
polymers

Article

Graphene Oxide–Platinum Nanoparticle
Nanocomposites: A Suitable Biocompatible
Therapeutic Agent for Prostate Cancer

Sangiliyandi Gurunathan * , Muniyandi Jeyaraj, Min-Hee Kang and Jin-Hoi Kim *

Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
muniyandij@yahoo.com (M.J.); pocachippo@gmail.com (M.-H.K.)
* Correspondence: gsangiliyandi@yahoo.com (S.G.); jhkim541@konkuk.ac.kr (J.-H.K.);

Tel.: +82-2-450-0581 (S.G.)

Received: 5 March 2019; Accepted: 16 April 2019; Published: 23 April 2019
����������
�������

Abstract: Metal nanoparticles and the combination of metal nanoparticles with graphene oxide
are widely used in environmental, agriculture, textile, and therapeutic applications. The effect of
graphene oxide–green platinum nanoparticles (GO-PtNPs) on human prostate cancer cells (LNCaP) is
unclear. Therefore, this study aimed to synthesize a nanocomposite of GO-PtNPs and evaluate their
effect on prostate cancer cells. Herein, we synthesized GO-PtNPs using vanillin and characterized
GO-PtNPs. GO-PtNP cytotoxicity in LNCaP cells was demonstrated by measuring cell viability and
proliferation. Both decreased in a dose-dependent manner compared to that by GO or PtNPs alone.
GO-PtNP cytotoxicity was confirmed by increased lactate dehydrogenase release and membrane
integrity loss. Oxidative stress induced by GO-PtNPs increased malondialdehyde, nitric oxide, and
protein carbonyl contents. The effective reactive oxygen species generation impaired the cellular
redox balance and eventually impaired mitochondria by decreasing the membrane potential and ATP
level. The cytotoxicity to LNCaP cells was correlated with increased expression of proapoptotic genes
(p53, p21, Bax, Bak, caspase 9, and caspase 3) and decreased levels of antiapoptotic genes (Bcl2 and
Bcl-xl). Activation of the key regulators p53 and p21 inhibited the cyclin-dependent kinases Cdk2
and Cdk4, suggesting that p53 and p21 activation in GO-PtNP-treated cells caused genotoxic stress
and apoptosis. The increased expression of genes involved in cell cycle arrest and DNA damage and
repair, and increased levels of 8-oxo-deoxyguanosine and 8-oxoguanine suggested that GO-PtNPs
potentially induce oxidative damage to DNA. Thus, GO-PtNPs are both cytotoxic and genotoxic.
LNCaP cells appear to be more susceptible to GO-PtNPs than to GO or PtNPs. Therefore, GO-PtNPs
have potential as an alternate and effective cancer therapeutic agent. Finally, this work shows that the
combination of graphene oxide with platinum nanoparticles opens new perspectives in cancer therapy.
However further detailed mechanistic studies are required to elucidate the molecular mechanism of
GO-PtNPs induced cytotoxicity in prostate cancer.

Keywords: graphene oxide–platinum nanoparticles nanocomposites; prostate cancer; cytotoxicity;
oxidative stress; mitochondrial membrane potential; DNA damage

1. Introduction

The mortality rate of cancer is increased rapidly by both aging and growth of the population and
is also associated with socioeconomic development [1]. According to the International Agency for
Research on Cancer, it is estimated 18.1 million new cancer cases and 9.6 million cancer deaths in 2018.
Prostate cancer is the second most common cancer in men and fourth most commonly occurring cancer
overall and most frequently diagnosed cancer, which is occurs one in nine in older man [1,2]. Prostate
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cancer can be treated by conventional therapies such as radiation, chemo, hormone, cryo and surgery;
however, the treatment is depends on individual cases. Chemo-drugs, such as docetaxel, cabazitaxel,
mitoxantrone and estramustine, are used to treat prostate cancer, however they cause undesired side
effects. Another major cause of radiotherapy failure is the radioresistance of certain cancers. Therefore,
finding alternative, biocompatible treatments is necessary.

Nanomedicine has been proposed as a new tool and alternative for cancer therapy and diagnosis.
Recently, biomolecule mediated synthesis of metal nanoparticles shows great interest and rapidly used
both academic and medical industry aspects due to their unique properties and promising applications
as catalysts, ferrofluids, and semiconductors [3,4]. Several metal nanoparticles, such as silver, gold, and
palladium, were synthesized using biomolecules, such as bacterial extracts, fungi extracts, plant extracts,
and purified phenolic compounds, and tested for cytotoxicity against various types of cancer cells
including human breast cancer cells, lung cancer cells, human ovarian cancer cells, and neuroblastoma
cancer cells [5–8]. Small metallic nanoparticles seem to be potential nanodrugs to optimize the
performances of radiotherapy. Among other nanomaterial systems, platinum nanoparticles (PtNPs)
with radiation are used as radiation dose enhancers and anticancer drug carriers in cancer therapy. For
example, Porcel et al. [9] developed a new strategy based on the combination of platinum nanoparticles
with irradiation by fast ions effectively used in hadron therapy. The results demonstrated that PtNPs
strongly enhance lethal damage in DNA, with an efficiency factor close to 2 for double-strand breaks.
Platinum complexes and platinum NPs (PtNPs) have shown excellent properties to amplify radiation
effects [9–11].

Since several years, platinum-based drug molecules have received much attention due to their
electro-catalytic properties. For instance, platinum-based therapeutic drugs, notably cisplatin and
carboplatin, have been exploited in chemotherapy to kill cancer cells [12]. However, these drugs
do not have specificity towards cancer cells and have effects on normal cells leading to substantial
dose-limiting acute and chronic toxicities. Since undesired toxic side effects and frequent development
of drug resistance represent the major challenges in cancer therapy, it is therefore necessary to develop
cisplatin analogs or other metal complexes that are able to offer a more acceptable level of toxicity and
improved antitumor activity [13].

Graphene-based nanocomposites with metal nanoparticles show immense interest due to their
extraordinary physical, chemical, and biological properties [14,15]. The excellent properties of
combination of graphene based materials and metal nanoparticles shows promising nanomaterial in
many fields of application such as electronic-devices, sensors, nanocomposites, energy storage, and
supercapacitors [16–19]. Metal nanoparticles, such as silver and graphene oxide, exhibit significant
antibacterial activity against Gram-negative and -positive bacteria and anticancer activity against
human ovarian cancer cells and human neuroblastoma cancer cells [8,20,21]. In particular, PtNPs are
highly important metallic catalysts for many electrochemical reactions and used as sensors towards
biological and drug molecules [22,23]. The combination of rGO and PtNPs exhibits promising
electrocatalytic activity and selectivity in the detection of target molecules [24]. The major advantage
of using graphene oxide for the preparation of nanocomposites, such as graphene oxide–platinum
nanoparticles, is a cheap and accessible nanomaterial with abundant oxygen-containing functional
groups, which is indispensable to anchor novel metal ions [25,26]. Furthermore, Pt ions are easily
absorbed uniformly by GO due to the presence of abundant hydroxyl and carboxyl functional groups.
Wu et al. [27] fabricated reduced graphene oxide (RGO)/metal (oxide) composites using glucose
as the reducing agent and the stabilizer. The developed composite nanomaterials show excellent
electrode catalyst to simultaneous electrochemical analysis of l-ascorbic acid, dopamine, and uric acid.
Ali et al. [28] synthesized variety of composites by simultaneous reduction of variety of nanoparticles,
such as palladium, platinum, silver, and gold with graphene oxide using a black pepper extract (BPE) for
quantification and kinetic analysis of epidermal growth factor receptor (ErbB2), for application to breast
cancer diagnostics. The developed composites exhibited less toxic, biocompatible, and antioxidants
properties, and can detect low concentrations of ErbB2. A nanocomposite consisting of combination of
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various nanomaterials such as reduced graphene oxide combined with manganese-doped zinc sulfide
quantum dots and functionalized with folic acid (FA-rGO/ZnS:Mn) and loaded with doxorubicin (DOX).
DOX is adsorbed on the surface of graphene sheets and releases efficiently with specificity, against
folate-rich breast cancer cells, which is the best platform for targeted cancer treatment [29]. Single-crystal
metastable manganese sulfide nanowires (γ-MnS NWs) coated with graphitic carbon exhibited brittle
with a Young’s modulus of 65 Gpa show the cycling stability of stable microsized α-MnS, with an
initial capacity of 1036 mAh g−1 and a reversible capacity exceeding 503 mAh g−1 after 25 cycles [30].
A novel regorafenib (REG) electrochemical sensor, developed by reduction of a zirconia-nanoparticle
and reduced graphene oxide composite (ZrO2/rGO/GCE) using hydrazine hydrate as reducing and
stabilizing agent, shows an excellent electrocatalytic response and determination of REG in the presence
of ascorbic acid and uric acid at lower concentration in serum samples [31]. The PtNPs were found
to cause DNA strand breaks in a concentration-, time-, and size-dependent manner [32], and inhibit
DNA replication, whereas the rich oxygen-containing functional groups of graphene oxide on the
surface provide it with the opportunity to be modified by many functional molecules to expand
biological applications and reduce toxicity. Combination of graphene oxide with nanoparticles in
a single platform could provide the simultaneous administration of two or more active agents that
are known to disrupt multiple targets, resulting in a more efficient solution to cancer or any other
treatments with two different physical and chemical properties. The combination of graphene oxide
and platinum nanoparticles could provide efficient synergistic effect on cytotoxicity compared to
its counterpart.

Although several studies have reported that the effect of combination of graphene oxide with
various metal nanoparticles, such as silver, gold, palladium, etc., against various type of cancer
cells, so far there is no report about the anticancer effect of graphene oxide–platinum nanoparticles
nanocomposites. This is the first study aimed to address the following objectives including synthesis of
graphene oxide–platinum nanoparticles nanocomposite using vanillin as reducing agent. The second
objective is to address the cytotoxic effect of graphene oxide–platinum nanoparticles nanocomposite in
prostate cancer cells. The final objective is to address the mechanism of anticancer effect of graphene
oxide–platinum nanoparticles nanocomposite in prostate cancer cells using various cellular assays.

2. Materials and Methods

2.1. Synthesis and Characterization of GO, PtNPs, and GO-PtNPs

Graphene sheets were synthesized by Hummers’ method with slight modification as required [8,33].
Synthesis and characterization of the GO-PtNP nanocomposite was done as described previously [20].
Detailed materials and methods are given in the Supplementary Materials.

2.2. Cell Viability and Cell Proliferation Assay

The cells were grown to logarithmic growth phase and mixed with various concentrations of
GO, GO-PtNPs, and PtNPs for 24 h, followed by determinations of cytotoxicity. The inhibitory
concentration (IC50) is defined as the concentration of PtNPs causing 50% inhibition of growth of the
cells. Cell proliferation was determined using bromodeoxyuridine/5-bromo-2′-deoxyuridine (BrdU)
(Roche, Basel, Switzerland).

2.3. Measurement of Cytotoxicity and Cell Mortality

The membrane integrity of LNCaP cells was evaluated using an LDH Cytotoxicity Detection Kit
(Sigma-Aldrich, St. Louis, MS, USA) according to the manufacturer’s instructions. Cell mortality was
evaluated using the trypan blue assay as described previously [7].
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2.4. Determination of Reactive Oxygen Species (ROS), Malondialdehyde (MDA), Nitric Oxide (NO), and
Carbonylated Protein Levels

Reactive oxygen species (ROS) were estimated as described previously [34]. Briefly, LNCaP cells
were seeded into wells of 24-well-plates at a density of 5 × 104 cells per well and cultured for 24 h.
MDA levels were determined using a thiobarbituric acid reactive substances assay as previously
described with suitable modifications [34]. NO production was quantified spectrophotometrically
using Griess reagent (Sigma-Aldrich, St. Louis, MO, USA). Absorbance was measured at 540 nm and
nitrite concentration was determined using a calibration curve prepared with sodium nitrite as the
standard [35]. Carbonylated protein content was measured according to Uehara and Rao [36].

2.5. Measurement of Mitochondrial Membrane Potential (MMP) and ATP Level

MMP was measured according to the manufacturer’s instructions (Molecular Probes, Eugene, OR,
USA) using the cationic fluorescent indicator, JC-1 (Molecular Probes). The ATP level was measured
according to the manufacturer’s instructions (Catalog Number MAK135; Sigma-Aldrich, St. Louis,
MO, USA).

2.6. Measurement of Antioxidative Marker Levels

The expression levels of oxidative and antioxidative stress markers were measured as described
previously [37].

2.7. Measurement of 8-oxo-dG and 8-oxo-G

8-oxo-dG was determined as described previously [38] and using the manufacturer’s instructions
(Trevigen, Gaithersburg, MD, USA).

2.8. Statistical Analysis

All assays were conducted in triplicate, and each experiment was repeated at least three times.
The results are presented as the means ± standard deviation. All experimental data were compared
using Student’s t-test. A p-value < 0.05 was considered statistically significant. Results are expressed
as mean ± standard deviation of three independent experiments. There was a significant difference in
treated cells compared to untreated cells with Student’s t-test (* p < 0.05).

3. Results and Discussion

3.1. Synthesis and Characterization of GO and GO-PtNP by UV-visible Spectroscopy

The ultraviolet–visible spectrum of synthesized GO particles exhibited two characteristic
absorption peaks at 230 nm, which can be attributed to the π–π* transition of aromatic C=C bonds, and a
shoulder at 300 nm, corresponding to the n–π * transition of C=O bonds [39]. The hydrophilic property
of the oxygenated graphene layers imparts significant solubility and stability in water. The absorption
peak for GO-PtNPs was red-shifted to 267 nm (Figure 1A,B), owing to the restoration of sp2 carbon atoms.
This characteristic red-shift is considered a monitoring tool for the graphene–platinum nanoparticle
nanocomposite [8,20].
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are shown in Figure 2A,B. The spectrum of GO (Figure 2A) showed a strong and broad band at 3300 
cm−1 due to the –OH stretching vibration. The carbonyl (–C=O) stretching of carboxylic groups 
present at the edge planes of the GO sheets was observed at 1730 cm−1. The absorption due to –OH 
bending, epoxide groups, and skeletal ring vibrations were observed at 1600 cm−1. After decoration 
of PtNPs on the surface of GO, the –OH stretching vibration and carbonyl (–C=O) stretching of 
carboxylic groups were shifted to 3320 and 1725 cm−1, respectively. Interestingly, the deformation 
stretching frequency of –OH groups attached to the aromatic ring was 1380 cm−1 [40]. The peaks were 
observed in the spectrum of GO-PtNPs at 1725 and 1650 cm−1 corresponding to C=O stretching 
vibrations of COOH groups, which were attributed to C=O bonds in the carboxylic acid and carbonyl 
moieties, respectively (Figure 2B), and another strong peak appears at 1150 indicating C–OH 
stretching. All these data confirmed the formation of GO from native graphite, generation of oxygen-
containing functionalities during oxidation process, and decoration of PtNPs on the surface of GO. 
These observations agreed with those reported in the literature [41,42]. The collect data suggested 
that the vanillin, aphenolic compound is responsible for synthesis of PtNPs and decoration of PtNPs 
on the surface of GO. 

Figure 1. Synthesis and characterization of graphene oxide (GO) and graphene oxide–green platinum
nanoparticles (GO-PtNPs). Ultraviolet–visible spectroscopy of GO (A) and GO-PtNPs (B). At least three
independent experiments were performed for each sample and reproducible results were obtained.

3.2. FTIR Analysis of GO and GO-PtNPs

The synthesis of GO from native graphite and its decoration with PtNPs were analyzed by
Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectra of GO and the GO-PtNP composite
are shown in Figure 2A,B. The spectrum of GO (Figure 2A) showed a strong and broad band at
3300 cm−1 due to the –OH stretching vibration. The carbonyl (–C=O) stretching of carboxylic groups
present at the edge planes of the GO sheets was observed at 1730 cm−1. The absorption due to –OH
bending, epoxide groups, and skeletal ring vibrations were observed at 1600 cm−1. After decoration of
PtNPs on the surface of GO, the –OH stretching vibration and carbonyl (–C=O) stretching of carboxylic
groups were shifted to 3320 and 1725 cm−1, respectively. Interestingly, the deformation stretching
frequency of –OH groups attached to the aromatic ring was 1380 cm−1 [40]. The peaks were observed in
the spectrum of GO-PtNPs at 1725 and 1650 cm−1 corresponding to C=O stretching vibrations of COOH
groups, which were attributed to C=O bonds in the carboxylic acid and carbonyl moieties, respectively
(Figure 2B), and another strong peak appears at 1150 indicating C–OH stretching. All these data
confirmed the formation of GO from native graphite, generation of oxygen-containing functionalities
during oxidation process, and decoration of PtNPs on the surface of GO. These observations agreed
with those reported in the literature [41,42]. The collect data suggested that the vanillin, aphenolic
compound is responsible for synthesis of PtNPs and decoration of PtNPs on the surface of GO.Polymers 2019, 11, x FOR PEER REVIEW 6 of 24 
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3.3. X-Ray Diffraction Analysis of GO and GO-PtNPs

X-ray diffraction (XRD) was performed to confirm the formation structures of GO and GO-PtNPs.
Figure 3A,B display the XRD patterns of GO and GO-PtNPs. The diffraction peak of GO was observed
at 11.5, corresponding to the (200) plane and an interlayer distance of 0.76 nm [19,38]. The newly
appeared diffraction peaks located at 39.8, 46.5, 55.0, and 70.6 corresponded to the (111), (200), (220),
and (311) crystal planes of Pt, respectively (JCPDS No. 01-087-0646), demonstrating that PtNPs were
decorated uniformly on the GO surface [19,43], and confirming the presence of platinum particles on
the graphene substrate. The average size of the PtNPs was calculated to be 2 nm using the Scherrer
equation based on the full width at half maximum of the Pt (111) diffraction peak. The findings strongly
agreed with those of previously published reports [19,42,43]. After chemical oxidation, the (002) peak
of graphite was shifted to 11.5◦ with a d spacing of 0.94 nm. This shift might be attributed to the
introduction of oxygen-containing functional groups like epoxy, hydroxyl, carbonyl, and carboxylic
groups at both the sides and edges of the graphene sheets. This confirmed the formation of GO from
natural graphite during the oxidation process and the formation of platinum particles [42].

Polymers 2019, 11, x FOR PEER REVIEW 6 of 24 

 

 

Figure 2. Characterization of GO and GO-PtNPs by Fourier-transform infrared spectroscopy (FTIR). 
FTIR images of GO (A) and GO-PtNPs (B). At least three independent experiments were performed 
for each sample and reproducible results were obtained. 

3.3. X-Ray Diffraction Analysis of GO and GO-PtNPs 

X-ray diffraction (XRD) was performed to confirm the formation structures of GO and GO-
PtNPs. Figure 3A,B display the XRD patterns of GO and GO-PtNPs. The diffraction peak of GO was 
observed at 11.5, corresponding to the (200) plane and an interlayer distance of 0.76 nm [19,38]. The 
newly appeared diffraction peaks located at 39.8, 46.5, 55.0, and 70.6 corresponded to the (111), (200), 
(220), and (311) crystal planes of Pt, respectively (JCPDS No. 01-087-0646), demonstrating that PtNPs 
were decorated uniformly on the GO surface [19,43], and confirming the presence of platinum 
particles on the graphene substrate. The average size of the PtNPs was calculated to be 2 nm using 
the Scherrer equation based on the full width at half maximum of the Pt (111) diffraction peak. The 
findings strongly agreed with those of previously published reports [19,42,43]. After chemical 
oxidation, the (002) peak of graphite was shifted to 11.5° with a d spacing of 0.94 nm. This shift might 
be attributed to the introduction of oxygen-containing functional groups like epoxy, hydroxyl, 
carbonyl, and carboxylic groups at both the sides and edges of the graphene sheets. This confirmed 
the formation of GO from natural graphite during the oxidation process and the formation of 
platinum particles [42].  

 
Figure 3. Characterization of GO and GO-PtNPs by XRD. XRD images of GO (A) and GO-PtNPs (B).
At least three independent experiments were performed for each sample and reproducible results
were obtained.

3.4. Raman Spectroscopy Analysis of GO and GO-PtNPs

Raman spectroscopy was used to investigate the structure of GO and GO-PtNPs. The main
features in the Raman spectra of graphitic carbon-based materials are the G and D peaks and their
overtones [44]. Figure 4A,B shows the Raman spectra of the prepared GO and GO-PtNPs. The two
most intense peaks were the D and G band at 1360 and 1580 cm−1, respectively. A prominent 2D
band at 2690 cm−1 was evident, and a defect-activated peak (D + G) was also visible at approximately
2950 cm−1. The D peak represents first order resonance and the breathing mode of aromatic rings
arising due to the defects in the sample. The D peak intensity is used to measure of the degree of
disorder [45]. The G peak is due to the bond stretching of all pairs of sp2 atoms in both the rings
and chains and corresponds to the optical E2g phonons. The intense D peak along with a large
bandwidth suggested the significant structural disorder in GO. The 2D peak at approximately 2690
cm−1 is attributed to double resonance transitions resulting in the production of two phonons with
opposite momentum. Simultaneously, the ratio of the intensity of the D band to the G band (ID/IG)
increased from 1.49 to 1.89 between GO and PtNPs decorated GO.
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and reproducible results were obtained.

3.5. Morphology and Size Analysis of GO and GO-PtNPs using SEM and TEM

The morphology of GO and GO-PtNPs was analyzed by scanning electron microscopy.
Micrographs of GO (Figure 5A) revealed a two-dimensional sheet-like structure consisting of multiple
lamellar layers. The edges of individual sheets were visible, as has been described [8,46,47]. GO-PtNPs
images (Figure 5B) revealed that the PtNPs particles were uniformly distributed throughout the
graphene layers without any agglomeration in the substrate on the surface of GO, which agreed with
previously published reports of other nanoparticles, such as silver [8]. Field emission scanning electron
microscopy images revealed well-decorated PtNPs on the surface of GO nanosheets. Smaller PtNPs
were spherical in shape, whereas the bigger particles had an elongated form. This elongated shape was
attributed to an agglomeration of the highly concentrated PtNPs. The size of GO and PtNPs decorated
GO were characterized by transmission electron microscopy. As shown in Figure 5C,D, transparent
and wrinkled layers of GO nanosheets were observed. After successful decoration, PtNPs decorated
on the graphene oxide layers were spherical with a diameter < 2 nm, which is consistent with the
XRD results, confirming the formation of GO-PtNP nanocomposites. The results indicated that the
combination of graphene oxide and PtNPs suggest that graphene oxide facilitates the reshaping and
coarsening of PtNPs during simultaneous reduction of graphene oxide and PtNPs. The reducing and
stabilizing agents promoted biomolecule induced transformations of nanohybrids (Supplementary
Figure S1).

3.6. Effect of GO-PtNPs on Viability of LNCaP Cells

The effect of GO-PtNPs on LNCaP androgen-sensitive human prostate adenocarcinoma cells was
explored to evaluate the approach in the treatment of prostate cancer. To evaluate and optimize the
dose, and explore a dose-dependent effect, LNCaP cells were treated with various concentrations of
GO (20–100 µg/mL), GO-PtNPs (5–25 µg/mL), and PtNPs (10–50 µg/mL) for 24 h. The three compounds
displayed dose-dependent cytotoxicity on LNCaP cells. Interestingly, GO-PtNPs showed effective
responses on cell viability compared to control, parental GO, and PtNPs. GO-PtNPs nanocomposites
exhibited significant cytotoxicity against the human prostate cancer cells and the cytotoxicity was
greater as the concentration increased. GO did not affect cell viability as drastically. Even at very high
concentration (100 µg/mL), the loss of viability was only 60%. This low cytotoxicity of GO was probably
attributed to the enrichment of oxygen atoms on the surface of GO in the form of carboxyl, epoxy, and
hydroxyl groups, which reduces cell toxicity [48]. The loss of viability of PtNPs was dose-dependent
and slightly better than GO, and less than GO-PtNPs. Even at a very high concentration (50 µg/mL),
the loss of viability was only 80%, whereas at a high concentration of GO-PtNPs (25 µg/mL), the loss of
viability was 99%. The findings indicated that the GO-PtNPs nanocomposite had enhanced anticancer
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capability, in contrast to the relatively low toxicity of GO and PtNPs on LNCaP cells. Collectively,
the data indicated a dose-dependent inhibition of the cell viability with GO in the range of 20 to 100
µg/mL, with an IC50 of approximately 80 µg/mL (Figure 6A). Using GO-PtNPs, a dose-dependent
inhibition of the cell viability was observed in the range of 5 to 25 µg/mL with an IC50 of approximately
10 µg/mL (Figure 6B). With PtNPs, a dose-dependent inhibition of the cell viability was observed
in the range of 10–50 µg/mL with an IC50 of approximately 30 µg/mL (Figure 6C). Thus, GO-PtNPs
displayed a more pronounced inhibitory effect on cell viability than the other tested nanomaterials
and represent a promising candidate for treatment of prostate cancer cells. Similarly, GO-AgNPs
nanocomposites effectively inhibit cell viability of a variety of bacteria, human ovarian cancer cells,
and cervical cancer cells [8,20,49–51]. Further, the cell morphology of GO, GO-PtNPs, and PtNPs was
examined phase-contrast microscope, all the treated cells compromised cell structure, and cells were
round in shape and all the dead cells were detached from surface. The effect on cell viability was
clearly dose-dependent (Supplementary Figure S2).
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Figure 6. GO, GO-PtNPs, and PtNPs inhibit cell viability of LNCaP cells. The viability of LNCaP cells
was determined after 24-h exposure to different concentrations of GO (A), GO-PtNPs (B), and PtNPs
(C) using CCK-8. The treated groups showed statistically significant differences from the control group
by the Student’s t-test (* p < 0.05).

3.7. GO-PtNPs Inhibit Proliferation of LNCaP Cells

To determine the antiproliferative action of GO-PtNPs on LNCaP cells, the cells were treated with
various concentrations of GO, GO-PtNPs, and PtNPs for 24 h, and proliferation was determined using
BrdU. The growth rates of prostate cancer cells treated with GO-PtNPs were significantly decreased
compared to that of the control, and similar results were observed in LNCaP cells with GO and PtNPs
treatment. However, the effective inhibition of proliferation was observed with GO-PtNPs compared
to control, GO, and PtNPs (Figure 7A–C). Of note, GO-PtNPs exhibited higher antiproliferative action,
which was comparable to the parental GO and PtNPs. The data suggested that GO-PtNPs suppress
proliferation. Similarly, goserelin-loaded nanoparticles influence the growth of LNCaP prostate cancer
cells by the direct induction of necrosis and apoptosis [52].Polymers 2019, 11, x FOR PEER REVIEW 10 of 24 
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3.8. GO-PtNPs Induce Cytotoxicity in LNCaP Cells

Membrane integrity determines the fate of cells and is an important factor for cell survival.
Membrane integrity can be estimated by measuring leakage of LDH, which is a cytosolic enzyme that
aids in the conversion of lactate to pyruvate. When membrane integrity is compromised, the enzyme
is secreted. To determine the leakage of LDH, LNCaP cells were treated with IC50 concentrations of
GO, GO-PtNPs, and PtNPs for 24 h. GO-PtNPs comparatively significantly increased the leakage of
LDH compared to that in the control cells (Figure 8A). GO and PtNPs also increased the leakage of
LDH to a greater extent than that in the control group. However, leakage was lower than that resulting
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from treatment with GO-PtNPs, indicating that the combination of GO and PtNPs acted synergistically
to induce cytotoxicity. GO produces moderate leakage of LDH in a variety of cancer cells including
human breast cancer cells [47], human ovarian cancer cells [8], and human cervical cancer cells [51].
One study [53] reported that human lung cancer cells treated with silver and platinum nanoparticles
released significantly greater amounts of LDH compared to the control. The present and previous data
suggest a correlation between cell viability and damage to the membrane caused by the nanoparticles,
which ultimately proves lethal [54]. Membrane integrity and cell survival was examined by the trypan
blue exclusion assay. Normal healthy cells are able to exclude the dye, but trypan blue will diffuse into
cells in which membrane integrity has been lost. LNCaP cells were treated with IC50 concentrations
of GO, GO-PtNPs, and PtNPs for 24 h. Significant cytotoxic effect was consistently observed in
LNCaP cells. Cytotoxicity was most pronounced for cells treated with GO-PtNPs compared to that for
treatments with GO and PtNPs (Figure 8B).
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Figure 8. GO, GO-PtNPs, and PtNPs increase the leakage of LDH and cell death. LNCaP cells were
treated with respective IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24 h, and the LDH activity
was measured at 490 nm using the LDH cytotoxicity kit (A). Cell death was determined by trypan blue
assay after 24 h of exposure to GO, GO-PtNPs, and PtNPs for 24 h. Cell death was quantified by the
ratio of living cells (B). The treated groups showed statistically significant differences from the control
group by the Student’s t-test (* p < 0.05).

3.9. GO-PtNPs Increase the Level of Oxidative Stress Markers

The effect of GO-PtNPs on ROS generation was evaluated using DCFH2-DA. LNCaP cells were
treated with IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h and then cells were exposed
to 40 µM DCFH2-DA for 30 min. First, we measured the distribution of the fluorescence intensity in
the presence or absence of GO, GO-PtNPs and PtNPs. The treatment of LNCaP cells with GO-PtNPs
led to a marked shift to greater fluorescence peak intensities compared to the untreated control
(Figure 9). Moreover, ROS generation induced by GO-PtNPs resulted in high FITC fluorescence
intensity, indicating an increased susceptibility to oxidative stress. GO-PtNP-treated cells were
more than four times more susceptible than the control samples, while cells treated with GO and
PtNPs exhibited susceptible than the control sample (Supplementary Figure S3); these results are
consistent with the inhibitions of growth and cell proliferation. Subsequently, we evaluated the
level of MDA in GO-, GO-PtNP-, and PtNP-treated cells. The MDA level was significantly higher
in GO-PtNP-treated cells than either GO or PtNPs treatments (Figure 9B). Lipid peroxidation is a
process of oxidation of polyunsaturated fatty acids due to the presence of several double bonds in their
structure and it involves production of peroxides, ROS, and other reactive species, such as MDA. MDA
is a reactive byproduct of lipid peroxidation and an end product that interacts with DNA to forming
3-(2-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one adducts [55]. Increased lipid
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peroxidation and decreased GSH were reported in human embryonic kidney (HEK)293 cells exposed
to PtNPs [56].
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Figure 9. GO, GO-PtNPs, and PtNPs increase ROS generation (A), lipid peroxidation (B), and
nitric oxide (C) and carbonylated protein content (D) in LNCaP cells. LNCaP cells was exposed to
respective IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24 h and then Spectrophotometric
analysis of ROS was measured using DCFH-DA (B). The concentration of MDA was measured MDA
using a thiobarbituric acid reactive substances assay and expressed as nanomoles per milliliter (C).
NO production was quantified spectrophotometrically using the Griess reagent and expressed as
micromoles per milliliter (D). Protein carbonyl content was measured and expressed relative to the
total protein content. The treated groups showed statistically significant differences from the control
group by the Student’s t-test (* p < 0.05).

In general, nanoparticles, such as silver, platinum, and palladium ions, bind to protein disulfide
bonds in the cytoplasm, causing deformities in the protein structure. These malformed proteins
are then incorporated into the plasma membrane, leading to alterations in cell permeability and
cellular death [7,47]. In addition, graphene induces toxicity owing to its distinct physicochemical
characteristics such as purity, lateral dimension, size of the sheets, and oxidation state, which may
influence its cellular uptake, biodegradation, and toxicity. Once in contact with the cell membrane,
graphene sheets can create an impermeable encasement affecting the normal exchange between the
cell and the extracellular environment, graphene oxide can also damage the cell membrane through
strong electrostatic interactions between the negatively charged oxygen groups on its surface and the
positively charged lipids present on cell membranes [57–62].

Nanocytotoxicity may be caused by the induction of oxidative and/or nitro-oxidative stress [63,64].
Therefore, we were interested to determine the fate of GO-PtNPs on the generation of reactive nitrogen
species (RNS). LNCaP cells were treated with IC50 concentrations of GO, GO-PtNPs, and PtNPs for
24 h and then the level of nitric oxide (NO) was determined. Cells treated with either GO or PtNPs
displayed an 8-fold higher level of NO than control. Interestingly, the level of NO was significantly
higher in all tested groups relative to control. The increase in the NO level after 24-h treatment
with GO-PtNPs was 18-fold higher than after incubation with the same concentration of GO or
PtNPs (Figure 9C). Overproduction of ROS and RNS in cells influences various cellular processes
and components, promotes DNA breakage, and impairs the antioxidant potential; it has also been



Polymers 2019, 11, 733 12 of 23

associated with carcinogenesis [65]. An increased level of NO in adenocarcinoma cells treated with
silver nanoparticles (AgNPs) alone and in combination with an inhibitor of histone deacetylase (HDAC)
was reported [66].

Carbonyl groups appear to be a significant and stable marker of the oxidative stress that results
from the oxidation of proteins. Increased oxidative stress during altered homeostasis of prooxidants
and antioxidants leads to deleterious effects on cellular components through oxidative damage to
proteins, lipids, and nucleic acids. LNCaP cells were treated with IC50 concentrations of GO, GO-PtNPs,
and PtNPs for 24 h and then the level of carbonylated protein was determined. Cells treated with GO,
PtNPs, and GO-PtNPs showed 5-fold, 8-fold, and 12-fold higher level, respectively, of carbonylated
protein than control (Figure 9D).

3.10. GO-PtNPs Decrease MMP

The integrity of the mitochondrial membrane is regulated by its membrane potential, which
influences electron transport and oxidative phosphorylation. Alteration of MMP causes cellular
apoptosis. Spectrophotometric analysis showed that MMP was significantly compromised in
GO-PtNP-treated cells compared with the control, and treatment with GO or PtNPs decreased
the MMP, and the decrease was markedly more pronounced using GO-PtNPs. Twenty-four hours
of treatment with GO-PtNPs increased the percentage of cells with low MMP (∆ψm) compared to
that of the untreated cells (Figure 10A). The effect of GO-PtNPs on the MMP of LNCaP cells was
evaluated using fluorescence microscopy. LNCaP cells incubated with GO, GO-PtNPs, and PtNPs
underwent mitochondrial damage, resulting in changes in the ∆Ψm. Consequently, the JC-1 aggregate
level was significantly decreased by GO-PtNPs compared to GO or PtNPs, which resulted in low
FITC fluorescence intensity, indicating an increased susceptibility to oxidative stress (Supplementary
Figure S4). Similarly, others [67] reported that a buffalo rat liver cell line treated with silicon oxide
nanoparticles displayed increased cytotoxicity and mitochondrial damage accompanied by decreases
in mitochondrial dehydrogenase activity, MMP, enzymatic expression in the Krebs cycle, and activity
of the mitochondrial respiratory chain complexes I, III, and IV. Similarly, another study [34] reported
the decreased level of MMP and ATP in the presence of AgNPs alone and in combination with an
HDAC inhibitor.
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LNCaP cells were treated with respective IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h and
spectrophotometric determination of JC-1 monomer/aggregate formation using cationic fluorescent
indicator JC-1 (A). Intracellular ATP content (B). The treated groups showed statistically significant
differences from the control group by the Student’s t-test (* p < 0.05).
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Next, we examined the impact of GO-PtNPs on ATP synthesis. Synthesis of ATP is highly
dependent on the integrity of the mitochondrial membrane, which regulates the pumping of hydrogen
ions across the inner membrane during electron transport and oxidative phosphorylation [67]. Therefore,
the effect of GO-PtNPs on the ATP synthesis in LNCaP cells was evaluated. As shown in Figure 10B,
compared with that in the control, treatment of LNCaP cells with GO, PtNPs, and GO-PtNPs resulted
in a decreased level of ATP, but these decreases were highly significant in the latter treatment. These
results indicated that ATP synthesis was suppressed by GO-PtNPs. A 24-h treatment with GO-PtNPs
resulted in decreased ATP synthesis with low MMP (∆ψm), compared to that in the untreated cells.
This result suggested that MMP and ATP synthesis are associated.

3.11. GO-PtNPs Impair Antioxidant Systems

The generation of ROS in cells occurs in equilibrium with a wide variety of antioxidant molecules,
including SOD, catalase, GPx, and peroxiredoxins, as well as nonenzymatic scavengers, such as
vitamin C, vitamin E, GSH, lipoic acid, carotenoids, and iron chelators [68]. Therefore, we evaluated
the impact of oxidative stress in GO-PtNP-induced prostate cancer cell death. LNCaP cells were
treated with IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24 h and the protein level of selected
antioxidant enzymes was determined (GSH, GSH, GSSG, SOD, CAT, GPx, and TRX). A statistically
significant reduction in the levels of all enzymes was evident after treatment with GO, PtNPs, and
GO-PtNPs. The latter treatment produced the greatest reductions (Figure 11). A previous study
reported that AgNPs also reduced the activities of GSH, GSH: GSSG, SOD, CAT, GPx, and TRX [38].
Similarly, a reduced level of SOD was observed in human skin carcinoma and human fibrosarcoma
after exposure to 7–20 nm AgNPs [69,70]. Decreased GPX activity in rat pheochromocytoma and
mouse neuroblastoma cells by ZrO2NPs < 100 nm was reportedly related to genotoxic and cytotoxic
effects [71]. Others [72] observed that PANC-1 cells treated with 2.6 nm and 18 nm AgNPs displayed
decreased levels of SOD1 protein and mRNA, respectively. The lower level of SOD activity in MCF-7
breast cancer cells leads to a drastic alteration in the morphology of the mitochondria associated
with increased fragmentation and swelling of the matrix [73]. Consistent with previous results from
GO-PtNP-treated LNCaP cells [73], the cell death that occurred following the reduction of SOD level
by SOD inhibitor likely occurred through a combination of the regulated mechanism (apoptosis)
and unregulated mechanism (oxidative damage to the organelles). The collective data indicate that
GO-PtNPs effectively influence the level of antioxidant molecules and eventually compromise the
redox balance in LNCaP cells.

3.12. Effect of GO-PtNPs on Expression of Proapoptotic and Antiapoptotic Genes

Reduced ROS is considered an essential regulator of the normal physiological functions of cells.
Increased levels of ROS could damage proteins, nucleic acids, lipids, membranes, and organelles,
which can lead to activation of cell death processes like apoptosis [74]. ROS play significant roles in the
activation of various cellular signaling pathways and transcription factors. One of the most targeted
genes with respect to DNA damage are tumor suppressor p53, a gene involved in cell cycle arrest, DNA
repair, senescence, and apoptosis [75,76], and p21, a gene involved in cell cycle regulation. Furthermore,
ROS induces the activity of genes, such as Bax and Bak, which are involved in mitochondria mediated
apoptosis and downregulates Bcl2 and Bcl-xl. To determine the effect of GO-PtNPs on expression of
proapoptotic and antiapoptotic genes, cells were treated with IC50 concentrations of GO, GO-PtNPs,
and PtNPs for 24 h, and the m-RNA expressions of the target genes were determined. As expected,
the levels of p53, p21, Bax, Bak, caspase-9, and caspase-3 were significantly upregulated, whereas
the levels of Bcl2 and Bcl-xl were significantly downregulated by up to three-fold (Figure 12). Bcl-2
expression decreased 2.5 times compared to the control. A previous study [77] found that cells treated
with PtNPs experienced genotoxic stress due to the activation of p53 and p21, which eventually led to
proliferating cell nuclear antigen-mediated growth arrest and apoptosis. Our results were consistent
with the recent finding [78] that PtNP-treated DEN animals showed significant increase in liver p53
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gene expression level than normal rats. Other [56] reported that exposure of HEK293 cells to PtNPs
induced the upregulation of Bax and the downregulation of Bcl2.
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Reduced ROS is considered an essential regulator of the normal physiological functions of cells. 
Increased levels of ROS could damage proteins, nucleic acids, lipids, membranes, and organelles, 
which can lead to activation of cell death processes like apoptosis [74]. ROS play significant roles in 
the activation of various cellular signaling pathways and transcription factors. One of the most 
targeted genes with respect to DNA damage are tumor suppressor p53, a gene involved in cell cycle 
arrest, DNA repair, senescence, and apoptosis [75,76], and p21, a gene involved in cell cycle 
regulation. Furthermore, ROS induces the activity of genes, such as Bax and Bak, which are involved 
in mitochondria mediated apoptosis and downregulates Bcl2 and Bcl-xl. To determine the effect of 
GO-PtNPs on expression of proapoptotic and antiapoptotic genes, cells were treated with IC50 
concentrations of GO, GO-PtNPs, and PtNPs for 24 h, and the m-RNA expressions of the target genes 

Figure 11. Effect of GO, GO-PtNPs, and PtNPs on antioxidant markers. LNCaP cells were treated
with respective IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h. After incubation, cells
were harvested and washed twice with an ice-cold phosphate-buffered saline solution. The cells
were collected and disrupted by ultrasonication for 5 min on ice. GSH concentration is expressed as
percentage of control (A). GSH:GSSG ratio is expressed as percentage of control (B). SOD concentration is
expressed as percentage of control (C). CAT is expressed as percentage of control (D). GPx concentration
is expressed as percentage of control (E). TRX is expressed as percentage of control (F). There was a
significant difference in treated cells compared to untreated cells with Student’s t-test (* p < 0.05).

The findings confirm that PtNPs induce mitochondria-mediated apoptosis, which is primarily
responsible for cisplatin production and ROS generation in cell organelles [79]. Caspases play a
significant role in apoptosis. We found that the LNCaP cells treated with IC50 concentrations of GO,
GO-PtNPs, and PtNPs for 24 h displayed significantly increased caspase-9 and caspase-3 activities.
Caspase-9 plays a significant role in signal transduction by induction of the executioner caspases-3
and -7 [38,80]. Similarly, PtNPs induced caspase-3 activity in a dose-dependent manner in HEK293
cells [56]. Cisplatin-induced DNA damage is related to the ratio of proapoptotic and antiapoptotic
proteins, and release of cytochrome c from mitochondria followed by the activation of cysteine caspases
selectively degrades the target proteins [81]. The collective data indicate that GO-PtNPs induce the
intrinsic pathway of apoptosis, which is mediated by the upregulation of proapoptotic genes and the
downregulation of antiapoptotic genes.



Polymers 2019, 11, 733 15 of 23

Polymers 2019, 11, x FOR PEER REVIEW 15 of 24 

 

were determined. As expected, the levels of p53, p21, Bax, Bak, caspase-9, and caspase-3 were 
significantly upregulated, whereas the levels of Bcl2 and Bcl-xl were significantly downregulated by 
up to three-fold (Figure 12). Bcl-2 expression decreased 2.5 times compared to the control. A previous 
study [77] found that cells treated with PtNPs experienced genotoxic stress due to the activation of 
p53 and p21, which eventually led to proliferating cell nuclear antigen-mediated growth arrest and 
apoptosis. Our results were consistent with the recent finding [78] that PtNP-treated DEN animals 
showed significant increase in liver p53 gene expression level than normal rats. Other [56] reported 
that exposure of HEK293 cells to PtNPs induced the upregulation of Bax and the downregulation of 
Bcl2.  

 
Figure 12. Effect of GO, GO-PtNPs, and PtNPs on the expression of pro- and antiapoptotic genes. 
LNCaP cells were treated with respective IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h. 
The relative messenger RNA(mRNA) expression of P53 (A), P21 (B), Bax (C), Bak (D) Bcl-2 (E), Bcl-xl 
(F), caspase-9 (G), and caspase-3 (H) was analyzed by quantitative reverse-transcription polymerase 
chain reaction in LNCaP cells treated for 24 h. After 24-h treatment, expression fold level was 
determined as fold changes in reference to expression values against GAPDH. Results are expressed 
as fold changes. There was a significant difference in treated cells compared to untreated cells with 
Student’s t-test (*p < 0.05). 

The findings confirm that PtNPs induce mitochondria-mediated apoptosis, which is primarily 
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Caspase-9 plays a significant role in signal transduction by induction of the executioner caspases-3 
and -7 [38,80]. Similarly, PtNPs induced caspase-3 activity in a dose-dependent manner in HEK293 
cells [56]. Cisplatin-induced DNA damage is related to the ratio of proapoptotic and antiapoptotic 
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Figure 12. Effect of GO, GO-PtNPs, and PtNPs on the expression of pro- and antiapoptotic genes.
LNCaP cells were treated with respective IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h.
The relative messenger RNA(mRNA) expression of P53 (A), P21 (B), Bax (C), Bak (D) Bcl-2 (E), Bcl-xl (F),
caspase-9 (G), and caspase-3 (H) was analyzed by quantitative reverse-transcription polymerase chain
reaction in LNCaP cells treated for 24 h. After 24-h treatment, expression fold level was determined as
fold changes in reference to expression values against GAPDH. Results are expressed as fold changes.
There was a significant difference in treated cells compared to untreated cells with Student’s t-test
(* p < 0.05).

3.13. GO-PtNPs Increase the Levels of 8-oxodG and 8-oxo-G by Causing Oxidative Damage to DNA

Overproduction of ROS can induce lipid peroxidation as well as 3-( pyrimido[1,2-α]purin-10(3H)-one
and 8-oxodG. Nanoparticles cause several toxic effects, which include chromosomal aberrations, DNA
strand breakage, oxidative damage to DNA, and mutations [82,83]. Several assays have been used for
the detection of NP-related oxidative damaged to DNA, especially measuring the oxidative level of
8-oxodG. Among several oxidative stress markers, 8-oxodG plays a significant role in DNA damage
due to the prevalent oxidative lesions. To measure the levels of 8-oxodG and 8-oxoG, LNCaP cells
were treated with IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24 h. Cells treated with GO
and PtNPs displayed 4- and 7-fold increases in 8-oxodG and 8-oxoG levels, respectively, compared
to those in the control group. Similarly, the cells treated with GO and PtNPs displayed 3-fold and
5-fold increases, respectively, compared to the control group. Cells treated with GO-PtNPs displayed a
12-fold increase compared to the control (Figure 13).

In another study, the exposure of human cells to PtNPs increased DNA damage, accumulation
of cells at the S-phase of the cell cycle, and apoptosis [77]. HEK cells exposed to PtNPs reportedly
displayed dose-dependent DNA damage that could be severe [56]. In another study [84], Fe3O4-NPs
induced significant generation of 8-oxodG only at a higher concentration (60 µg/mL) and after more
than 24 h of incubation. LNCaP cells exposed to PtNPs are expected to display significantly increased
intracellular levels of ROS, which will damage DNA. A recent study suggested that PtNPs inhibit
DNA replication and affect the secondary structure of DNA at higher concentrations in human cells
and bacteria. In the study, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused approximately
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2.4 times higher DNA damage in comparison with CisPt, LipoCisPt, and PtNPs [85]. This was also
found in our system, where exposure of LNCaP cells was significantly associated with higher levels of
both 8-oxodG and 8-oxoG adducts after 24 h of incubation in comparison to that in the untreated cells.
The generation of oxidative DNA lesions seems to be responsible for the induction of apoptotic death
in cancer cells.
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To further substantiate that oxidative DNA damage induced apoptosis, we evaluated the effect 
of GO-PtNPs on cell cycle arrest and DNA damage by evaluating the expressions of repair genes, 
including CDK2, CDK4, GADD45A, OGG1, APEX1, CREB1, UNG, and POLB, by RT-PCR after 24 h 
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Figure 13. GO, GO-PtNPs, and PtNPs increase DNA damage. LNCaP cells were treated with respective
IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h. 8-oxo-dG and 8-oxo-G were measured
after 24 h of exposure of LNCaP cells. There was a significant difference in treated cells compared to
untreated cells with Student’s t-test (* p < 0.05).

3.14. Impact of GO-PtNPs on Expression of GENES involved in Cell Cycle and DNA Damage

To further substantiate that oxidative DNA damage induced apoptosis, we evaluated the effect
of GO-PtNPs on cell cycle arrest and DNA damage by evaluating the expressions of repair genes,
including CDK2, CDK4, GADD45A, OGG1, APEX1, CREB1, UNG, and POLB, by RT-PCR after 24 h
exposure to GO, GO-PtNPs, and PtNPs. The genes were significantly upregulated from 1- to 4-fold.
CDK2 and CDK4 are tightly regulated by p21, which is controlled by p53. Cdk2 and Cdk4 inhibition by
p21 are significant in G1 arrest upon DNA damage by various stresses and for cellular senescence, and
p21 is an essential gene for p53-mediated G1 arrest in human cancer cells [86,87]. p53 is also believed
to inhibit Cdk4 activity through p21 and by the repression of Cdk4 synthesis [88,89]. Inhibition of the
cyclin-dependent kinases Cdk2 and Cdk4 is initiated by p53 and p21. It was reported [78] that the effect
of PtNPs was more potent than that of cisplatin in hepatocellular carcinoma induced in rats. PtNPs
inhibit cell proliferation by the induction of apoptotic cell death, which reduces cell viability and causes
internucleosomal DNA fragmentation, G2/M cell cycle arrest, and hypodiploid accumulation [90].
The release of platinum ions from PtNPs inhibits cell division by binding to DNA, which causes DNA
damage and downregulates the expression of proliferating cell nuclear antigen [77]. Furthermore,
the present results suggested that GO, GO-PtNPs, and PtNPs significantly induced the expression of
all the tested genes. In particular, the upregulation by GO-PtNPs was 2- to 4-fold higher than that in
cells treated with GO or PtNPs (Figure 14).

Graphene quantum dots trigger ROS generation, which triggers upregulation of genes associated
with DNA damage [91]. In another study, GO-treated cells showed increased expression of DNA
damage genes, including ATM and RAD51 [92]. Thus, GO-PtNPs effectively induce apoptosis
compared to GO or PtNPs through inducing oxidative stress in LNCaP cells. These results agree with
those of previous studies on the effect of PtNPs on fibroblast, glioblastoma, and A549 lung carcinoma
cells [53,77]. Additionally, the increased expressions of all tested genes, 8-oxo-dG, and 8-oxoG is
suggestive of oxidative damage to DNA. A hypothetical model demonstrates that the mechanism of
GO-PtNPs induced oxidative stress and DNA damage in LnCaP cells (Figure 15).
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Graphene quantum dots trigger ROS generation, which triggers upregulation of genes 
associated with DNA damage [91]. In another study, GO-treated cells showed increased expression 
of DNA damage genes, including ATM and RAD51 [92]. Thus, GO-PtNPs effectively induce 
apoptosis compared to GO or PtNPs through inducing oxidative stress in LNCaP cells. These results 
agree with those of previous studies on the effect of PtNPs on fibroblast, glioblastoma, and A549 lung 
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Figure 14. Effect of GO, GO-PtNPs, and PtNPs on expression cell cycle arrest and DNA damage genes.
LNCaP cells were treated with respective IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24
h. Relative messenger RNA(mRNA) expression of CDK2 (A), CDK4 (B), GADD45A (C), OGG1 (D)
APEX1 (E), CREB1 (F), POLB (G), and UNG (H) was analyzed by quantitative reverse-transcription
polymerase chain reaction in LNCaP cells treated for 24 h. After 24-h treatment, expression fold level
was determined as fold changes in reference to expression values against GAPDH. Results are expressed
as fold changes. There was a significant difference in treated cells compared to untreated cells with
Student’s t-test (* p < 0.05).
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4. Conclusions

In this study, we have successfully demonstrated a simple, environmentally friendly, and green
approach for synthesis of GO-PtNPs using vanillin as a reducing and stabilizing agent. Cytotoxicity of
GO-PtNPs was explored by determinations of cell viability, cell proliferation, and series of cellular
assays. The results revealed a more effective dose-dependent effect caused by GO-PtNPs compared to
either GO or PtNPs. Assessment of cytotoxicity test by examination of lactate dehydrogenase leakage
and membrane integrity revealed that GO-PtNPs potentially caused cell death. GO-PtNPs increased
the level of reactive oxygen species, malondialdehyde (MDA), nitric oxide (NO), and carbonylated
protein levels. The imbalance between pro- and antioxidant levels led to the loss of mitochondrial
integrity. In addition, GO-PtNP-treated cells exhibited mitochondrial-mediated apoptosis due to
the upregulation of p53, p21, Bax, and Bak, and the downregulation of Bcl-2 and Bcl-xl. GO-PtNPs
decreased the MMP and subsequently decreased the level of adenosine triphosphate production.
Ultimately, GO-PtNPs caused programmed cell death by the upregulation of proapoptotic genes,
including p53, p21, Bax, Bak, caspase 9, and caspase-3, and downregulation of the antiapoptotic
marker genes Bcl-2 and Bcl-xl. These results further substantiated that GO-PtNPs nanocomposites can
potentially disturb cell viability by inducing DNA cellular damage and genotoxicity by modulating
the genes expression responsible for cell cycle arrest, DNA damage, and DNA repair, and increasing
the levels of 8-oxo-dG and 8-oxo-G. GO-PtNPs significantly impaired the multiplication of cancer cells
compared to GO or PtNPs alone. Hence, we can conclude that GO-PtNPs are potentially valuable as
an alternate therapeutic agent for cancer. This piece of work could provide a step forward to improve
therapeutic efficiency of biologically synthesized biocompatible and nontoxic agent seems to be one of
promising techniques for cancer treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/4/733/s1,
Figure S1: Characterization of GO and GO-PtNPs by SEM and TEM, morphology of GO (A), GO-PtNPs (B),
and size of GO (C), and GO-PtNPs (D) were analyzed by SEM and TEM, respectively. The red circle indicates
decoration of PtNPs particles on the surface of graphene sheet (white arrow). The graphene sheet depicted
as wrinkled structure. E. The size distribution of GO. F. Size distribution of GO-PtNPs, Figure S2: The cell
morphology was analyzed by phase-contrast microscope. The morphology of LNCaP cells was determined
after 24-h exposure to different concentrations of GO (A), GO-PtNPs (B), and PtNPs (C) using light microscope.,
Figure S3: LNCaP cells was exposed to respective IC50 concentration of GO, GO-PtNPs, and PtNPs for 24 h
and then ROS was measured using DCFH-DA-FITC by fluorescence microscopy analysis. Scale bar = 200 µm.
Figure S4: LNCaP cells were exposed to respective IC50 concentrations of GO, GO-PtNPs, and PtNPs for 24 h and
then MMP was analyzed by fluorescence microscopy analysis. Scale bar = 200 µm.
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