
einstein. 2013;11(1):128-31

Reviewing Basic Sciences

Disease management with ARIMA model  
in time series

Gerenciamento de doenças utilizando séries temporais com o modelo ARIMA
Renato Cesar Sato1 

1 Universidade Federal de São Paulo, São José dos Campos, SP, Brazil.

Corresponding author: Renato Cesar Sato – Rua Talim, 330 – Vila Nair – Zip code: 12231-280 – São José dos Campos, SP, Brazil – Phone: (12) 3921-9598 – E-mail: rcsato@ipen.br

Received on: June 18, 2012 – Accepted on: Feb 7, 2013

ABSTRACT
The evaluation of infectious and noninfectious disease management 
can be done through the use of a time series analysis. In this study, 
we expect to measure the results and prevent intervention effects 
on the disease. Clinical studies have benefited from the use of these 
techniques, particularly for the wide applicability of the ARIMA 
model. This study briefly presents the process of using the ARIMA 
model. This analytical tool offers a great contribution for researchers 
and healthcare managers in the evaluation of healthcare interventions 
in specific populations. 
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RESUMO
A avaliação do gerenciamento de doenças infecciosas e não infecciosas 
pode ser realizada por meio da análise de séries temporais. Com isso, 
espera-se que sejam medidos os resultados e previstos os efeitos da 
intervenção sobre a doença. Os estudos clínicos têm se beneficiado 
do uso dessas técnicas, visto a grande aplicabilidade do modelo 
ARIMA. Esse texto apresenta de maneira resumida o processo de uso 
do modelo ARIMA. O uso dessa ferramenta analítica oferece grande 
contribuição para os investigadores e gestores de saúde na avaliação 
das intervenções de saúde em dadas populações.

Descritores: Estudos de séries temporais; Gerenciamento clínico/
tendências; Administração de serviços de saúde; Estudos de intervenção

INTRODUCTION
Disease management constitutes the ability to decrease 
costs of interventions within a specific population. In 
this type of study, the inexistence of a control group 
may lead to a series of bias and practical difficulties(1). 

The approach using time series analysis is an alternative 
in the evaluation of disease management programs. 
When a time series is analyzed, the variable observed 
depends on its previous period, presenting a dependable 
series. This feature assists investigators in identifying, 
explaining, and predicting the effects of management 
programs performed throughout time. Depending on the 
program, inclusion of patients may not be instantaneous 
varying with each case. Therefore, a program that 
includes participants followed-up for 3 to 6 months can 
perceive the first results only several months or years 
later(2). Because of the importance of “time” for disease 
management studies, this review presents an analysis of 
the autoregressive integrated moving average (ARIMA) 
model. This model is the most commonly used by time 
series health researchers(3-6). Time series models have 
greater ability of prediction and wide applicability than 
nontemporal techniques(7). Diffusing database use and 
data inclusion (eg, by using electronic medical records) 
creates an adequate environment for this methodology.

Some examples of the ARIMA model use include 
prediction of the number of beds occupied during the 
epidemic of severe acute respiratory syndrome (SARS) 
at a hospital in Singapore. Such model estimations 
enabled the hospital staff to predict 3 days ahead of time 
the number of beds that would be required during the 
epidemic. This study also commented on the viability 
of the ARIMA model for hospital bed planning and for 
other critical resources during epidemics of infectious 
diseases(8). Another study conducted in China(9) suggested 
the need for an adequate model to forecast, based on 
historical data, cases of hemorrhagic fever with kidney 
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syndrome. Currently, China has 90% of cases of this 
disease reported globally, and the use of ARIMA 
models enables them to create better management and 
short-term predictions of the disease(9).

The ARIMA model is also used as an efficient tool to 
plan resources such as beds and teams for the emergency 
department(10,11). Another applicability of the ARIMA 
model is to predict and study antimicrobial resistance(12-14).

ARIMA MODELS
The ARIMA model was developed in the 1970s by 
George Box and Gwilym Jenkins as an attempt(9) to 
describe changes on the time series using a mathematical 
approach. In some cases, the names ARIMA and 
Box-Jenkins are mentioned as synonyms. This model is 
based on an adjustment of observed values, and its goal 
is to reduce as close to zero as possible the difference 
between the values produced in the model and the 
observed ones. Quite possibly, this model can describe 
behaviors of stationary and nonstationary series, giving 
versatility to situational variances. Series are stationary 
when their mean and variance are constant throughout 
time, and when the value of covariance depends only on 
a gap between two time periods. Random shocks occur 
in nonstationary series increasing mean displacement 

and variance, violating the stationary condition of the 
series(2). Some important observations in the creation 
of an explicative model are the need for at least 50 
observations. For disease management programs, at 
least 4 years of data are required until the first month 
of intervention. Therefore, the model has the ability 
to place eventual patterns that could interfere in the 
arrangement of parameters(2).

Figure 1 shows a schematic diagram of the ARIMA 
model of process estimation. A wide variety of ARIMA  
models are found. The general format of the nonseasonal 
model is the AMIRA (p, d, q) being AR: (p=degree 
of the autoregressive part); I: (d=degree of the first 
difference involved), and MA: (q= degree of the mean 
part that is mobile).

The use of the Box-Jenkins methodology (ARIMA 
model) can be done in three phases(15): identification, 
estimation and testing, and application. Below, we 
describe in detail what must be observed in each phase 
of the process. 

Identification phase
The autocorrelation function (ACF) is a standard tool 
used to explore time series. This tool enables the user 
to identify seasonality, cycles, and other patterns in a 
series. ACF also enables the researcher to identify 
information concerning a prior period associated with 
the sequential observation(15).

A stationary series has a “white noise” when 
mistakes consist of a sequence of uncorrelated random 
variables. One can understand white noise in errors 
as the inexistence of patterns, which is equivalent to 
establishing that mistakes are not correlated. The partial 
ACF (PACF) is used to measure the associative degree 
between an observation ( ) and an observation made in 
two periods before ( ) removing the intermediate period 
( )(15). PACF enables the evaluation of the correctness 
degree of current variables with its previous values, 
whereas other constant values are kept.

Graphical data representation
In this first stage, identification of discrepant or less 
usual data in the series is performed. Transformation 
of data could be needed also to stabilize the variance 
reaching the stationary stage.

Stationary data are considered throughout time, 
along with ACF and PACF. If a time diagram shows that 
data are dispersed horizontally surrounding a constant 
mean, ACF and PACF values decrease close to zero 
rather quickly. If this decrease is not seen, the stationary 
phase has not occurred yet.Figure 1. Scheme for the use of Box-Jenkins methodology(15)
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The nonstationary stage could be solved by 
differentiation. This stage must be evaluated if data are 
seasonal or not. In the case of seasonal data, the first 
difference must be obtained from the data. In general, 
one or two differences are required to transform the 
data in a stationary series(15). It is important to mention 
that data in healthcare have a relative variability, and it 
is difficult to identify these patterns. A way to overcome 
this limitation is to evaluate the autocorrelation (ie, 
to evaluate how an observation is related to the prior 
observation). To convert these data to the stationary 
stage, the investigator creates a new series of data, based 
on the differences of the current period in relationship 
to the previous one. Series are considered stationary 
when autocorrelation does not show statistically 
significant results. 

Once the stationary stage is reached, the autocorrelation 
must be retested to verify the possible presence of any 
residual pattern.

Phase of estimation and test
After identifying the model, AR and MA parameters, 
seasonal and nonseasonal, must be determined. In this 
stage, the traditional method of least squares may be 
used. A form often used is the maximal likelihood. 
This form could be understood as a viability measure 
to check the current sample observations given a 
particular set of parameter values. Maximal likelihood 
method enables the investigator to find the values of 
maximal parameters. 

Some parameters can present no statistically significant 
values (p≥0.05); in such cases, these parameters could 
be taken away from the study in order to improve the 
arrangement of data.

However, more than one ARIMA model could 
work for a data series. A selection criterion is the model 
that has the least sum of squared errors, although this 
approach is limited because the sum of squares could 
decrease and the likelihood could increase only by the 
input of more data. 

Analysis of residues is performed, and the ACF 
model must show the nonexistence of a significant 
autocorrelation or a partial autocorrelation between 
residues. The Portmanteau test could be applied as a 
complementary means to evaluate the adjustment; a 
positive test might indicate an inadequate model(15).

If a significant autocorrelation is found, the process 
of identification must be performed to assess other 
patterns that yet exist. This comparison could be done 
with other estimation and prediction techniques using 
measures of mean error, mean absolute error, square 
mean error, or Theil’s U statistics. 

Phase of enforcement 
Predictions with the use of time series analysis should 
not exceed the first 12 months of the program(2). As 
mentioned, the first periods of the program could not 
present a significant impact on the patient. In later 
periods, significant impact levels could be found. 
After identification of these result levels, specific goals 
can be attributed for each period. In longer studies, 
attention should be given to external factors of the 
model that may create peaks in time follow-up. Some 
examples are other technological innovations that 
reduce disease time or outbreaks of epidemics that 
increase its effect.

In cases of epidemics, the series could be 
nonstationary and nonlinear, going from one status to 
another in a complex manner. In addition, periodic 
structures of infectious disease epidemics change with 
time. Therefore, in such cases, short periods of time 
segments are encouraged to analyze the effects of each 
segment(16).

CONCLUSION
Several methods and approaches could be used in the 
healthcare arena. Time series is an analytical tool to 
study diseases and resources management at healthcare 
institutions. The flexibility to follow up and recognize 
data patterns and provide explanations must not be 
neglected in studies of healthcare interventions. In this 
study, the ARIMA model was introduced without the 
use of mathematical details or other extensions to the 
model. The investigator or the healthcare organization 
involved in disease management programs could have 
great advantages when using analytical methodology 
in several areas, with the ability to perform provisions 
in many cases. Despite the analytical possibility by 
statistical means, this approach does not replace 
investigators’ common sense and experience in disease 
interventions. 
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