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ABSTRACT

Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that
integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were
applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating
the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma Cmax) were
estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using
a battery of in vitro NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated
and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general
bioactivity (ToxCast data, an in vitro cell stress panel and high-throughput transcriptomics). In addition, in silico alerts for
genotoxicity were followed up with the ToxTracker tool. The PoDs from the in vitro assays were plotted against the
calculated in vivo exposure to calculate a margin of safety with associated uncertainty. The predicted Cmax values for face
cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not
genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulatory effects at consumer-
relevant exposures. In conclusion, this case study demonstrated the value of integrating exposure science, computational
modeling and in vitro bioactivity data, to reach a safety decision without animal data.
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The ambition to conduct human health risk assessments with-
out generating new animal data has resulted in intense efforts
over the past few decades from industry, academia, and regula-
tory bodies to develop and apply new approach methodologies
(NAMs) that can form the basis of integrated testing and assess-
ment strategies designed to prevent harm to human health

(Carmichael et al., 2009; Council, 2007; Desprez et al., 2018;
Thomas et al., 2019; Westmoreland et al., 2010). The momentum
created by these efforts has led to a number of studies that
employed 1 or more NAMs in risk assessment. The studies that
focused on specific pathways, such as DNA damage for querce-
tin (Adeleye et al., 2015), estrogenic (Becker et al., 2015), and
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antiandrogenic activity (Dent et al., 2018b) using the concept of
Dietary Comparator Ratio have provided a valuable insight into
how adverse outcome pathways (AOPs) can be put into the con-
text of safety assessment (Carusi et al., 2018; Villeneuve et al.,
2014). However, it may not always be necessary or possible to
identify a specific pathway or AOP for a chemical to carry out a
risk assessment. In some cases, risk assessments can be com-
pleted using low tier approaches such as exposure-based waiv-
ing (Yang et al., 2017), history of safe use (Constable et al., 2007;
Neely et al., 2011), read-across (Ball et al., 2016), or in vitro OECD
test methods that require minimal data generation (eg, geno-
toxicity, skin, and eye irritation) (OECD, 2017, 2018a,b, 2019a,b).

Despite the rapid advances in biotechnology and computa-
tional modeling, regulatory safety assessment of new chemicals
continues to rely heavily on in vivo testing in animals, particu-
larly for higher tier hazard endpoints, such as systemic toxicity.
The rapid evolution in technology might be part of the chal-
lenge; numerous different cell-based assays (eg, high-content
screening, omics, and reporter cell lines) and a variety of com-
putational models are available, but guidance on how to com-
bine NAMs in a weight of evidence approach to ensure the
robustness and transparency of future risk assessments is still
required. Toward that end, the International Cooperation on
Cosmetics Regulation (ICCR), a voluntary international group of
cosmetic regulatory authorities, has recently outlined the major
overarching principles for incorporating NAMs into an inte-
grated strategy for “Next-Generation’ Risk Assessment” (NGRA)
(Dent et al., 2018a). A subsequent report provided supplemen-
tary guidance on the types of NAMs that may be used in risk as-
sessment of cosmetic ingredients, aligning them to the different
tiers of the SEURAT-1 ab initio workflow for systemic repeat-
dose toxicity (Berggren et al., 2017; ICCR, 2018).

In this work, we set out to integrate currently available
NAMs in an ab initio risk assessment of a cosmetic ingredient to
make a safety decision without using any in vivo animal data.
To our knowledge, this is the first comprehensive study that
brings together available NAMs to fully address more complex
health effects associated with systemic exposures. Coumarin,
present as an ingredient in hypothetical face cream and body
lotion products, was selected as a case study chemical based on
the availability of the existing exposure data and its relevance
as a cosmetic ingredient (EFSA, 2008). The NGRA carried out was
exposure-led and hypothesis-driven guided by the ICCR princi-
ples and based solely on in silico, in chemico, and in vitro data.

The overall strategy of the presented NGRA involved collect-
ing and generating a broad suite of bioactivity data to provide a
comprehensive set of biomarkers which were used to measure
the bioactivity of the ingredient at consumer-relevant concen-
trations. Relevant internal exposures were estimated using a
physiologically based kinetic (PBK) model for coumarin for ex-
posure scenarios based on the habits and practices of the
European demographic (Hall et al., 2007; SCCS, 2018). Biomarkers
were selected to provide evidence of whether coumarin may
cause specific cellular effects (eg, due to G protein-coupled
receptors [GPCR] receptor binding) or nonspecific effects (eg,
changes reflective of cellular stress). The presented strategy is
closely aligned with the recently published NexGen blueprint
for toxicology from the U.S. EPA (Thomas et al., 2019), a tiered
guidance on how to characterize the mode of action (MoA) of a
chemical at consumer-relevant concentrations. In cases when a
chemical elicits nonspecific effects, which is particularly rele-
vant to cosmetic ingredients, a point of departure (PoD) is de-
rived using the most sensitive pathway or phenotypic effect.
Such a derived PoD does not aim to identify a specific adverse

outcome or pathology but rather aims to be protective of human
health by estimating an exposure at which no biological re-
sponse is expected (Friedman et al., 2020; Wetmore et al., 2015).

MATERIALS AND METHODS
Scope of the Risk Assessment

Because the purpose of this study was to perform an NGRA for
systemic toxicity using novel safety assessment tools (exclud-
ing read-across and exposure-based waiving), local endpoints
such as skin sensitization and phototoxicity were excluded
from the study, and coumarin was treated as a novel chemical,
despite it having been extensively studied in the literature.
Furthermore, these endpoints can be addressed with estab-
lished nonanimal approaches (OECD, 2018a,b, 2019a,b).

Overview of the Risk Assessment Approach

The workflow for the coumarin case study, presented in
Figure 1, was shaped based on the principles underpinning the
use of NAMs in the safety assessment of cosmetic ingredients
(Berggren et al., 2017; Dent et al., 2018a). It uses an iterative,
hypothesis-driven decision-making process to guide the risk as-
sessment from problem formulation to safety decision. The first
steps consisted of estimation of exposure levels based on the
use-case scenario and consumer habits (“Exposure Estimation”
step), together with other existing information on the chemical
structure, in silico tool predictions (physicochemical properties,
structural-based hazard alerts) and pre-existent (ToxCast and
PubChem only) bioactivity data (“Collate existing information”
step). Systemic exposure levels were estimated using a PBK
model (Moxon et al., 2020). Next, to identify or develop mecha-
nistic hypotheses, or to derive PoDs based on biological path-
way or cellular phenotype perturbation (Thomas et al., 2019),
new in chemico and in vitro bioactivity data were generated. This
comprised high-throughput assays based on single and short-
term exposures using 2D cell line models. A review of the in silico
predicted metabolism and results from ToxTracker revealed
that there was insufficient confidence in the PoDs generated in
these 2D cell models due to their poor metabolic competence,
and therefore a safety decision could not be reached using these
data alone. Consequently, in the “Metabolism refinement” step
a subset of the in vitro assays were repeated in 3D HepaRG mod-
els. In addition, to further refine the in silico predicted metabo-
lism, a metabolite identification study was carried out in
primary hepatocytes and a metabolic pathway proposed.
Finally, all PoDs were compared with exposure estimates
(plasma Cmax) to calculate a margin of safety (MoS) distribution
which is used in the risk assessment decision.

Exposure Estimation

Use Scenario and Consumer Practices and Habits Information
Inclusion of 0.1% coumarin in 2 cosmetic product types, face
cream and body lotion were selected as hypothetical use-case
scenarios. Corresponding consumer habits and practices infor-
mation (Hall et al., 2007) are summarized in Table 1.

Applied Dose and PBK
Under normal use conditions dermal exposure was the only an-
ticipated route of exposure expected for the 2 product types.
The applied dose, which was calculated from consumer habits
and practices information presented in Table 1, was used as an
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input to a PBK model of coumarin to estimate the systemic ex-
posure levels. The methodologies used to produce the PBK mod-
els are published elsewhere (Moxon et al., 2020). In brief, models
were parameterized using in silico generated values, and a sensi-
tivity analysis performed to understand which of these parame-
ters will have the greatest impact on the model output (Cmax).
For the most sensitive parameters, experimental data were gen-
erated and then the model was reparametrized, and Monte
Carlo simulations were conducted using GastroPlus v9.6
(Simulations Plus, Inc) to quantify the uncertainty of model out-
puts based on population variability and input parameter
uncertainties. The results were expressed as the distribution of
plasma Cmax.

Collation of Existing Information

Molecular Structure and In Silico Predictions
Coumarin (CAS No. 91-64-5) is an aromatic organic chemical
compound classified as a member of the benzopyrone family.
The in silico tools ToxTree, OECD Toolbox, Derek Nexus, Meteor
Nexus, TIMES, and molecular initiating events (MIE) ATLAS (see

Supplementary material) were run to predict the potential bio-
logical activity of coumarin, identify the active groups and pre-
dict its metabolic fate.

Free concentration was predicted by a steady-state mass bal-
ance partitioning model based on published models (Armitage
et al., 2014; Fischer et al., 2017; Kramer et al., 2012). The model is
parameterized to describe a specific in vitro assay setup and
uses coumarin’s physicochemical properties to predict the par-
titioning of the chemical into each compartment (media, cells,
plastic, etc.) (Supplementary material).

Literature Review
ToxCast data were extracted from the current version of the
in vitro database using the CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard/dsstoxdb/results?search¼DT
XSID7020348; accessed August 8, 2019). All dose-response curve
fits were manually inspected, and graphs exported for the assays
considered active (Supplementary material). PubChem data were
extracted from the bioassays database (https://pubchem.ncbi.
nlm.nih.gov/compound/323; accessed August 8, 2019).

Table1. Summary of Habits and Practices Data and Applied Dose Estimates for Face Cream and Body Lotion for the European Consumer

Product Types Face Cream Body Lotion

Amount of product used per day (g/day) using 90th percentilea 1.54 7.82
Frequency of useb 2 times/dayc 2 times/dayd

Amount of product in contact with skin per occasion (mg) 770 3910
Ingredient inclusion level 0.1% 0.1%
Skin surface area (cm2)b 565 15670e

Leave on or rinse off Leave on Leave on
Exposure duration per occasion 12 h 12 h
Amount of ingredient in contact with skin per occasion (mg)f 0.77 3.91

aHall et al. (2007).
bSCCS (2018).
cRounded from 2.14 times/day.
dRounded from 2.28 times/day.
eSpecified as Leg region in GastroPlus.
fBased on 100% skin penetration and a body weight of 66.7 kg.

Source: Adapted from Moxon et al. (2020).

Figure 1. Next-Generation Risk Assessment case study workflow for 0.1% coumarin in consumer products. Initial steps involved collating existing data, generating in

silico predictions, and problem formulation. In parallel, applied and systemic consumer exposure estimates were calculated based on the use scenario, habits and prac-

tices information, and chemical parameters. A battery of in vitro assays was then conducted to characterize the cellular response to coumarin. From these data, point

of departure (PoD) values with associated uncertainties were determined, however, the lack of metabolic capacity of the cell line models used, and the potential toxic-

ity of reactive metabolites led to the generation of additional data (metabolism refinement). All PoDs were compared with exposure estimates (plasma Cmax) to calcu-

late a margin of safety, which was used for the risk assessment decision. Abbreviations: HTTr, high-throughput transcriptomics; IVIVE, in vitro to in vivo extrapolation.
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In Vitro Biological Activity Characterization

Genotoxicity Assessment: ToxTracker
The ToxTracker assay and data analysis were performed as pre-
viously described (Hendriks et al., 2016). Cells were treated in 3
independent replicates with 5 concentrations of coumarin (62.5,
125, 250, 500, 1000 mM) for 24 h, in the absence or presence of
0.25% rat S9 liver extract and required cofactors (RegenSysAþB,
Moltox). ToxTracker is considered positive when a compound
induces a minimum 2-fold increase in green fluorescent protein
(GFP) induction in any of the reporters.

In Vitro Binding and Enzymatic Assays: Eurofins SafetyScreen44
The panel consists of 24 GPCRs, 7 enzymes, 2 nuclear receptors,
8 ion channels, and 3 transporters (Supplementary material).
The experiments were carried out at Eurofins Cerep SA using
coumarin sourced from Sigma-Aldrich (C4261, purity > 99%) at
10 mM using 2 replicates. Compound binding from the assay was
calculated as a percentage inhibition of the binding of a radioac-
tively labeled ligand specific for each target (Supplementary
material). Compound enzyme inhibition effect was calculated
as a percentage inhibition of control enzyme activity.

Immunomodulatory Screening Assay: BioMap Diversity 8 Panel
The BioMap Diversity 8 Panel consists of 8 cell-based human
primary cell cultures (or cocultures) that have been activated
using various stimulants (Supplementary material). Two inde-
pendent datasets were generated using this panel for coumarin,
1 through the ToxCast program (see above) and 1 as part of this
study. Coumarin was added to each system (n¼ 1) for 24 h at 4
concentrations (18.5, 55.6, 166.7, 500 mM). Detailed methods, in-
cluding preparation and culture of cells, biomarker readout
measurements, and statistical analyses, have been described
previously (Bergamini et al., 2012). Biomarkers are annotated if:
(1) 2 or more consecutive concentrations are changed in the
same direction relative to vehicle controls, (2) at least 1 readout
is outside of the significance envelope, (3) and at least 1 concen-
tration has an effect size > 20% versus vehicle controls. A lowest
observed effect level (LOEL) was defined for each cell system as
the lowest concentration at which a biomarker met the criteria
mentioned above.

In Vitro Cell Stress Panel and Bayesian Concentration-response
Analysis
Coumarin was tested in 2D HepG2 cells using a recently devel-
oped cell stress panel (Hatherell et al., forthcoming). The panel
comprises biomarkers that cover 8 key stress pathways
(Simmons et al., 2009), mitochondrial toxicity and general cell
health (Supplementary Table 3). Measurement timepoints were
1, 6, and 24 h in HepG2 cells at 8 concentrations (0.0128, 0.064,
0.32, 1.6, 8, 40, 200, 1000 mM). This was subsequently extended to
2D normal human epidermal keratinocytes (NHEK) using a re-
duced panel (Supplementary material).

Concentration-response analysis of the stress panel data
was performed using a Bayesian statistical model as described
in Hatherell et al. (forthcoming). Briefly, the model is fitted to
the data for each biomarker and timepoint separately. From the
fit we calculate a concentration dependency score (CDS), which
is a measure of the confidence that the test chemical induces a
concentration-dependent effect on the biomarker. CDS values
range between 0 and 1, with 1 indicating strong evidence of an
effect and 0 strong evidence against. Only concentration-
response data sets for which CDS > 0.5 were used to calculate a

PoD, this being defined as the lowest concentration inducing a
response more than 2 standard deviations from the baseline.

High-throughput Transcriptomics
Cell treatment and lysate generation for transcriptomics. High-
throughput transcriptomics (HTTr) method used was TempO-
Seq (BioSpyder Technologies). HepG2, MCF7, and HepaRG 2D (3
biological replicates each) were treated for 24 h with 6 concen-
trations of coumarin (0.001, 0.01, 0.1, 1, 10, and 100 mM) using
0.5% DMSO as a vehicle control (Supplementary material).
Following treatment, cells were washed in calcium and
magnesium-free 1� PBS. After removal of all residual PBS, 2�
TempO-Seq lysis buffer (BioSpyder Technologies, proprietary
kit) was diluted to 1� with PBS and added at a volume of 1 ml per

1000 cells with a minimum of 10 ml per well and incubated for
10 min at room temperature. Following lysis, the samples were
frozen at �80�C prior to sequencing.

RNA-seq and statistical analysis workflow. A consistent workflow
was used for determination of a transcriptional point of depar-
ture (PoDT) from gene expression data using regular established
methods available from the literature, broken down into 3 key
steps.

(1) SAMPLE GENERATION AND QC. TempO-Seq analysis was per-
formed as described previously (Yeakley et al., 2017), with a tar-
geted sequence depth of 200 mapped read counts per transcript
including the use of the general attenuation panel. The data
analysis pipeline followed a similar QC and selection criteria
from (Ramaiahgari et al., 2019) with the following modifications.
Samples below a read depth of approximately 200 reads per
gene were removed from further analysis. Normalization was
performed using the rlog transformation from DESeq2 (Love
et al., 2014) with outliers removed where replicates of matched
samples had a correlation of < 85% and identified within a prin-
cipal component analysis.

(2) DIFFERENTIAL EXPRESSION ANALYSIS. Differential expression
analysis was performed using DESeq2 analysis (Love et al., 2014)
combining either 3 or 5 biological replicates at each treatment
concentration against the vehicle control as the primary com-
parison. Genes were considered differentially expressed using
either a p-adj value of < 0.05 or a p value of 0.05 combined with
a 1.5-fold change response.

(3) PATHWAY ANALYSIS AND POD DETERMINATION. For the
concentration-response analysis samples were filtered in
BMDexpress2 (Phillips et al., 2019), using a Williams t test with a
threshold of p< 0.05 and a minimum required fold change of
1.5. Data were fitted to 6 different models: Poly2, Exp3, Exp4,
Exp5, Power, and Hill. Model selection was based on Akaike
Information Criteria. A Benchmark Response factor of 1.349-fold
(10%) was used to determine the PoD at a gene level, with a sub-
sequent threshold fit p value filter was used of greater or equal
to 0.1. At a functional level a mean pathway Benchmark Dose
(BMD) was generated based on the Reactome database with
pathways defined as altered that contained at least 3 input
genes passing the following thresholds of Fishers Exact test of
p< 0.1 with and a lower bound (BMDL)/the upper bound (BMDU)
ratio of < 40. Final PoDT was determined based on a subset of
methods (1, 3, 4, 5, 9) outlined in Farmahin et al. (2017) (Table 5).
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Metabolism Refinement

Coumarin Metabolism in Primary Hepatocytes Using CYP2A6
Inhibition
Coumarin metabolic stability screening in expressed human
CYP and UGT isoforms (CYP1A2, CYP2A6, CYP2C8, CYP2C9,
CYP2C19, CYP2D6, CYP3A4 and UGT1A1, UGT1A3, UGT1A6,
UGT1A9, UGT2B7) identified CYP2A6 as the only enzyme metab-
olizing coumarin (Supplementary material). Pooled human cry-
opreserved primary hepatocytes (human tissues are only
obtained from donors with valid, written consent following full
ethics approval prior to tissue collection; 50 multidonors,
BioIVT, lot no. YQV) in suspension at a cell density of 0.5 million
cells per ml, were incubated at 37�C up to 90 min with 10 mM
coumarin (final concentration of 0.25% DMSO) without and with
tranylcypromine (0.5, 2 mM) to inhibit the CYP2A6-specific reac-
tion. A second experiment was conducted at a higher concen-
tration of coumarin (1 mM) without the inhibitor, to saturate the
7-hydroxycoumarin pathway; all experiments were performed
in duplicate. Full scan liquid chromatography-mass spectrome-
try data were acquired using multienergy time-of-flight acquisi-
tion (Waters Xevo G2 Q-ToF in MSE mode). The data were
interrogated for the masses associated with the metabolites
predicted by Meteor Nexus (Supplementary material). All possi-
ble metabolites were reported based on the Meteor Nexus out-
put and observed fragments. Metabolites were reported as “%
total peak area” and “% parent peak area at T¼ 0.”

Short- and Long-term Exposure in 3D Tissues
Additional cell stress panel assays were conducted in HepaRG
3D cultures (Supplementary material) using a reduced version
of the panel at the same concentrations (single dose) as per-
formed in 2D cells, however, longer exposure durations were
used (24, 72, and 168 h). HTTr was performed in additional

HepaRG 3D cultures (5 biological replicates) at the same concen-
trations and duration as previously described for the 2D models.

Determination of the MoS

For a given PoD, the MoS was defined as the ratio between the
nominal concentration at which the PoD is defined, and the rel-
evant plasma Cmax estimate (Figure 2). Distributions were
obtained for plasma Cmax and stress panel PoDs as described
above; only point estimates were available for PoDs obtained
from the remaining sources (transcriptomics data, ToxCast,
PubChem). To calculate the corresponding MoS distributions
(which propagates uncertainty in the PoD and Cmax estimates),
a Monte Carlo approach was used. This entails generating mul-
tiple MoS samples, whereby a single sample is calculated by
resampling the Cmax distribution and then resampling either
the PoD distribution (in case of cell stress panel PoDs) or the
PoD point estimate (for all other PoDs). Statistics on the MoS
(e.g. percentiles, mean, median) were then calculated from
these samples using standard approaches (Gelman et al., 2013).

RESULTS

A schematic overview of the key results and how they lead to
the risk assessment conclusion is provided in Figure 3.

Exposure Estimation
Systemic exposure (mean plasma Cmax) to coumarin from daily
application use of a face cream or a body lotion was estimated
to be 0.01 and 0.0022 mM, respectively (Table 2). Coumarin was
predicted to be cleared mainly via metabolism by the Extended
Clearance Classification System (Varma et al., 2015); CYP450 iso-
forms stability data showed to be exclusively by CYP2A6 with a
half-life of < 5 min in microsomes, and 13 min in human cryo-
preserved hepatocyte stability assays (Supplementary material).

Figure 2. Cmax and points of departure (PoDs) were inferred as probability distributions encompassing the uncertainty in their estimates. The margin of safety (MoS)

was defined as the PoD/Cmax ratio. The uncertainty in the Cmax and PoD estimates is propagated through this calculation such that MoS estimate is also a distribution.

When the distribution for the PoD is predominantly lower than the distribution for the Cmax (exposure > bioactivity), this produces a distribution for the MoS in which

almost all mass is less than 1. Conversely, if the distribution for the PoD was predominantly greater than the Cmax distribution (exposure < bioactivity), almost all the

mass of corresponding MoS distribution is greater than 1. When the distributions for the Cmax and PoD strongly overlap (exposure � bioactivity), these results in an

MoS distribution centered around 1. The location of the 5th percentile for the MoS is as illustrated on the graph (green line). For this value to be greater than 1 the PoD

must, on average, be greater than the Cmax.
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Nevertheless, for this exposure scenario, concentration is never
completely cleared from the plasma due to the prolonged appli-
cation time (12 h) and slow absorption/clearance into and from
the plasma. Steady-state plasma concentrations were reached
within 5 days for face cream and 20 days for body lotion.

Collation of Existing Information
In silico predictions. ToxTree predicted that coumarin belongs to
the Cramer class III (Cramer et al., 1976; Patlewicz et al., 2008)
and can bind to proteins and DNA via Michael addition and acyl
transfer mechanism. Similarly, the OECD toolbox predicted
binding to DNA and proteins via SN2 mechanisms after oxida-
tion to epoxide. No positive results were obtained from the MIE
ATLAS tool (Table 3).

Based on the predicted rapid metabolism and the in silico
predictions of toxic metabolite formation, Meteor Nexus was
run to simulate the potential metabolic pathway of coumarin.
Meteor Nexus identified hydroxylation as the main route of bio-
transformation followed by glucuronidation and sulfation with
a total of 22 possible metabolites. Meteor Nexus also predicted
the formation of epoxides (primary and secondary metabolites)
(Supplementary material). Table 3 shows the summary of in sil-
ico alerts for coumarin and its predicted metabolites. Most pri-
mary, secondary, and tertiary metabolites were predicted to
bind to proteins and DNA. Protein binding is a flag for skin sen-
sitization potential; however, this endpoint was considered out
of scope of this study. In summary, these in silico alerts indicated
a need to investigate the genotoxicity potential of coumarin and
its metabolites using an appropriate in vitro cell assay (namely
ToxTracker, see below).

The free fraction of coumarin in the culture media was pre-
dicted to be between 90% and 100%, based on coumarin’s rela-
tively low log P and low affinity to plasma (serum) proteins
(Supplementary material). For all evaluated in vitro setups, the
quantitative in vitro to in vivo extrapolation (QIVIVE) factor was
approximately 3 based on a free fraction in vitro of approxi-
mately 90% and a free fraction in vivo of approximately 30%. A
QIVIVE factor greater than 1 indicates that for the same total
medium and plasma concentration the resulting free concen-
tration, which is available for uptake into the cells is higher
in vitro compared with in vivo. This means that for coumarin an
initial risk assessment based on in vitro nominal and total
plasma concentrations is conservative and therefore nominal
concentrations were applied throughout.

Literature review. Coumarin was tested in 642 assays of the
ToxCast panel, 18 of which were considered active. It has been
previously noted that not all responses that the data processing
pipeline labels as “active” appear to be truly positive results,
therefore graphs were exported from the dashboard and curve
fits were manually curated (Filer et al., 2016). The most credible
hits in terms of quality of concentration-response and putative
MoA were the 3 concordant positive hit-calls in the cell-free en-
zymatic assays for inhibition of monoamine oxidases (MAO):
NVS_ENZ_rMAOBC (rat brain), NVS_ENZ_rMAOAP, and
NVS_ENZ_rMAOBP (both rat liver mitochondrial membranes)
(Sipes et al., 2013) occurring at similar concentrations (15–19 mM).

PubChem contains 4254 records of biological tests carried
out using coumarin, of which only carbonic anhydrase (EC
4.2.1.1) and MAO inhibition assays were positive. Specifically,

Figure 3. Summary of the key results from each step on the Next-Generation Risk Assessment case study workflow (see Figure 1) for 0.1% coumarin in face cream and

body lotion. Abbreviations: HTTr, high-throughput transcriptomics; MoS, margin of safety; PBK, physiologically based kinetic; PoD, point of departure.

Table 2. Internal Exposures From Use of 0.1% Coumarin in Face Cream and Body Lotion Following the Exposure Scenario Outlined in Table 1

Total Plasma Cmax (mM) Mean Median 90th Percentile 95th Percentile 97.5th Percentile 99th Percentile

Body lotion 0.01 0.01 0.018 0.019 0.02 0.022
Face cream 0.0022 0.0021 0.004 0.0043 0.0046 0.005
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coumarin was found to interact with the carbonic anhydrase
type I with inhibitory constant (Ki) ¼ 3.1 mM, type II with Ki ¼
9.2 mM, and type IV with Ki ¼ 62.3 mM (Maresca and Supuran,
2010; Maresca et al., 2009). Coumarin showed very low inhibition
toward the other isoforms of carbonic anhydrase with Ki >
500 mM. In addition, coumarin was reported to inhibit MAO-A
and MAO-B with IC50 values of 12 mM and 40.7 mM, respectively
(Gnerre et al., 2000). For the MoS calculation, the following PoDs
were used: IC50s for MAO-A and MAO-B of 18.5, 15.8, and 19 mM
and Ki values for carbonic anhydrase I, II, and IV Ki of 3, 9.1, and
62.3 mM.

In Vitro Biological Activity Characterization
Genotoxicity assessment: ToxTracker. In silico analysis of coumarin
using DEREK Nexus, OECD QSAR toolbox, and ToxTree deter-
mined several genotoxicity alerts for its primary (n¼ 7), second-
ary (n¼ 12), and tertiary (n¼ 3) predicted metabolites
(Supplementary material). Thus, coumarin’s genotoxic poten-
tial was further investigated with the ToxTracker assay. In this
assay, a weak activation (between 1.5- and 2.0-fold) of the Rtkn-
GFP marker, associated with DNA double-strand breaks, was ob-
served in the presence of rat liver S9 (Figure 4). However, no ac-
tivation of the genotoxicity reporter Bscl2-GFP, which indicates
DNA replication inhibition and induction of promutagenic DNA
adducts, was observed in the absence or presence of S9. A weak
activation was observed for the p53 response (Btg2-GFP re-
porter) in the presence of S9 which suggests general cellular
stress (Hendriks et al., 2016; Karlsson et al., 2014). Similarly, ex-
posure to coumarin without metabolic activation induced the
oxidative stress reporter Srxn1-GFP, whilst in the presence of S9
both oxidative stress markers (Srxn1-GFP and Blvrb-GFP) were
activated. All controls caused GFP induction levels consistent
with historical data and demonstrated the functionality of the
mES reporter cell lines. No significant cytotoxicity occurred up
to the maximum tested concentration of 1000 mM in the absence
or presence of S9.

In conclusion, the weak activation of DNA damage reporters
in the presence of rat liver S9-mediated metabolism was not
sufficient to classify coumarin as genotoxic in the ToxTracker
assay. However, these results suggested that reactive coumarin
metabolite(s) could induce DNA lesions secondary to oxidative
stress, rather than directly interacting with DNA.

In vitro binding and enzymatic assays: Eurofins SafetyScreen44. The
SafetyScreen44 panel includes 44 targets associated with in vivo
adverse drug reactions (Bowes et al., 2012). Coumarin showed
no significant effect in any of the targets. The highest activity
was 22% and was recorded for MAO-A (Supplementary mate-
rial). This was consistent with the in silico predictions of the MIE
ATLAS.

Immunomodulatory screening assay: BioMap Diversity 8 Panel. To in-
crease the biological coverage, a screening panel of 8 primary
cell systems, that are stimulated to replicate complex cell and
pathway interactions of vascular inflammation, immune acti-
vation, and tissue remodeling, was conducted. The most sig-
nificantly affected biological readouts across all cell systems
in the BioMap Diversity 8 Panel were associated with antiproli-
ferative and tissue remodeling activities (Figure 5), and the
most sensitive cell system was the 3C endothelial cell system
where antiproliferation (�33%) was observed at the lowest
dose tested (18.5 mM). No biomarkers were affected in the LPS
or SAg-stimulated PBMC and endothelial cell coculture sys-
tems. No concentration-response was observed in the BioMapT
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data generated during the ToxCast program (see https://comp-
tox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID7020348; accessed August 8, 2019).

In vitro cell stress panel. Cellular stress-response assays are use-
ful to characterize nonspecific biological activity which is not

mediated via a specific protein/receptor interaction. Coumarin
data was previously published elsewhere (Hatherell et al., forth-
coming) and results are briefly described as follows. In HepG2
cells, a dose-response with a CDS > 0.5 was only observed for 4
biomarkers (ATP, GSH, phospholipidosis, and IL-8) out of the 36
biomarkers across the 10 pathways with PoDs in the 500–800 mM

Figure 4. A, The ToxTracker toxicity pathway markers Bscl2-GFP and Rtkn-GFP (DNA damage), Btg2-GFP (p53-associated cellular stress), Srxn1-GFP and Blvrb-GFP (oxi-

dative stress), and Ddit-GFP (unfolded protein response) observed by flow cytometry after 24 h exposure to coumarin (0, 62.5, 125, 250, 500, and 1000 lM) in mES cells. A

2-fold green fluorescent protein (GFP) induction level was defined as the threshold for a positive test result, whilst the cell survival rate determined by cell count was al-

ways > 25%. Each data point on the graph represents the mean fold induction of 3 independent experiments 6 SD. B, Summarized cell survival is expressed as the av-

erage across all cell lines and the 3 independent experiments 6 SD per concentration. .

Figure 5. An overview of coumarin activity in the BioMap panel. There was no cytotoxicity observed at any concentrations tested. Antiproliferation is indicated by a

gray arrow. Biomarkers are annotated if: (1) 2 or more consecutive concentrations are changed in the same direction relative to vehicle controls, (2) at least 1 readout is

outside of the significance envelope, and (3) at least 1 concentration has an effect size > 20%versus vehicle controls. A lowest observed effect level (LOEL) was defined

for each cell system as the lowest concentration at which a biomarker was significantly changed outside of the vehicle envelope and a dose-response was observed.
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range (Table 4). In NHEK cells, only the mitochondrial respira-
tion parameters (oxygen consumption rate [OCR] and reserve
capacity) decreased (Table 4). The lowest PoD observed in the
2D models was 44 mM for reserve capacity at 1 h, however the
PoD increased to approximately 700 mM at the later timepoints.
It is also worth noting that in this Seahorse assay the PoD was
uncertain, partially explained by plate effects in this experiment
(Supplementary material). All PoDs outlined in Table 4 were
used in the calculation of MoS.

High-throughput transcriptomics. Transcriptomics was applied as
a broad nontargeted biological screen of in vitro cellular pertur-
bation following coumarin treatment, to complement the tar-
geted assays (eg, Eurofins SafetyScreen44, and BioMap). Use of
concentration-response modeling of transcriptomics data has
been utilized to derive PoDs for chemical risk assessment
(Farmahin et al., 2017; Thomas et al., 2013, 2019) and to identify
potential MoAs for target organ toxicity (Limonciel et al., 2018;
Ramaiahgari et al., 2019). This study used 3 different cell lines
(HepG2, MCF7, and 2D HepaRG) to extend biological coverage
and address potential cellular variation in response to coumarin
including any consequences of metabolism. RNA-seq data have
been deposited in the ArrayExpress database at EMBL-EBI
(www.ebi.ac.uk/arrayexpress) under accession number E-
MTAB-8985 titled RNA-Seq of human cell lines, MCF-7, HepG2
and HepaRG treated with a dose range of Coumarin from 0.001
lM to 100 lM against untreated vehicle controls. No significant
cytotoxicity (> 20%) was observed in any of the cell lines up to
the maximum tested coumarin concentration (data not shown).

Differential expression analysis. DESeq2 is regarded as one of the
leading tools for pairwise differential expression analysis when
fewer than 12 replicates are used (Schurch et al., 2016). In gen-
eral, across the cell lines, treatment with coumarin resulted in
limited gene expression changes at concentrations below
100 mM suggesting limited cellular effects at lower concentra-
tions (Figure 6A). Specifically, in HepG2 cells there were no sig-
nificant gene changes (p-adj < 0.05) at concentrations under

1 mM. By 10 mM, only 10 genes were found to be differentially
expressed, which increased to 1081 genes at 100 mM (Figure 6A).
In the 2D HepaRG cell model the overall gene expression re-
sponse to coumarin was even weaker with 89 differentially
expressed genes identified at the highest concentration of
100 mM. Cytochrome P450 genes including both CYP3A4 and
CYP2A6 that have been reported to be potentially involved in
the metabolism of coumarin (Farinola and Piller, 2007) were
among those observed to be upregulated. In contrast, differen-
tially expressed genes were detected in MCF7 cells at 0.001, 0.01,
and 10 mM, but not at 0.1, 1, or 100 mM, with none of the genes ob-
served to be altered at the lower concentrations continuing to
be differentially expressed at the higher concentrations, sug-
gesting this effect was unrelated to the coumarin treatment
(Figure 6A).

Pathway analysis and PoD determination. There is still significant
discussion of what approaches to use for deriving a PoDT at
both gene and pathway level, and therefore multiple PODTs
were derived using several published methods (Farmahin et al.,
2017) that have been shown to correlate closely to BMDL de-
rived from equivalent treated samples using standard pathol-
ogy studies. These included the mean of the 20 pathways with
the lowest p value, or the 20 pathways with the lowest tran-
scriptional BMDs and finally the lowest pathway BMD that
meets the significant enrichment criteria. At the gene level this
included both the mean BMD of 20 genes with largest fold
change and the mean BMD of genes between 25th and 75th per-
centile. Only HepG2 met the recommendation (Farmahin et al.,
2017) that at least 20 pathways be detected to apply the
pathway-level tests (Table 5); no pathways were detected for
MCF7, reflecting the DESeq2 results, and 17 pathways were
detected using the 2D HepaRG cell model. Analysis of these
changes using the Reactome pathway database (Fabregat et al.,
2018) corroborates a shift in metabolic responses for HepaRG
2D with pathways such as Metabolism, Biological oxidations,
and Phase 1-Functionalization of compounds amongst the low-
est concentration related pathway responses (Figure 6B,

Table 4. PoDs From Cell Stress Panel After Acute Exposure (24 h) in HepG2 and NHEK and Long-term Exposure (168 h) in HepaRG 3D Spheroids

Biomarker Cell Type Stress Pathway PoD (mM) Effect CDS

ATP (6 h)
ATP (24 h)

HepG2 Cell health 794 (363–977)
617 (282–891)

Down
Down

0.98
1

Phospholipidosis (24 h) HepG2 Cell health 759 (437–977) Down 0.93
GSH (24h) HepG2 Oxidative stress 851 (301–1000) Up 0.92
IL-8 (24h) HepG2 Inflammation 912 (575–1000) Down 0.61
OCR (1 h)
OCR (6 h)
OCR (24 h)

NHEK Mitochondrial toxicity 62 (2.6–776)
468 (214–794)
309 (138–1000)

Down 0.6
1
0.52

Reserve capacity (1 h)
Reserve capacity (6 h)
Reserve capacity (24 h)

NHEK Mitochondrial toxicity 44 (23–96)
759 (302–1000)
794 (295–1000)

Down 1
0.9
0.55

Caspase 3–7 (72 h) HepaRG 3D Cell health 741 (245–977) Up 0.95
Cell membrane permeability (168 h) HepaRG 3D Cell health 55 (26–141) Up 0.99
ATP (72h)
ATP (168h)

HepaRG 3D Cell health 186 (129–288)
135 (85–195)

Down
Down

1

Phospholipidosis (168h) HepaRG 3D Cell health 776 (234–1000) Up 0.86
GSH (168 h) HepaRG 3D Oxidative stress 776 (275–1000) Down 0.92
Mitochondrial mass (72 h)
Mitochondrial mass (168 h)

HepaRG 3D Mitochondrial toxicity 871 (234–1000)
831 (275–1000)

Down
Down

0.65
0.73

Only PoDs from concentration-responses with CDS > 0.5 were considered as true representations of bioactivity. Reported values are the mode (most likely value in

bold) and 95% highest-density-interval (in brackets) summarizing the distribution for the PoD as reported in Hatherell et al. (forthcoming).
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Supplementary material). Where the number of pathways fell
below 20, all relevant pathways were included in the analysis.
Using this selection, the observed pathway-level PoDT ranged
from 44 mM to 58 mM across cell lines. Taking the lowest path-
way identified as the PoDT this value reduces to between 31
and 38 mM (Table 5).

In contrast, using the aggregated gene-level tests, the lowest
PoDT was 1 mM derived using the MCF7 cell line (Table 5).
However, the low number of genes that pass the gene-level test
filtering criteria, lack of detectable pathway responses, and
results from the DESeq2 analysis (described above) indicate that
evidence supporting this PoDT was weak. Using the more meta-
bolically competent and physiological-relevant 2D HepaRG cell
line resulted in a PODTs between 54 and 59 mM, where again the
cytochrome P450 genes were amongst the most sensitive, simi-
lar to the pathway-level test results. The gene-level test PoDTs
for HepG2s ranged between 6 and 17 mM and were slightly lower
than the values derived for the pathway-level tests.

In conclusion, the MCF7 PoDT was not considered to be suffi-
ciently robust to derive an MoS. Because there is still significant
discussion of which approach is the most appropriate to derive
a PoDT, the lowest PoDT for each cell model was selected (re-
gardless of method) for the MoS calculation, as this represented
the most conservative PoDT.

Preliminary MoS

All PoDs estimated from the cell stress panel and HTTr in the
2D systems provided an MoS of 706-96738 for face cream and an
MoS of 158-22048 for body lotion (Figure 3, Supplementary ma-
terial). The lowest MoS (158) across all assays generated at the
“In vitro bioactivity characterization” step was derived using the
PoD (represented by Ki) for the inhibition of carbonic anhydrase
I for the body lotion exposure (Figure 8). At this stage, sufficient
data had been generated to derive an MoS for coumarin itself,
however the weak activation of DNA damage reporters observed
in ToxTracker in the present of S9 increased our uncertainty

Figure 6. Summary of transcriptomic data analysis. A, Total Differentially Expressed Genes (DEGs) identified for each concentration for each cell line following DESeq2

analysis highlighting limited responses until the highest dose. B, Pathway based Benchmark Dose (BMD) mean accumulation plot. Each data point represents the total

number of Reactome pathways that met the significance criteria for both HepG2 (o) and HepaRG (h) cell lines plotted against the corresponding calculated BMD mean

value across the range of signaling pathways identified. The curves slope indicates the rate that pathways are showing differential regulation as concentration

increases. Labeled are the lowest reported Reactome pathways for each HepaRG and where they correspondingly are identified in the HepG2 accumulation curve.

Table 5. PoDT Values (mM) for Coumarin Treated Across 4 Cell Models for 24 h Using a Subset of Proposed Approaches for Gene Selection Based
on Those Proposed by Farmahin et al. (2017)

Cell Model HepG2 MCF7 HepaRG 2D HepaRG 3D

Pathway-level tests PoDT (mM) (308 pathways) (0 pathways) (17 pathways) (2 pathways)
20 pathways with the lowest p value Reactome 70 NA 58* 46*
20 pathways with the lowest BMD Reactome 44 NA 58* 46*
BMD of Reactome pathway with lowest BMD that
meets significance threshold criteria

31 NA 38 41

Gene-level tests PoDT (mM) (1570 genes) (47 genes) (87 genes) (9 genes)
Mean BMD of 20 genes with largest fold change 6 3 54 55
Mean BMD of genes between 25th and 75th percentile 17 1 59 46*

Highlighted (*) are values where the number of pathways or genes was below the recommended number (ie, 20) for grouping. Abbreviation: NA, not applicable.
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around the impact of toxic metabolites in the overall toxicity of
coumarin which might not be covered by the MoS obtained
above. Therefore, next steps included the generation of data in
more complex models with longer exposure duration, and the
investigation of coumarin’s metabolic fate in primary hepato-
cytes (Figure 3).

Metabolism Refinement

Coumarin metabolism in primary human hepatocytes
Human CYP2A6 was identified as the enzyme responsible for
the major route of biotransformation of coumarin in human
hepatocytes (Supplementary material ). To further investigate
other pathways of coumarin metabolism in humans, 2 high-
resolution mass spectrometry-based approaches for
metabolite-ID were used. In the first, a high (1 mM) concentra-
tion of coumarin was used to saturate the CYP2A6 pathway. In
the second, a lower concentration of coumarin (10 mM) was
used, both with and without inhibition of CYP2A6 (using either
0.5 or 2 mM tranylcypromine, based on the method of
Taavitsainen et al. [2001]). Across all experimental conditions
the metabolites detected were different forms of hydroxylated
coumarin including 7-hydroxycoumarin and its glucuronide or
sulfated conjugates (Figure 7). These hydroxylated metabolites
were detected in lower amounts in the presence of tranylcyrop-
amine but did not differ significantly between the 10 lM and
1 mM coumarin concentration groups, indicating that the path-
way had become saturated. Also observed in all concentration
groups (and therefore not impacted by the inhibitor) were frag-
ments of 2 metabolites (m/z 107 and 119 in negative ion MS); the
lower mass fragment coeluted with a signal which was consis-
tent with hydroxyphenylacetic acid (o-HPAA), and the higher
mass fragment could arise from o-hydroxyphenylacetaldehyde
(o-HPA), which has been reported to be the major metabolite in
other studies (Fentem and Fry, 1992). These fragments were mi-
nor metabolites at 10 lM but were the most intense signals at
1 mM, indicating a pathway that becomes significant only at
concentrations significantly above expected exposure levels. A
further metabolite, corresponding to the diol arising from hy-
drolysis of an epoxide, was detected at low levels only in the
1 mM concentration group. The overall proposed coumarin me-
tabolism pathway, using both experimental conditions, is sum-
marized in Figure 7.

Short- and long-term exposure in 3D tissues
To increase our confidence in the initial PoDs from the 2D cell
models using the cell stress panel, coumarin was tested for lon-
ger exposure durations in a 3D HepaRG model with potentially
higher metabolic capacity and in vivo-like physiology than
HepG2 cells (Ramaiahgari et al., 2017). Even though spheroid
size was unchanged throughout the duration of the experiment,
early signs of cell damage were observed at low concentrations
with a dose-dependent increase in cell permeability at 168 h
(PoD ¼ 56 mM), and ATP decrease at 72 and 168 h (PoD ¼ 190 and
144 mM, respectively) (Table 4). At higher concentrations (ap-
proximately 700 mM) a mixture of biomarkers related to mito-
chondrial toxicity, oxidative stress, and cell health were
affected (Table 4). It is worth noting that in this system there
were no changes at 24 h in contrast to biomarker changes in
HepG2 and NHEK at earlier timepoints.

Similarly, HTTr was repeated in a HepaRG 3D model where
cells were exposed to coumarin for 24 h. Using the same analy-
sis approaches as previously described, the response observed
was very limited for DESeq2 with only 4 genes meeting the p-adj
value of .05, all seen at the top dose (200 mM) (Supplementary
material). Similarly using BMDexpress2 only 9 genes passed the
Williams trend test for dose-response with a greater than 1.5-
fold change. Functional enrichment indicated that 2 pathways
met the significance threshold resulting in the summarized
PoDs after 24 h exposure (41–55 mM). The lowest PoDT of 41 mM
was used for the calculation of MoS (Table 5).

Updated MoS and Risk Assessment Conclusion

The metabolism refinement results demonstrated that couma-
rin is primarily detoxified to the respective glucuronides via hy-
droxylation, and epoxide formation only occurred at high
concentrations (1 mM) when the CYP2A6 is saturated. PoDs de-
rived from the cell stress panel and HTTr assays in more meta-
bolic competent cells (HepaRG 2D and HepaRG 3D) were not
significantly different from PoDs generated in HepG2 and NHEK
(Tables 4 and 5). From both these results we can conclude that
at consumer-relevant exposures, metabolite formation does not
impact the MoS (Figs. 3 and 8, Supplementary material).

There is not yet agreement on how large an MoS derived in
an NGRA needs to be to assure human safety. However, the pre-
dicted Cmax values for face cream and body lotion were lower

Figure 7. Coumarin’s proposed metabolic pathway based on the in vitro experiments.
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than all PoDs with an MoS (the 5th percentile) higher than 100.
Furthermore, we can conclude that coumarin is not genotoxic,
does not bind to any of the 44 targets and does not show any
immunomodulatory effects at consumer-relevant exposures. In
conclusion, the weight of evidence suggests that the inclusion
of 0.1% coumarin in these products is safe for the consumer.

DISCUSSION

Several theoretical frameworks describing a tiered approach for
NGRA have been published over the past few years (Andersen
et al., 2019; Berggren et al., 2017; Thomas et al., 2019), but con-
crete NGRA examples of how to analyze, integrate and interpret
all the data obtained from NAMs to inform a safety decision are
still lacking. Therefore, this work represents a milestone in the
development and application of nonanimal approaches to as-
sess human safety, showing for the first time that in chemico, in

silico, and in vitro approaches can be integrated to arrive at a
consumer safety decision for systemic effects. Furthermore,
this work demonstrates several key principles of NGRA (Dent
et al., 2018a). The overall goal was to perform an exposure-led

human safety assessment designed to prevent harm by apply-
ing robust and relevant methods in a hypothesis-driven way.
The philosophy behind this type of risk assessment aimed at
preventing harm is based on the premise of “Protection not
Prediction” (Kavlock et al., 2018; Thomas et al., 2019). Such a
safety assessment approach is possible because it does not at-
tempt to replicate the results of the animal tests historically
used in safety assessment. Instead, the hypothesis underpin-
ning this type of NGRA is that if there is no bioactivity observed
at consumer-relevant concentrations, there can be no adverse
health effects.

One of the strengths of this case study was the conservative
and rigorous consumer exposure assessment by assuming a
worst case scenario for the estimation of applied dose and by
building a refined PBK model parametrized with in vitro ADME
parameters (Moxon et al., 2020), respectively. Furthermore, sys-
temic exposure was expressed as distribution of plasma Cmax

across a population, taking into account inter-individual vari-
ability. Even though PBK is a well-established tool in pharma-
ceutical development (Jones et al., 2015), there are still issues
around the confidence in predictions, especially when in vivo

Figure 8. A, Margin of safety (MoS) plot for face cream (orange band) and body lotion (purple band). Plasma Cmax (total, lM) expressed as distribution, purple or orange

line (median, 50th percentile), inner dark band (25–75th percentile), outer light band (2.5th–97.5th percentile [95th credible interval]). Points of departure (PoDs)

expressed as nominal concentration (lM) as single values for carbonic anhydrase enzymatic assays (green squares), monoamine oxidases (MAO) enzymatic assays

(red squares), and transcriptional point of departure (PoDT) from high-throughput transcriptomics assays (light blue squares). PoDs from cell stress panel (dark blue

circles) are reported in terms of the mode (circle) and the 95% credibility interval (solid lines). B, Histogram representations of the distribution for the predicted Cmax

(purple), example PoD distribution from the stress panel (blue) and PoD summarized as point-estimate from PubChem (green). C, Distributions for the MoS calculated

using both examples. Abbreviations: NHEK, normal human epidermal keratinocytes; OCR, oxygen consumption rate.
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data is unavailable for model validation. In this work, we
attempted to mitigate some of these issues by following good
practices outlined in Paini et al. (2017), and applying the PBK
framework developed in Moxon et al. (2020). This framework uti-
lizes sensitivity and uncertainty analysis to guide parameter
generation and attempts to increase confidence in the model
output without the explicit need for in vivo studies. Following
completion of the work reported here, coumarin clinical data
(Ritschel et al., 1977) was compared with the simulated area un-
der the curve, Cmax and total clearance, and the results were
generally within 2-fold of the measured clinical data (Moxon
et al., 2020). Therefore, our confidence in the estimation of expo-
sure to coumarin using this PBK framework is high.

Another strength of this work is the wide range of NAMs in-
corporated in the testing strategy, covering multiple biological
pathways. The biomarkers were selected to provide evidence of
whether coumarin may cause specific cellular effects (eg, due to
nuclear receptor binding, ion channels, and enzymes inhibition)
or nonspecific effects (eg, changes reflective of cellular stress
and inflammation) across different cell models and exposure
durations. The lack of predicted binding activity from both MIE
ATLAS (Allen et al., 2018) and Eurofins SafetyScreen44 suggested
that coumarin does not activate specific targets. Furthermore,
biological coverage was increased by information provided by
the immunomodulatory screening assay tested in 8 primary
systems, by HTTr and cell stress panel in multiple cell models.
HTTr was primarily used as a nontargeted approach for charac-
terizing biological responses potentially not covered by the
other tools. In this paper, we have applied different approaches
for aggregating gene and pathway-level BMDs from HTTr based
on previous work by Farmahin and colleagues. The results are
combined in a weight of evidence to provide an overall under-
standing of transcriptional responses. The limited gene expres-
sion changes seen at concentrations below the maximal used,
suggest the compound is having a minimal biological effect on
the cells. Farmahin et al. (2017) indicated that summarizing
BMD modeling in different ways has a comparatively small im-
pact on the PoDT (varying up to 1 order of magnitude); a similar
result was seen in this study across all cell lines. Although such
analysis was not performed for this study, the use of 3D spher-
oid cultures of HepaRG could have provided a further refine-
ment of the PoDT by extending the exposure duration or
performing repeat dosing. However, further work is required to
understand the advantages of this for human health protection
due to the added uncertainty in modeling the compound’s con-
centration in vitro following repeat dosing. Recent findings
showed that in vitro PoDs estimates from single 24 h in vitro ex-
posure studies are as conservative as in vivo studies for most
chemicals tested (Paul Friedman et al., 2020).

The reduced number of active assays in large assay panels
such as ToxCast and PubChem further contributed to the low
bioactivity weight of evidence gained from the other assays.
However, it is worth noting that one of the lowest PoDs was de-
rived from the carbonic anhydrase assay from PubChem which
was not covered in any of the other assays. Ensuring all relevant
biological endpoints is an ongoing challenge in NGRA, and fu-
ture research is needed to identify which additional molecular
targets or cell models would increase our confidence that no bi-
ological activity will occur at relevant exposures.

A key limitation in the development and execution of
ToxCast and Tox21 was the reduced xenobiotic metabolism
in vitro in comparison with in vivo (Thomas et al., 2019). Likewise,
the role of metabolism in driving the effects of coumarin repre-
sented a major source of uncertainty. However, our approach

exemplifies how a hypothesis-driven risk assessment can guide
the selection of the appropriate assays. In this case study, evi-
dence from in silico tools highlighted the potential formation of
reactive metabolites (ie, epoxides) with alerts for genotoxicity
and protein binding. Furthermore, information on coumarin
metabolic clearance (in vitro half-life 5–20 min) underlined the
potential for a considerable high exposure to metabolites in the
liver. The ToxTracker assays and metabolism identification
assays were critical to understand 2 aspects: (1) reactive couma-
rin metabolite(s) and not coumarin are able to induce DNA
lesions, possibly secondary to oxidative stress; and (2) coumarin
is preferentially detoxified to hydroxycoumarins and respective
glucuronides. Moreover, reactive metabolites such as the epox-
ide, o-HPAA, and o-HPA were detected at concentrations below
the expected plasma concentration, and therefore genotoxicity
or other adverse health effects associated with these com-
pounds (Born et al., 1997; Fentem and Fry, 1992; Fentem et al.,
1991; Vassallo et al., 2004) are not expected to occur for this ex-
posure scenario. Lastly, PoDs and MoS were not significantly
impacted by the generation of cell stress panel and transcrip-
tomics data in cells with higher metabolic competence (Jackson
et al., 2016; Yokoyama et al., 2018).

Analogous to traditional approaches, in NGRA the MoS
(SCCS, 2018) is used to characterize chemical exposure risks, ex-
cept instead of using PoDs from animal studies and applied
dose (both expressed as external dose in mg/kg), the MoS was
calculated using in vitro PoDs and the blood plasma Cmax (both
expressed as internal concentration in mM). However, tradition-
ally, a point estimate of the MoS has been used, whereas in this
work the MoS was expressed as a distribution, reflecting the
combined uncertainty in the in vitro PoDs (where possible) and
the Cmax estimates. The risk assessment conclusion was based
on the 5th percentile of the distribution, which represented a
lower limit for the MoS. This is in agreement with one of the key
principles of NGRA, which is that sources of uncertainty are
characterized and documented appropriately (Dent et al.,
2018a). A critical question is how large should this lower limit
be for use in NGRA? Using traditional approaches, a default
value of 100 based on the MoS point estimate has been generally
accepted to account for the uncertainty in the extrapolation
from animal studies to the human population and be ade-
quately protective (SCCS, 2018). However, PoDs derived from
NAMs (ToxCast, Tox21, HTTr, and high-throughput phenotypic
profiling) have been shown to be more conservative than in vivo
PoDs for most tested substances (Paul Friedman et al., 2020), and
these findings corroborate previous studies that have proposed
that for most industrial chemicals, a PoD based on the most
sensitive pathway or biological response provides a conserva-
tive estimate of the PoD in vivo (Thomas et al., 2013; Wetmore
et al., 2013). Thus, because the PoDs in this study were based on
activity rather than adverse effects, and robust probabilistic
approaches were applied to characterize uncertainty in both the
exposure and PoD determinations, a decision based on the 5th
percentile of the MoS distribution being over 100 could be suffi-
ciently conservative. This was the case for both face cream and
body lotion suggesting that the inclusion of 0.1% coumarin in
these products is safe for the consumer.

Using historical benchmark chemicals with well-
characterized human exposures and known human outcomes
could help define a protective exposure level and an evidence-
based MoS values. This benchmarking approach has not yet
been developed for overall systemic toxicity, but examples ap-
plied to drug-induced liver injury (Albrecht et al., 2019; Williams
et al., 2020), reproductive (Becker et al., 2015; Dent et al., 2018b),
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and cardiac toxicity (Lazic et al., 2018) have been previously
published.

For this case study, we selected a well-known chemical, and
therefore the NGRA based on NAMs can be benchmarked
against the current risk assessment approach (Abraham et al.,
2010; EFSA, 2008). The tolerable daily intake (TDI) established by
EFSA for coumarin in foods is 0–0.1 mg/kg/day (EFSA, 2008),
based on applying an overall assessment factor of 100 to the an-
imal NOAEL. Using the PBK model developed, plasma Cmax at
the upper end of the TDI (7 mg per day, assuming a body weight
of 70 kg) would be 0.1 mM. Using the in vitro PoDs derived in this
study, this would result in an MoS of 30–600 which means that a
safety assessment based on NAMs is at least as protective as
the risk assessment based on traditional approaches. More
examples of safety assessments, especially for high-risk expo-
sures and a variety of MoAs are needed to test whether the pan-
els used are protective. The final area of uncertainty that
warrants additional work is the extrapolation of PoDs from
static, short-term in vitro systems to longer term systems able to
mimic in vivo exposures (Beilmann et al., 2019; Ewart et al., 2018).

In conclusion, this case study has demonstrated that NAMs
can provide robust insights to support exposure estimation and
mechanistic in vitro bioactivity data to inform nonanimal safety
assessments. The continued development and application of
NAMs in a decision-making context will play an increasing role
in fulfilling the ambition to assure safety of novel ingredients
without the need for any animal testing, but confidence in
NAMs will only come with learning by doing and sharing more
case studies.
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