporal lobe (RTL) resections. Among patients who had seizure recurrence (Engel IB-ID, 

II, III, or IV), 31 had LTL, 26 had RTL, and the rest had extratemporal right-hemispheric 

resections (full patient cohort results are pre-sented in Supplementary Material).

Of the 61 patients who had focal or subtle hypometabolism PET, 38 had mesial temporal 

sclerosis (MTS), 11 had gliosis, 3 had focal cortical dysplasia (FCD), 3 had dual pathology 

(MTS and malformation of cortical development), 3 had low-grade tumors or vascular 

malformations, and 2 were normal. Of the 35 patients who did not have focal or subtle 

hypometabolism, 19 had MTS, 6 had gliosis, 3 had FCD, 3 had dual pathology, 1 had a 

cavernoma, and 3 were normal (pathology not significantly different between outcome 

groups). In patients with either focal or subtle hypometabolism on PET, 17 of 39 (44%) 

lesional patients had seizure freedom, and 8 of 22 (36%) nonlesional patients had seizure 

freedom.

As an exploratory first analysis, we investigated the association between features and 

surgical outcome based on an F test. The top few features predictive of seizure recurrence 

are shown in Table S3. Note this is not a feature reduction step and instead serves to simply 

identify the most associated features to further study with larger well-designed cohorts.

3.2. Model selection for optimal prediction of surgical outcome

These models were measured using out-of-bag bootstrap samples derived from generating 

trees over the cohort (n = 89 with temporal lobe onset). These bootstraps were generated by 

randomly sampling 90% of the patients to train. Feature reduction was performed to select 

features that were ranked highly by a marginal F test of the mean feature value to outcomes. 

Overall, adding quantitative variables (Models B and C) improves performance more than 

using qualitative PET alone (Model A) (Table 2). Model D, using only clinical EEG and 

MRI variables (mean out-of-bag accuracy = 0.62), performed similarly to standard of care, 

Model A (mean out-of-bag accuracy = 0.61), but worse than Model B (mean out-of-bag 

accuracy = 0.71). We found similar improvement in performance when performing subgroup 

analyses. We ran the same models when we isolated to only left-temporal and right-temporal 

lobe patients. We also assessed prediction of seizure recurrence in patients with Engel I 

outcome only (i.e., predicting Engel IA vs. Engel IB-D). There was statistically significant 

improvement in seizure recurrence prediction accuracy with Models C and D in most cases 

(Table 2).

3.3. Open-source shared tool for feature computation

In order to make the computational pipeline easily shareable and viewable, the authors of 

this study have created a free open-source software program to allow others to reproduce and 

build on our work. The code used for this paper is freely available at https://github.com/ieeg-

portal/qneuropet.

4. Discussion

In this study, we identified multiple quantitative [18F]FDG-PET features predictive of long-

term seizure recurrence in drug-resistant epilepsy patients through a machine learning 

approach. In the age of precision medicine, incorporation of quantitative PET metrics into 
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standard clinical decision pathways could lay the groundwork for computer-assisted decision 

making to identify patients likely to have seizure recurrence after surgery. These features, 

tures, computed throughout the epileptic network and combined with clinical variables, are 

predictive of long-term outcome in terms of seizure recurrence, and their application 

resulted in a higher accuracy as compared to a model that relies solely on clinical variables. 

We followed multiple steps to build a generalizable model for all patients with drug-resistant 

epilepsy (focused on temporal onset epilepsy, but easily extendable to extratemporal 

neocortical onset epilepsy).

There is evidence that focal PET hypometabolism is a predictor of both seizure onset 

lateralization [16,17] and seizure outcome [3,18–21]. In this study, patients with focal 

hypometabolism were more likely to be seizure free after resection than those with other 

PET findings (Table 1). In addition, patients with focal hypometabolism were correctly 

lateralized to site of surgery in 100% of cases, based on clinical PET interpretations (Table 

S2). According to prior literature, normal MRI and [18F]FDG-PET are suggestive of 

suboptimal outcomes, especially when both are normal [5,6,22–27]. This was confirmed in 

our cohort where nonlesional MRI patients were less likely to have focal hypometabolism 

and more likely to have suboptimal outcomes. The combination of [18F]FDG-PET and MRI 

lesion status were stronger predictors of outcome than using either alone in our machine 

learning models. Therefore, all machine learning models included these clinical variables: 

lesion status, qualitative extent of PET hypometabolism, and localization of ictal EEG 

abnormalities.

The best predictive models in our study incorporate quantitative imaging features (Models B 

and C) compared to clinical variables alone (Model D) or standard of care (Model A). Model 

B had a 71% out-of-bag accuracy for identifying patients with seizure recurrence (Engel 

Class IB or greater) which was 10% better than standard of care. Models B and C 

outperformed clinical only models in all subgroup analyses, including seizure recurrence 

within Engel I (Engel IA vs. IB–ID) as well as left-only and right-only temporal lobe 

patients. Our results suggest additive value to using quantitative PET features to augment 

clinical PET reads in patients with unclear lateralization or subtle imaging findings. In 

particular, our findings suggest higher surgical outcome prediction accuracy using 

quantitative PET measures in right-temporal lobe patients alone as compared with prediction 

accuracy in left-temporal lobe patients alone. Right-temporal lobe cases had an accuracy of 

72% predicting seizure recurrence when using quantitative PET variables compared to left-

temporal cases which had an accuracy of 64%. This discrepancy between right-only and left-

only cohorts is concordant with other recent studies [8,9]. One possibility is that patients 

with right MTL epilepsy have greater rates of bitemporal hypometabolic changes (especially 

contralateral temporal lobe hypometabolism portending poorer prognosis) whereas those 

with left MTL epilepsy have more extensive ipsilateral temporal lobe hypometabolism (as 

found in Cahill et al., 2019). These findings may be better identified by quantitative features 

computed across all regions of the brain and fed into the model. Future studies could 

validate these findings by incorporating extent of the resection zone as determined by 

postresection imaging to validate these findings. Quantitative asymmetry features in the 

middle frontal gyri, supramarginal gyri, and other extratemporal regions were important 

variables in ensuring high accuracy, as shown by features listed in Table S3. A recent study 
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pinpointed important extratemporal regions with early electrical spread of seizures that were 

highly predictive of surgical failures, such as the anterior lateral temporal cortex, insulo-

fronto-opercular areas, and perisylvian areas [9]. Another study demonstrated that ipsilateral 

temporo-polar hypometabolism is predictive of favorable surgical outcome in mesial 

temporal lobe epilepsy [4]. All these areas overlap with broader regions we identify in our 

study.

The most important distinguishing factors based on the list of quantitative features generated 

from feature selection involve different asymmetry-based features in regions known to play 

important roles in seizure spread of the mesial temporal lobe (MTL) epileptic network in 

both structural and functional investigations [4,28]. Asymmetry-based features in these 

regions and their contralateral equivalents, as well as deep subcortical volumes (such as the 

thalamus), were identified (Table S3).

Manno et al., 1994 [3] were the first to compute quantitative imaging features from 

[18F]FDG-PET images to predict outcome at 1 year in anterior temporal lobectomies; it was 

determined that asymmetry of temporal hypometabolism (computed using asymmetry index) 

was a sensitive and specific predictor (78% sensitivity/73% specificity) of surgical outcome. 

Wong et al., 2010 [28] showed that hypometabolism was present in the ipsilateral frontal 

lobe, insula, and some ipsilateral occipital regions in patients with MTL epilepsy and 

hippocampal sclerosis (HS). Our feature space included asymmetry indices computed in 

these 3 regions, as well as additional frontoparietal regions. There were a few highly ranked 

extratemporal regional predictors in our models, but temporal asymmetry was still a better 

predictor than extratemporal predictors (e.g., superior temporal gyrus, transverse temporal 

gyrus). While past studies may have been ambivalent about using thalamic hypometabolism 

to predict seizure recurrence [28–31], our best-performing models suggest thalamic 

asymmetry to be a feature of consideration. Specifically, quantitative thalamic PET 

asymmetry regardless of hemisphere of surgery meant higher likelihood of seizure freedom, 

suggesting it may be a useful indicator of lateralization within a broader network.

Our study has some limitations. First, this is an exploratory study that aims to estimate the 

value of adding quantitative PET features using a cohort of patients with heterogeneous 

clinical features. Along these lines, the codification of clinical imaging reports may not fully 

capture the findings and impression as intended or communicated during routine clinical 

evaluation. Second, since our model was only trained on temporal lobe epilepsy patients, it 

cannot be generalized to extratemporal lobe epilepsy. Third, we did not consider the extent 

of resection and its effect on outcome, as has been attempted in a prior study [5]. Future 

studies incorporating quantitative image features from MRI such as extent of resection, 

adjacent gliosis, and overlap of MRI resection with quantitative PET abnormalities may 

provide additional benefit as has been shown in previous studies [8]. Co-registration of MRI 

and PET data or simultaneous PET/MRI acquisition with newer instruments is also worthy 

of future study.

The authors further recognize that our study cohort is imbalanced with a high proportion of 

Engel IB and worse outcomes (64/96). Machine learning techniques tend to underperform 

on the minority class, in this case representing Engel IA seizure freedom. Though beyond 
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the scope of this study, one way to overcome this imbalance is to oversample the minority 

class, a technique known as Synthetic Minority Oversampling Technique (SMOTE). This 

technique was recently applied to a machine learning study in a temporal lobe epilepsy 

cohort [32] and a point of consideration for future epilepsy studies. The authors also 

acknowledge that our demonstrated improvement in out-of-bag accuracy does not 

necessarily imply statistical significance. It is a well-known issue that it is possible to obtain 

results that appear better than chance with small datasets that are randomly generated [33]. 

One way to test this is to shuffle classifiers (e.g., Engel class outcomes) with each iteration 

and make a correction to the real dataset [34]. Though not performed in our study, it is an 

important consideration for future studies working with small neuroimaging samples.

Lastly, our models risk overfitting because of the large set of features computed, but the 

feature reduction step performed within each bootstrap mitigates that risk. Since the primary 

goal of this study is to measure the value of including quantitative imaging features over 

outcome models using clinical variables, this method of feature selection allowed us to build 

the most generalizable model within our sample size. These features should be investigated 

further in a larger prospective cohort, ideally including a large number of extratemporal lobe 

patients. Our randomization process created an equal distribution of suboptimal and good 

outcome patients in each bootstrap stratified cohort, ensuring the generalizability of this 

study. Furthermore, in distinction to prior studies focused on the temporal lobe epilepsy 

population, our investigation included a balance of lesional (55) and nonlesional (41) 

patients. A minor limitation of this study is that PET studies were performed across a variety 

of instruments, including PET only and PET/CT, however, this is unlikely to have influenced 

our algorithm which focused on asymmetry. Future studies investigating voxel-wise whole 

brain and ROI-based classifiers will likely be useful in translating PET machine learning 

imaging algorithms into clinical radiology decision support.

In conclusion, when combined with typical clinical variables (EEG, MRI lesion status, and 

qualitative PET reads), quantitative FDG-PET imaging features derived from asymmetry 

using established and readily available software can predict long-term seizure recurrence 

after epilepsy surgery in MRI lesional and nonlesional patients with temporal onset. Imaging 

features derived from a machine learning approach show promise in elucidating the 

underlying pathophysiologic networks of epilepsy and lay groundwork for incorporating 

computer-assisted modeling into clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Workflow of data collection and analysis. All patients since 2003 who under surgical 

resective therapy for epilepsy were retrospectively screened according to inclusion and 

exclusion criteria. The included patients were then screened for availability of preoperative 

PET and MRI images. Clinical variables were determined by retrospective study of surgical 

case conference notes and medical records where available. Surgical outcome, scalp-EEG, 

and neuroradiology reads were confirmed by board-certified neurologists (M.G-B., K.D.) 

and radiologists (A.T., J.D.). All PET imaging was then processed using the computational 

pipeline outlined in Fig. 2, filtering out any imaging that was corrupt or unable to be 

processed. The final cohort of n = 96 patients (89 temporal) was then used as the cohort for 

models to subsample from and predict surgical outcome.
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Fig. 2. 
Computational pipeline. Computational pipeline that processes raw PET to generate 

quantitative imaging features across AAL region of interests (ROIs). First, a small subset of 

patient MRI and PET images are used to create a group-specific template in order to 

increase registration and segmentation accuracy when warping the AAL atlas to the patient’s 

native PET domain. Second, all patient raw PET images are registered to its mirror image in 

order to generate a voxel-based asymmetry index measure. These processed results are then 

averaged and quantified across all gray matter AAL ROIs in order to generate the feature 

vector for each patient. All feature vectors across patients, along with one-hot encoded 

clinical variables, are merged to create the final feature matrix for model investigation.

Kini et al. Page 14

Epilepsy Behav. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Quantitative imaging features. Quantitative asymmetry features can be visualized to 

highlight areas of asymmetry. In this figure, we show sample asymmetry feature maps 

derived from the pipeline for a patient with focal hypometabolism in the left-temporal lobe 

and parietal regions. The original PET (axial and coronal) is shown on the left. The flipped 

version of the same PET is shown in the middle. And, the voxel-based asymmetry map is 

shown on the right panel with blue indicating negative asymmetry and red indicating 

positive asymmetry (larger than corresponding contralateral region). Only gray matter 

regions in the AAL parcellation scheme were averaged and used in our models. White 

arrows indicate areas of hypometabolism that were noted in clinical PET reads. In this case, 

there were multiple areas of hypometabolism, most notably in the anterior temporal, 
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posterior inferior temporal, and parietal regions. The asymmetry map is a normalized ratio 

and is unitless.
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Fig. 4. 
Distribution of surgical outcomes as a function of time since surgery. Histogram of surgical 

outcomes for all patients as a function of time of Engel outcome evaluation in months, with 

major timepoints in years following surgery and color-coded according to the outcome at the 

most recent office visit.
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