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Abstract

Foodborne and waterborne gastrointestinal infections and their associated outbreaks are pre-
ventable, yet still result in significant morbidity, mortality and revenue loss. Many enteric
infections demonstrate seasonality, or annual systematic periodic fluctuations in incidence,
associated with climatic and environmental factors. Public health professionals use statistical
methods and time series models to describe, compare, explain and predict seasonal patterns.
However, descriptions and estimates of seasonal features, such as peak timing, depend on how
researchers define seasonality for research purposes and how they apply time series methods.
In this review, we outline the advantages and limitations of common methods for estimating
seasonal peak timing. We provide recommendations improving reporting requirements for
disease surveillance systems. Greater attention to how seasonality is defined, modelled, inter-
preted and reported is necessary to promote reproducible research and strengthen proactive
and targeted public health policies, intervention strategies and preparedness plans to dampen
the intensity and impacts of seasonal illnesses.

Introduction

Foodborne and waterborne gastrointestinal infections are caused by the consumption of con-
taminated food and water, respectively [1, 2]. Food contamination often occurs due to poor
health or hygiene practices during food production, processing, distribution or consumption,
or cross-contamination between food products [1–3]. Waterborne illnesses and outbreaks are
often attributed to ageing infrastructure and severe weather events [4–6]. Outbreaks are com-
monly defined as the occurrences of two or more infections caused by the same source [1–3].
Infection incubation periods range from a few hours to many months, causing high volumes
and broad geographic extent of infected persons per outbreak. This, combined with the habi-
tude of human food and water consumption, the globalisation of food supply chains, and the
frequent handling or storage of food and water before consumption, makes sources of gastro-
intestinal infections difficult to identify and control [3, 7–9].

Public health professionals often use time series analyses, or a collection of methods to
describe, explain and predict temporal processes, to assess the patterns of infections [10–12].
Time series analyses examine population-based likelihoods of infections as a function of
time and time-varying factors [13]. These methods decompose the temporal distribution of
infections into three components: (i) trend or general incidence fluctuation over time; (ii) sea-
sonality or systematic periodic fluctuation in incidence generally observed over 1 year; and (iii)
change in incidence driven by other periodic, sporadic or random events [14]. Seasonality can
be further characterised by three main features: (i) peak (and nadir) timing or when incidence
reaches its maximum (and minimum); (ii) amplitude or the difference in incidence between
seasonal peaks and nadirs; and (iii) duration or the time interval when incidence rises above
a specified threshold [12, 15]. Most modelling studies detect the presence of seasonality by
characterizing peak timing.

Precise estimation of peak timing helps identify differences in seasonal patterns by patho-
gen, subpopulation and geographic location [12]. Synchronisation of pathogens’ peaks sug-
gests possible co-infections and shared food/water- or environmental-drivers of infection
[12, 16, 17]. Lags between peaks of infections and their drivers, best assessed with more granu-
lar temporal data, inform forecasts of peak incidence for early outbreak warnings [12, 18, 19].
Better characterisation of seasonal patterns in diseases and exposures contributes to refine-
ments of research hypotheses by identifying non-seasonal drivers such as stagnant water, agri-
cultural runoff, livestock migration or sanitation practices [20–22]. Accurate peak timing
estimates by subpopulation and geographic location identify when and where vulnerable
populations are at the highest risk of infection [12].
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While the concept of seasonality may seem straightforward, its
characterisation and quantification are complex. Researchers
oftendetect seasonality andestimate seasonal peak timingbycompar-
ing average incidence or cumulative infections by season [23].
Alternatively, researchers can describe seasonality as a continuous
temporal process. Researchers model temporal patterns using data-
driven methods based on smoothing or polynomial, periodic and
other non-linear functions [14]. Researchers detect seasonality with
a formal statistical test of periodicity or by assessing model fit [23,
24]. These approaches and theirmethods have advantages and limita-
tions that have been thoroughly explored for modelling seasonal
respiratory infections like influenza and pneumonia [25–28].
However, differences in terminology for defining seasonality and lim-
itations ofmethods forestimating seasonal peak timing remain largely
underexplored within literature related to gastrointestinal infections.

In this systematic review, we demonstrate differences in
applied definitions of seasonality when modelling, interpreting
and reporting gastrointestinal infections. We extracted and
reviewed original research articles that detected and estimated
the seasonality features of gastrointestinal infections in humans
using disease surveillance systems or hospital health records.
We describe advantages and limitations of statistical methods
for detecting, estimating and comparing seasonal peak timing.
Standardised terminology and reporting requirements can be
extended to the field of infectious disease epidemiology.

Methods

Literature search

We conducted a search of published literature in peer-reviewed
journals using the National Library of Medicine’s National
Center for Biotechnology Information bibliographic database
PubMed. This database identified publications spanning many
disciplines related to enteric infections including nutritional, agri-
cultural, environmental, public health, zoonotic and microbio-
logical sciences. PubMed’s emphasis on circulating research with
innovative analytical approaches prioritised publications that
thoroughly reported on statistical methodologies [29].

We used no publishing date restrictions. We conducted our
first search on 02 March 2019 with follow-up searches on 18
July 2019, 20 December 2020 and 22 July 2021. For each search,
we included the following search terms forming four categories:

• Disease aetiology: ‘foodborne’, ‘food borne’, ‘food-borne’,
‘waterborne’, ‘water borne’, ‘water-borne’ and ‘gastroenteritis’;

• Notifiable gastrointestinal infections: ‘Campylobacter’, ‘campylo-
bacteriosis’, ‘Salmonella’, ‘salmonellosis’, ‘Vibrio’, ‘vibriosis’,
‘cholera’, ‘Listeria’, ‘listeriosis’, ‘Cryptosporidium’, ‘cryptospor-
idiosis’, ‘Shigella’, ‘shigellosis’, ‘Cyclospora’, ‘cyclosporiasis’,
‘Escherichia’, ‘e. coli’, ‘Yersinia’, ‘yersiniosis’, ‘norovirus’,
‘Giardia’, ‘giardiasis’, ‘rotavirus’ and ‘rotaviral’;

• Case definitions: ‘illness’, ‘infection’, ‘incidence’, ‘rate’ and ‘out-
break’; and

• Key terms: ‘season’, ‘seasonal’, ‘seasonality’ and ‘peak’.

We selected pathogens using nationally notifiable enteric
infections reported by the US Centers for Disease Control and
Prevention’s (CDC’s) Foodborne Diseases Active Surveillance
Network (FoodNet) and National Outbreak Reporting System
(NORS) [9, 30–33]. These notifiable infections represented inter-
nationally monitored enteric infections [34, 35].

Exclusion criteria and study abstraction

Our search yielded 2064 publications (Fig. 1). First, we excluded
non-English publications (n = 61) and duplicates (n = 849).
Next, we reviewed the abstracts of the remaining 1154 publica-
tions and excluded those with: (i) animal, plant or water hosts/
reservoirs (n = 470); (ii) <1 year of data, case control studies or
ecologic studies (n = 146); (iii) non-gastrointestinal infections
(n = 82); (iv) literature reviews, editorials or viewpoints (n = 82);
and (v) studies examining antimicrobial resistance, genetic diver-
sity, and economic burdens of illness or using simulation-
generated data (n = 24). We conducted a full-text review on the
remaining 350 publications and excluded publications with no
estimation of seasonal peak timing (n = 84), no reporting on
human illnesses or outbreaks (n = 20), non-original research
(n = 20), and no health outcome or surveillance records assessed
(n = 17).

We reviewed references of the 209 extracted publications for
additional manuscripts meeting the above inclusion criteria but
not identified in our initial search (Fig. 1). We also reviewed fea-
tured publications on FoodNet and NORS websites [36, 37]. We
identified 11 additional publications meeting our search criteria
that were not identified in our PubMed search. We exported
and reviewed all 220 citations using EndNote version X7.7.1 soft-
ware. We report all citations in Supplementary Table S1, which
are referenced below using a citation identifier (CID).
We designed and created all visualisations using PowerPoint ver-
sion 14.3.6 and R version 3.6.2 software.

Structure of findings

First, we describe study objectives and rationale for investigating
seasonality. Next, we discuss two approaches for detecting and
estimating seasonality features: (i) comparisons of discrete time
intervals; and (ii) construction of seasonal curves. For compari-
sons by discrete time intervals, we compare methods used when
defining two and four seasons or the use of discrete calendar
months. For constructed seasonal curves, we compare common
modelling techniques including average smoothers, cubic splines,
seasonal trend decomposition (STL), seasonal autoregressive inte-
grated moving averages (SARIMA), harmonic regression models
and spectral analyses. For each method, we outline advantages
and limitations for detecting seasonality and estimating seasonal
peak timing.

Results

Motivation and rationale for investigating seasonality

Studies investigating seasonality aimed to: (i) describe trends in
infections over time; (ii) compare trends and seasonality features
by pathogen, subpopulation, geographic location or other risk fac-
tors; and/or (iii) explain associations between seasonal infections
and their environmental drivers. Descriptive studies often defined
seasonality using discrete seasons or calendar months (Table 1).
Comparative and explanatory studies examined the seasonality
of common pathogens like Salmonella and Campylobacter by con-
structing seasonal curves. For example, Norovirus studies com-
pared seasonal peak timing by strain/subtype while Escherichia
coli, Cryptosporidium and Vibrio studies compared peak timing
across geographic locations or subpopulations using both discrete
seasons and seasonal curves (Table 1).
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Describing trends in infections over time
Descriptive studies often reported linear fluctuations in mean and
median incidence over time or the sum and percentage of infec-
tions by consecutive seasons or months (CID 1–11). Studies fre-
quently estimated seasonal peak timing by identifying the
calendar month or season with the highest sum, percentage or
average incidence of infections (CID 12–18). Study rationales
aimed to understand trends in infection severity for creating,
modifying or evaluating public health interventions. Researchers
stated that linear trends and seasonal peak timing estimates
informed when, where and for which pathogen health safety pol-
icies were most needed (CID 13, 19–21). Researchers equated
reductions in infections or dampening of seasonal peak intensities
to positive benefits of enacted health policies or programmes
(CID 12, 22).

Additional study rationales included reviewing surveillance
system capacity and preparing public health institutions for sea-
sonal hospitalisation peaks (CID 23–30). Many early studies
described trends and seasonality features to assist public health
laboratories in detecting, monitoring and tracking infections

(CID 23–28). Peak timing estimates aided public health institu-
tions in: (i) managing personnel and supplies (CID 30); and (ii)
communicating risks of gastrointestinal infections to travellers
or residents in high-risk areas during outbreak seasons (CID
29). Studies often emphasised the importance of improving the
spatial and temporal resolution of surveillance records to permit
more precise, accurate and reliable estimation of seasonality
features.

Comparing seasonal peak timing by subgroups
Comparative studies estimated seasonality features by pathogen
strain, subpopulation, geographic location or other risk factors
(CID 31–38). Surveillance systems collected and reported cases
by pathogen subtype as serotyping technologies became available.
Many studies compared Norovirus and Salmonella strains to dem-
onstrate the utility of advanced laboratory testing capabilities
(CID 1, 4, 39–43). Studies identified which strains were most
severe, required greatest allocation of laboratory resources and
needed continued surveillance during outbreak seasons (CID 1,
42, 43). Descriptive assessments of seasonal peak timing by

Fig. 1. PRISMA flow diagram detailing the identification,
screening, eligibility and inclusion of articles for our sys-
tematic review. Included studies (n = 220) were original
research articles that detected and estimated the season-
ality of human gastrointestinal infections using local,
regional and national surveillance systems or hospital
health records.
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Table 1. A summary of time series methods for describing, comparing and explaining the seasonality of the 14 most cited gastrointestinal infections from our review

Pathogen
Total

citations

Discrete seasons Seasonal curves as continuous processes

Two
seasons

Four
seasons

Monthly
records

Average
smoothers

Cubic
splines

STL
models

SARIMA
models

Harmonic
regressions

Spectral
analyses

Salmonella 66 5 25 22 1 2 12

Campylobacter 45 2 20 9 1 1 1 9 2

Gastroenteritis 38 1 15 15 1 2 4

Vibrio 20 2 7 4 1 2 4

Norovirus 19 3 9 6

E. coli 18 14 1 1 2

Cryptosporidium 17 2 1 10 1 3

Yersinia 11 7 3 1

Shigella 11 7 2 2

Giardia 10 1 3 3 1 2

Listeria 9 6 2 1

Cyclospora 6 1 1 4 1

Rotavirus 6 2 1 3 1

Clostridium 2 2

Total 215 17 76 74 2 4 2 7 31 2

We ranked pathogens in descending order by total citations. We divided methods by comparisons of discrete seasons and the construction of seasonal curves. Discrete seasons methods included comparisons by two seasons, four seasons or calendar
months. Seasonal curve methods included average smoothers, cubic splines, seasonal trend decomposition (STL), seasonal autoregressive integrated moving average (SARIMA) models, harmonic regression models and spectral analyses. Column and
row totals are less than the sum of all rows and columns, respectively, as many publications investigated multiple pathogens and used multiple methodologies to describe, compare and explain seasonality features.
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enteric species’ subtypes informed the circulation patterns of
common strains and their epidemiological or clinical characteris-
tics, which can improve the specificity of lab methods used for
pathogen detection (CID 39). Researchers also compared peak
timing by strain to forecast disease burden in upcoming outbreak
seasons (CID 4, 40, 41).

Comparisons by subpopulation and geographic location iden-
tified who and where was at the highest risk of infection (CID 44–
50). Study rationales aimed to provide information for developing
infection prevention and management guidelines in future out-
breaks (CID 46–48, 51). Studies investigating subpopulations
compared trends and seasonality by sex, age group or place
where infection was acquired (domestic- vs. travel-related) (CID
46, 52). Geographical comparisons attempted to identify the hot-
spots of infection vulnerable to multi-county or multi-state out-
breaks (CID 47, 53). Many comparison studies lacked formal
statistical tests for detecting significant peak timing differences.

Explaining associations between infections and risk factors
Few studies investigated associations between seasonal infections
and environmental factors such as ambient temperature, precipi-
tation and relative humidity (CID 54–60). These studies often
extracted daily or weekly time series data and explored seasonal
patterns using harmonic regression models (CID 18, 37, 61–65).
Studies quantified associations between health and environmental
variables using lags, which varied in length according to data’s
temporal resolution (CID 66–76). Study findings informed early
warning forecasts or evaluated the effect of extreme weather
events on the amplification or dampening of incidence in
human infections (CID 55, 58, 64, 66, 67, 69). Researchers
noted that their understanding of associations between environ-
mental drivers and human infections improved the reliability of
peak timing forecasts (CID 55, 66, 68). Studies encouraged con-
tinued examination of associations between environmental dri-
vers and gastrointestinal infections considering ongoing climate
changes globally (CID 58, 59, 77).

Describing seasonality with discrete seasons

Most studies detected seasonality and examined seasonality fea-
tures using discrete seasons (Table 1). Researchers defined seasons
either analytically using surveillance data (e.g. high/low incidence)
(CID 78–82) or using external biological, environmental, physical,
physiological or other assumptions (e.g. wet/dry, warm/cool, sum-
mer/fall/winter/spring) (CID 3, 18, 33, 37, 80, 81, 83–86).
This approach closely reflected layman definitions of season: ‘a
period normally characterised by a particular kind of weather’
or ‘a period marked by special activity especially in some field’
[38]. Seasons had equal or unequal lengths and were defined by
pre-determined dates or known patterns of disease incidence.
To detect seasonal peak timing, researchers identified one season
with significantly higher incidence than all others. While we only
describe applications of two and four seasons below, studies might
also define three, five or more seasons [39–42].

Two seasons
Studies often defined two seasons with equal 6-month lengths that
spanned either a single calendar year such as two semesters (e.g.
January–June vs. July–December) or two adjacent calendar
years (e.g. October–March vs. April–September) (Supplementary
Table S2; CID 48, 78, 79). Studies defined unequal season lengths
when analytically deriving seasons based on incidence, which often

consisted of a ∼3-month high-incidence season compared to a
∼9-month low-incidence season (CID 58, 80, 81). Unequal season
lengths varied by genus, strain or serotype of the pathogen(s)
assessed (CID 81).

Studies defining seasons with environmental factors used
meteorological patterns like coolness and warmness, wetness
and dryness, or their combination. Cool and warm seasons varied
by climate region and hemisphere (CID 37, 87). Some studies
defined seasons by extreme temperature events, such as heat-
waves, whose dates varied by annual cycle (CID 84). Other studies
defined cool and warm seasons by aggregating times-of-the-year
with similar temperatures such as spring/summer and fall/winter
(CID 79). Researchers defined wet and dry seasons using precipi-
tation or relative humidity and often examined associations
between flooding events and incidence (CID 58, 60, 88, 89).
These studies aimed to investigate the effects of seasonal surface
water flooding dynamics on human health (CID 88, 89).

Statistical analyses for detecting seasonality with two seasons
are computationally straightforward. However, in the absence of
formal comparison tests, differences in incidence by season
could be spurious. While studies used terminology like ‘seasonal
peaks’ or ‘greater incidence’ to imply formal inferences, seasonal-
ity was undetermined without test results. Studies applied pair-
wise Student’s t-tests, Mann–Whitney rank-sum tests or χ2-tests
to compare average incidence, median incidence or cumulative
infections, respectively (CID 37, 79, 89). Statistical power
depended on the number of study years assessed as seasons
occurred only once per year.

Recent studies conducted formal comparisons using binary
variables within logistic regression models (CID 37, 48, 58, 60,
80, 82–84). Models compared seasons using odds ratio (OR)
and incidence rate ratio (IRR) measures of association. Studies
applying these models had the advantage of adjusting for add-
itional confounding factors expected to influence seasonality
(CID 80, 82–84).

When comparing two seasons, peaks and nadirs ideally fall at
the centre of each season in each year (Fig. 2a). Equal season
lengths neatly divide time points of the highest and lowest inci-
dence into each season. However, many enteric infections exhibit
irregularities when long periods of low incidence alternate with
short bursts of infections, or when extended periods of high inci-
dence are replaced with intermittent declines. This complicates
analytically deriving season intervals and can lead to misclassifi-
cation when a priori assigned seasons align poorly (Fig. 2b) or not
at all (Fig. 2c) with actual data. Poor alignment will result in more
similar average or median incidence between seasons, decreasing
a researcher’s ability to detect seasonality. If peak timing falls near
or at the boundary between seasons, differences will be indistin-
guishable, and researchers will not detect seasonality, resulting
in misclassification bias (Fig. 2c).

Seasons defined using exogenous environmental or biological
assumptions could align well with seasonal peaks or nadirs and
demonstrate strong correlations as in Figure 2a. However, envir-
onmental seasons and infection seasonality could be misaligned
resulting in low (Fig. 2b) or no correlation (Fig. 2c). Low or no
correlation does not indicate the absence of disease seasonality
but rather a potential lag in peak timing from the centre of the
season compared to an environmental factor’s seasonal peak.

In general, the precision for estimating seasonal peak timing is
low using this method. Coarse aggregation of seasons suggests
that peak timing could occur anytime within a ∼6-month inter-
val. This inhibits informative public health policies and prevents
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investigating possible trends, drifts or instantaneous shifts of sea-
sonal curves over time. Data compression also underutilises daily,
weekly and monthly surveillance system records that could more
precisely estimate peak timing.

Four seasons
Studies often defined four seasons with equal 3-month lengths
and were described as: ‘one of the 4 quarters into which the
year is commonly divided’ [38]. Studies consistently named sea-
sons ‘summer’, ‘fall’, ‘winter’ and ‘spring’ despite seasons’ start
and end dates differing by geographic locations and climatic
zones (Supplementary Table S3). Nearly all studies used monthly
surveillance data, which inferred that seasons spanned from the
first day of the first month to the last day of the third month
(CID 17, 36). Studies using daily or weekly surveillance data occa-
sionally selected dates to start and end mid-month (CID 90).
Studies used unequal season lengths when analytically defining
a high-incidence season (commonly referred to as summer) of
4 rather than 3 months (CID 91–95). Few studies defined high-
incidence seasons using environmental factors such as rainfall,
temperature or their combination (CID 18, 77, 96).

Quarterly seasons are historically defined by the photoperiod
and align with agricultural production schedules [43]. Seasons
vary by the relative durations of daylight and depend on a

location’s position relative to the equator [43]. Since meteoro-
logical patterns in each season vary by geographic location, so
does the influence of environmental drivers on the peak timing
of gastrointestinal infections. As expected, we found that studies
conducted in the Southern Hemisphere defined summer/
highest-incidence seasons from December to March while studies
in the Northern Hemisphere defined summer/highest-incidence
seasons from April to September (CID 16, 97–100).

Definitions of seasons also varied within the same geographic
location. For example, we identified 10 studies conducted using
the FoodNet surveillance system in the United States in 1996–
2013 (CID 91, 101–109). Seven studies described seasonal peaks
in summer months defined as June to August (CID 101–107).
Two studies defined summertime peaks from July to September
while one study used a broader 4-month interval from June to
September (CID 91, 108, 109). Variation in definitions of summer
results in less precise peak timing estimates; when comparing
these studies, peak timing ranges from June to September despite
most studies having a 3-month season length.

The use of four seasons follows similar analytical advantages
and limitations as two seasons. The fixed number of seasons
allows researchers to detect seasonality with straightforward stat-
istical analyses that adjust for multiple comparisons. Researchers
can incorporate indicator variables in regression models that

Fig. 2. An illustration of detecting seasonality and estimating seasonal peak timing using two discrete seasons. Scenarios include (a) when peak and nadir timing
align with the centre of each season, as expected for incidence-based definitions of seasons; (b) when peak and nadir timing is shifted from the centre of each
season; and (c) when peak timing aligns with the boundary between seasons and results in substantial misclassification bias.
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allow adjusting for additional confounding variables. Differences
in season lengths require special attention: researchers must
weight differences in the duration of each season. Studies rarely
addressed this issue.

The most accurate detection of seasonality occurs when the
seasonal peak falls at the centre of an a priori assigned season
(Fig. 3a). Researchers’ ability to detect seasonality reduces with
any misalignment between assigned seasons and the actual sea-
sonal curve (Figs 3b and 3c). When the seasonal peak falls near
or at the boundary of two seasons, these seasons are indistinguish-
able. Researchers may then conclude that an infection peaks
within a ∼6-month period – a substantially reduced precision
compared to quarterly seasons. When discrete seasons are defined
by exogenous factors, such as ambient temperature or rainfall,
misalignments could indicate a lag between infection and expos-
ure (CID 65).

Defining seasonality with four seasons coarsely aggregates time
series data, resulting in less precise estimates than daily, weekly or
monthly data could allow for. Data aggregation impedes research-
ers from examining complex temporal behaviours of seasonal
curves to inspecting the reliability of peak timing estimates.
Quarterly seasons also lack a uniform environmental or biological
factor shared across geographic locations. Comparisons between

studies are challenging to assess and may cause confusion given
seasons’ common names worldwide. Even studies in the same
location using the same dataset and study period used dissimilar
definitions, reducing the precision of peak timing estimates when
comparing these studies.

The four-season method somewhat ignores biologically plaus-
ible assumptions of temporality. Take the example of comparing
springtime incidence to other seasons. The conceptual interpret-
ation of a difference with a preceding season like winter differs
from a comparison to an immediately following season like sum-
mer. Furthermore, comparisons between spring and fall fail to
account for variations in incidence during summer. The use of
discrete seasons overlooks the autoregressive nature of time series
data and might draw comparisons based on unrealistic assump-
tions of temporality.

Calendar months
Studies most often used discrete Gregorian calendar months to
detect seasonality and estimate peak timing. Researchers applied
various statistical methods to monthly time series data (CID 56,
110–113) and estimated peak timing by identifying the calendar
month with the highest average incidence or cumulative infec-
tions compared to other months (CID 13, 20, 25, 44, 51, 114–

Fig. 3. An illustration of detecting seasonality and estimating seasonal peak timing using four discrete seasons. Scenarios include (a) when peak timing is well
aligned with the centre of a season; (b) when peak timing is shifted from the centre of an a priori assigned season; and (c) when peak timing aligns with the
boundary between 2 seasons. Scenario (a) offers higher precision and accuracy as compared to scenarios (b) and (c).
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118). Many studies with only 1–3 years of surveillance data war-
ranted this method, as more rigorous inspection of seasonal
curves was not possible (Supplementary Table S4; CID 119–128).

Few studies with longer study periods conducted Mann–
Whitney rank-sum tests with Bonferroni multiple comparison
corrections (CID 129–130). Most studies examined seasonality
using a discrete, 12-level categorical variable within logistic regres-
sion models. Researchers assessed significant differences using OR
and IRR measures of association, which compared average inci-
dence in each calendar month to a reference month (CID 34,
56, 110–113). When reference months had lowest incidence, OR
and IRR estimates for the highest incidence month were analo-
gous with the seasonal amplitude.

The international recognition of Gregorian calendar months
establishes a common terminology for comparing study results.
Many surveillance systems publicly report monthly records,
allowing researchers to define seasonality by month and coarser
seasons as desired (CID 127, 130). Monthly records are not
bound to infection incidence or environmental drivers, easing
researchers’ examination of shifts in peak timing [13]. However,
this discrete method still violates assumptions of temporality
and ignores the autoregressive nature of time series data.
Furthermore, the Gregorian calendar has month length irregular-
ities [14] and often poorly reflects true climatic, social or bio-
logical seasons.

Monthly maximums accurately and precisely detect seasonality
and estimate peak timing when infections have one consistent
annual peak. However, statistical maximums are susceptible to
outliers in the distribution of time series data. As noted earlier,
many gastrointestinal infections exhibit irregularities in their sea-
sonal pattern when long periods of low incidence alternate with
short bursts of infections. This variability can result in numerous
months with high incidence or the appearance of bimodal peaks
due to outbreak events. While researchers can likely detect sea-
sonality even with these irregularities, the accuracy and precision
of peak timing estimates may reduce dramatically.

Few studies conducted formal comparison tests to determine
differences between months (Supplementary Table S4). Yet, many
studies used inferential language when reporting summaries of
monthly incidence that implied statistical significance. Additionally,
few studies conducting regression analyses stated the reference
month when reporting results. These omissions inhibit reproducibil-
ity of analyses and prevent comparisons of study findings.

Describing seasonality using seasonal curves

Studies more precisely detected seasonality and estimated peak
timing when constructing seasonal curves. These methods
retained the temporal order of time series data and assumed
that incidence at one time point depended on its intensity and
variability in preceding time points, also known as autocorrelation
(CID 66, 73, 75, 131, 132) [44, 45]. Descriptive studies con-
structed seasonal curves using various smoothers, spline functions
or STL (CID 55, 69, 70, 72, 133–136). SARIMA models, harmonic
models and spectral analyses estimated peak timing while adjust-
ing for the periodicity and autoregressive nature of seasonal
curves (CID 54, 74, 75, 137–141). Researchers estimated season-
ality features and their uncertainty using regression coefficients
from fitted models and applications of the δ-methods (CID 49,
50, 53, 61–65, 142, 143). The accuracy and precision of peak tim-
ing depended on time series length, white noise and patterns of
missing data.

Splines, smoothers and STL
These methods detected seasonality using moving average smooth-
ing and cubic spline modelling techniques (Supplementary
Table S5). Average smoothing used a series of averages estimated
on sequential time intervals to remove noise from data (CID 55,
136). Researchers specified the length of time intervals referred to
as smoothing windows. Broader windows resulted in more filtering,
optimal for examining linear trends while narrower windows
resulted in less filtering to reveal seasonal patterns. Researchers
detected and estimated seasonality by visual inspection of fitted
regression values (CID 55, 136).

Models with embedded spline functions filtered white noise by
fitting polynomial functions for sequential time intervals of sea-
sonal curves. Researchers determined interval length by defining
breakpoints throughout the curve, referred to as knots (CID 69,
70, 72, 133). Higher order polynomials with more knots had
greater noise-to-signal ratios and captured more non-linear fluc-
tuations in incidence like seasonality. Lower order polynomials
with fewer knots filtered more white noise and created highly
smoothed fitted values approaching linear trends. Researchers
determined the presence of seasonality using visual inspection
(CID 69, 70, 72, 133). Cubic splines captured seasonal peak and
nadir timing more effectively than first- or second-degree polyno-
mial functions.

STL attempted to isolate seasonal trends by decomposing data
into three components: (i) a trend model of annual fluctuations;
(ii) a seasonal model to account for daily, weekly or monthly fluc-
tuations; and (iii) a model describing residual variability (CID
134, 135) [14]. This partitioning allowed researchers to inspect
seasonal patterns using sinusoidal and cosinusoidal harmonic
terms while filtering out other components (CID 134, 135).
Researchers used rank-based Non-parametric Seasonality Tests
(NPST) to estimate peak timing [46].

These methods all filter white noise and irregularities in time
series data to reveal trends and seasonality features more clearly.
Researchers do not need to aggregate daily and weekly records
to precisely describe temporal fluctuations, though daily records
may have day-of-the-week effects requiring additional attention.
These methods retain the temporal order of data, capture the
autocorrelative nature of seasonal curves and estimate peak timing
using standardised time units comparable across studies.
Researchers can also construct smoothers and splines or perform
STL as exploratory data analyses to better specify main regression
models.

Application of these techniques depends on how researchers
select model parameters and visually inspect smoothed or fitted
value curves. Researchers objectively define model parameters,
decide window size or knot placement, and select the type of
smoothed averaging, degree of polynomial order or method for
inspecting seasonal components. These decisions influence the
signal-to-noise ratio captured by smoothed or fitted values and
necessitate researchers to conduct sensitivity analyses to ensure
optimal selection of model parameters.

Seasonal ARIMA models, harmonic models and spectral analyses
These methods examined the periodicity of infection seasonality
using the concept of harmonic functions in so-called time and
frequency domains [47] (Supplementary Table S5). Time domain
methods assume a constant periodicity of health outcomes, often
annual cycles and include SARIMA models, Fourier series trans-
formations and harmonic regression models. Studies modelled
the seasonal curve of infections using a frequency equal to the
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number of time units per annual cycle (e.g. 365.25 days, 52.25
weeks or 12 months). Researchers detected seasonality based on
the significance of sinusoidal and cosinusoidal regression coeffi-
cients (CID 35, 38, 54, 68, 144). Studies using SARIMA models
often examined associations between the peak timing of infections
and environmental risk factors (CID 57, 66, 73, 75). SARIMA
models also adjusted for seasonal autocorrelation, or when infec-
tion seasonality depends on its periodic behaviour in previous
annual cycles (CID 66, 73, 75, 131, 132). Seasonal autocorrelation
emphasised the importance of longer time series lengths and
fewer missing records [47].

Studies using harmonic regression models adjusted for Poisson
or negative binomial distributions due to the non-negative right
skewed behaviour of disease incidence (CID 43, 53, 70, 71, 143,
145). All studies assumed that annual infection seasonality
aligned with Gregorian calendar years. Few studies estimated sea-
sonal characteristics and their uncertainty measures by applying
the δ-methods to regression coefficients (CID 49, 50, 53, 61, 62,
65, 76, 142, 143, 146). This technique converted trigonometric
regression coefficients from a radial to a linear coordinate system
to calibrate and estimate peak timing and amplitude [15]. The
δ-methods provided both point estimates and confidence inter-
vals for seasonality feature, enabling formal comparisons of esti-
mates across geographic locations, study populations and
pathogens (CID 49, 50, 53, 65, 142, 146).

Frequency domain methods do not assume a constant annual
cycle and instead examine all possible cycle lengths in a study per-
iod (CID 140, 141). Spectral analyses, sometimes referred to as
wavelet analyses, estimate peak timing by identifying the cycle
length with best model fit (CID 140, 141). This technique was
often used in exploratory analyses to determine the optimal
cycle length before constructing harmonic regression models
(CID 63, 140). Researchers also used spectral analyses to compare
the frequency of seasonal gastrointestinal infections with environ-
mental risk factors (CID 141).

Both time and frequency domain methods retain the temporal
order, autocorrelative nature and temporal resolution of time ser-
ies data. Studies reporting peak timing estimates used standar-
dised Gregorian time units, easing comparisons between studies.
Trigonometric functions have well-understood harmonic proper-
ties that allow for elegant description and estimation of the shape
and frequency of seasonal curves. Researchers detected seasonality
by the significance of harmonic terms within models and could
investigate complex dual peak behaviours or shifts in peak timing
by including multiple harmonic terms of varying frequencies.

Time series length and patterns of missing records influence
the accuracy and precision of estimating peak timing with these
methods. Shorter time series may have case influential observa-
tions that distort seasonal patterns of infections. However,
researchers using longer time series should adjust for shifts in sea-
sonal peak timing due to surveillance system maturity or changes
in environmental drivers of infection over time. The percentage
and location of missing data can also distort seasonal curves
and bias estimates of seasonality features. Few studies summarised
time series length or patterns of missing data.

Recommendations for improving time series reporting

We summarise the advantages and limitations of each time series
method discussed above (Table 2). We hope this overview pro-
vides general guidelines to inform decision-making processes of
researchers for selecting and utilizing time series methods. We

encourage academic journal reviewers to use these guidelines
when commenting on the appropriateness and completeness of
time series methods in submitted manuscripts. Our overview
demonstrates that, while discrete methods are computationally
straightforward and require minimal statistical training, the use
of seasonal curves provide more reliable description of seasonal
patterns and estimation of seasonality features.

In addition, we propose a glossary of terms to standardise the
reporting of results when using time series analyses (Table 3). As
noted above, researchers used terms like trends, seasonal trends
and seasonal peaks interchangeably, yet their meaning and inter-
pretation vary dramatically. While results inferred statistical sig-
nificance, studies often neither conducted nor reported
comparison test results. Non-standardised terminology also yields
uncertainty of statistical methods, misleading study findings, and
potentially inaccurate estimations of peak timing. Terms defined
in Table 3 can provide clearer aims, objectives and outcomes of
studies using time series methods to describe, compare, explain
and predict infection seasonality. Standardised terminology
must accompany improved clarity in the reporting of case defini-
tions and date of illness onset, testing and laboratory confirm-
ation, as these differences may lead to unreliable comparisons
of seasonality features across surveillance systems. Establishing
consensus also invites interdisciplinary collaboration and sharing
of methods for modelling surveillance data.

Discussion

In this review, we described time series methods using discrete
seasons and seasonal curves to investigate the seasonality of
gastrointestinal infections. Discrete seasons are prone to mis-
classification biases and studies lacked standardised terminology
for reporting results and formal comparison tests. Studies con-
structing seasonal curves used methods that accounted for the
temporality and autocorrelation of data. However, these studies
often failed to estimate peak timing or thoroughly report on
data limitations. We recommend that researchers: (i) use standar-
dised terminology when reporting seasonality features; (ii) utilise
more rigorous methods when estimating peak timing; and (iii)
provide greater attention to data limitations when applying time
series methods.

Our review revealed that a study’s selection of time series
methods relates closely to its underlying assumptions and ration-
ale. Descriptive studies often estimate peak timing as the season or
calendar month of maximal incidence while comparative or
explanatory studies use seasonal curves to examine associations
between illnesses and their drivers. However, we noted the strin-
gency of selected methods depended not on study intent but
rather the availability of usable data, dictating the acquired preci-
sion of seasonality estimates. The assumptions are rarely specified,
yet they are essential for proper selection of both study design and
methods of data analysis. These assumptions refer to researchers’
ability to ensure optimal analytic power to determine the relevant
mechanisms governing human infections. The first assumption is
that a selected seasonal curve (or model) is optimal for describing
the observable temporal processes; the ability to meet this
assumption dictates the approach of handling noise due to poor
fit or outliers when observed data are not aligned or do not lie suf-
ficiently close to a selected curve. An additional assumption is
that the selected populations are optimal for both observing
and generating a seasonal curve (or model) for a selected patho-
gen. To test whether a study can meet these assumptions, we need
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Table 2. Overview of the advantages (✓) and limitations (✗) of time series methods described in this systematic review

2 and 4
Seasons

Calendar
months

Smoothers, splines,
STL

SARIMA,
harmonics

Spectral
analyses δ-Methods

Minimal statistical training is required to calculate peak timing estimates ✓ ✓ ✗ ✗ ✗ ✗

Definitions of seasons and peak timing estimates are easily comprehended by
general audiences

✓ ✓ ✗ ✗ ✗ ✗

Researchers do not need to aggregate surveillance data to perform time series
analyses

✗ ✓ ✓ ✓ ✓ ✓

Statistical results are generalisable using standardised Gregorian calendar
time units

✗ ✓ ✓ ✓ ✓ ✓

Researchers do not define seasons’ lengths or reference seasons (i.e.
data-driven analyses)

✗ ✗ ✓ ✓ ✓ ✓

Time series methods adjust for irregularities and temporality of surveillance
data

✗ ✗ ✓ ✓ ✓ ✓

Time series methods do not require long time series to achieve sufficient
sample size

✗ ✗ ✓ ✓ ✓ ✓

Modelling techniques are flexible to adjust for other time-varying risk factors ✗ ✗ ✓ ✓ ✓ ✓

Modelling techniques are flexible to adjust for dual peak or multi-peak
outbreak behaviours

✗ ✗ ✗ ✓ ✓ ✓

Modelling techniques adjust for harmonic seasonal curves using trigonometric
functions

✗ ✗ ✗ ✓ ✓ ✓

Modelling techniques are reliable at detecting seasonality using regression
coefficients

✗ ✗ ✗ ✓ ✓ ✓

Modelling techniques offer robust peak estimate in the presence of multiple
seasonal peaks

✗ ✗ ✗ ✗ ✓ ✓

Modelling techniques calculate seasonality features with measures of
uncertainty

✗ ✗ ✗ ✗ ✗ ✓

Peak timing estimates can be easily compared across subpopulations,
pathogens, locations, etc.

✗ ✗ ✗ ✗ ✗ ✓

Methods detect seasonality and estimate peak timing using discrete comparisons between seasons (two seasons or four seasons; calendar months) and constructed seasonal curves (smoothing, spline and STL methods; SARIMA, Fourier series
transformations and harmonic models without applying the δ-methods; harmonic models with applying the δ-methods; and spectral analyses). We differentiate the advantages and limitations of harmonic models that do and do not apply the
δ-methods to emphasise the importance of these methods in infectious disease seasonality research.
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rich and solid methodology development aiming to further
improve research quality.

Studies often failed to report the lengths and dates of discrete
seasons or to state reference seasons or months when reporting
results. These omissions reduce the reliability of peak timing esti-
mates, inhibit the reproducibility of analyses and prevent compar-
isons of study findings. Researchers must comprehensively report
season lengths and dates given the variability of environmentally-
or culturally-derived seasons by climate zone and geographic
location. This is especially pertinent when using four seasons,
which lack uniform environmental or biological factors shared
across geographic locations.

While we support defining seasons by solstices and equinoxes
due their uniformity, we also recognise the natural changes of the
photoperiod during those intervals across latitudes [48].
Photoperiod intervals may fail to capture the relevant environ-
mental drivers of disease transmission in all locations. Discrete
seasons may also fail to capture seasonal patterns caused by non-
seasonal drivers such as extreme weather events, livestock migra-
tion or practices around food, water and hygiene [20–22]. The
complexity of defining seasons dictates the need for hypothesis-
generating exploratory analyses to better choose a seasonal form
and a detailed plan for sensitivity analyses assessing these alterna-
tives. Furthermore, detecting the changes in seasonal features are
valuable indicators of how circulating strains [30, 49–52], extreme
events [53] or seasonal host migration [54] could alter seasonal
behaviours. When seasonal peaks differ across subpopulations,
it could indicate different underlying environmental mechanisms
and interactions and subsequent disease transmission to humans.
To detect such differences, granular temporal, spatial and etio-
logical data with capabilities for global standardisation and har-
monisation are needed.

High-resolution data maximise the potential of surveillance
systems for describing, comparing and explaining changes in dis-
ease incidence over time and across species, pathogens, locations
and other dimensions. Worldwide, public health agencies rou-
tinely collect time-referenced records to monitor the incidence
of gastrointestinal infections and outbreaks. Surveillance systems
track many common pathogens, such as Salmonella,
Campylobacter, Listeria and E. coli, which contribute to ∼600 mil-
lion infections worldwide annually [9, 30–33]. Indicator-based
surveillance systems (structured data with formal case definitions)
reflect the total number of persons infected per unit of time [1,
13]. Event-based surveillance systems (public health emergencies
reported using unstructured information) record implicated food
and water sources linked to disease outbreaks [1]. The growing
accuracy and precision of surveillance data could offer new oppor-
tunities for timely detection of changes in seasonal patterns.

The rapid adoption of growing analytical tools helps research-
ers to better model disease seasonality. Better understanding of
how to construct seasonal curves will encourage disease surveil-
lance systems to collect and report data with the highest temporal
and spatial resolution possible. Broader utilisation of the modern
time series models is needed to improve precision of peak timing
estimates. Approaches like the δ-methods simultaneously detect
the presence of seasonality and quantify seasonality features [13,
15, 28]. Most importantly, the δ-methods provide confidence
intervals, allowing for formal statistical comparisons by location,
subpopulation, pathogen, etc. [12, 16, 17].

Our review revealed that researchers underreport data limita-
tions when applying time series methods. Maximum average inci-
dence or cumulative infections can be biased by case influential
observations or shifts in peak timing masked by coarse data
aggregation. Studies constructing seasonal curves face data

Table 3. A summary of terminology for describing time series analyses conducted in infectious disease epidemiology research

Term Definition

Time series data A set or a sample of time-referenced observations or records with an identified time period, cycle and unit (e.g. day, week,
month extracted from a timestamp as YYYY:MM:DD:HH:mm) often illustrated by dot, line or needle plots with axes reflecting
time and an outcome of interest.

Distribution of time series
data

A general summary of frequencies in time-referenced data – i.e. how often an outcome of interest reaches a certain level with
respect to time units (often illustrated with histograms and density plots).

Time series analyses A collection of methods to describe, explain and predict temporal processes with time-referenced data for an outcome of
interest.

Trend General temporal behaviour in an outcome of interest that can exhibit steady incremental changes (linear) or varying
incremental changes (non-linear) over time.

Season An interval of time within one time cycle (typically 1 calendar year) defined by a specific biological, environmental, physical,
physiological, or other property or feature in a biological or non-biological system [24].

Seasonal pattern A recurrence of periods in an outcome of interest with alternating values (e.g. high and low) over the course of a time cycle.

Seasonality A systematic periodic fluctuation in an outcome of interest over the course of one cycle (typically 1 calendar year) as an
observable property of a biological or non-biological system.

Seasonal curve An analytical representation of seasonal periodic fluctuations in an outcome of interest within one time cycle (typically 1
calendar year).

Seasonality features A set of measurable characteristics to describe seasonality and a seasonal curve within 1 year, including seasonal peak, nadir,
intensity, duration, speed at which a seasonal curve reaches its peak and speed at which a seasonal curve declines to its nadir
[17].

Peak or nadir timing A seasonality feature that represents times when a seasonal curve of an outcome reaches its maximum or minimum [17].

Amplitude or intensity A seasonality feature that represents the difference between seasonal peaks and nadirs [17].

Duration A seasonality feature that represents the time interval when incidence rises above a specified threshold [17].

Terms specify differences between time series data, distributions and analyses, as well as trends, season, seasonal patterns, seasonality and seasonality features.
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limitations like time series length and patterns of missing records.
Time series length influences the effective sample size for regres-
sion analyses while the quantity and location of missing records
influence the precision of peak timing estimates. Techniques for
investigating the patterns of missing records in time series data
have been explored for influenza [55]. We recommend that public
health agencies and researchers report similar metrics as metadata
to accompany the publicly available surveillance data they report
and use, respectively.

Reliable estimation of peak timing permits targeted and pro-
active public health interventions to dampen seasonal infection
incidence and prevent widespread outbreaks [12]. Public health
agencies have expanded surveillance coverage in recent decades
using collaborative networks of testing laboratories and public
health agencies [56, 57]. More rigorous investigation of available
data can improve: (i) early warning forecast accuracy to reduce
socio-economic burdens of disease; (ii) fiscal and personnel
resource allocations in medical facilities to treat higher seasonal
patient volumes; (iii) laboratory testing supplies management;
and (iv) the timeliness and effectiveness of food and water safety
inspections [34, 35, 58, 59]. After the influenza pandemic of
2009, we observed an unprecedented growth in testing and
reporting capacities worldwide [55]. The global response to
the ongoing pandemic of COVID-19 has demonstrated further
improvements in tracking infections. These newly acquired skills
and partnerships should now be directed toward better monitor-
ing of seasonal infections causing extensive health and economic
burdens.

Conclusion

Greater attention to how seasonality is defined, modelled, inter-
preted and reported is necessary to promote reproducible
research. Our review shows that applications of advanced time
series analyses are underutilised in epidemiological research on
enteric infections. We encourage increased training in these
methods to incite more rigorous assessment of disease seasonality.
These methods can provide more reliable estimation of infection
peak timing while properly adjusting for irregularities of infec-
tions’ temporal occurrences. Standardised terminology and
more informative reporting requirements on data limitations
will promote interdisciplinary collaborations in the modelling
and forecasting of infectious diseases. A deeper understanding
of the utility of time series analyses will encourage more expansive
collection of surveillance data and refined temporal and spatial
resolution when reporting that data.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822000243

Acknowledgments. The authors thank Maia Tarnas, Emily Sanchez and Dr.
Jose Ordovas for their editorial assistance.

Author contributions. R.B.S. contributed to the review of literature, formal
analysis, writing, reviewing, conceptualisation of visual aids, visualisation cre-
ation and editing. A.V.K. contributed to reviewing and editing. E.N.N. contrib-
uted to the conceptualisation of methodology, visual aids, review and editing,
supervision, project administration and funding acquisition.

Financial support. This research was supported by the United States
Department of Agriculture (USDA) National Institute of Food and
Agriculture (NIFA) Cooperative State Research, Education, and Extension
Service Fellowship (grant number 2020-38420-30724) and the National
Science Foundation’s (NSF) Innovations in Graduate Education (IGE)

Program’s Solution-Oriented, Student-Initiated, Computationally-Enriched
(SOLSTICE) training and learning approach (grant number 1855886).

Conflict of interest. None.

Data availability. The data that support the findings of this study are openly
available in Supplementary Table S1.

References

1. World Health Organization (2008) Foodborne Disease Outbreaks:
Guidelines for Investigation and Control. Geneva, Switzerland: World
Health Organization, WC 260 (ISBN 9789241547222).

2. World Health Organization (2017) Strengthening Surveillance of and
Response to Foodborne Diseases: A Practical Manual: Introductory
Module. Geneva, Switzerland: World Health Organization, License: CC
BY-NC-SA 3.0 IGO (ISBN 9789241513227).

3. National Food Safety System Project Outbreak Coordination and
Investigation Workgroup (2001) Multistate Foodborne Outbreak
Investigations: Guidelines for Improving Coordination and Communication.
Atlanta, GA, USA: National Food Safety System Project, Outbreak
Coordination and Investigation Workgroup, Food and Drug Association.

4. National Research Council of the National Academies (2007) Drinking
Water Distribution Systems: Assessing and Reducing Risks. Washington,
DC: National Academies Press.

5. Renwick DV et al. (2019) Potential public health impacts of deteriorating
distribution system infrastructure. Journal-American Water Works
Association 111, 42.

6. Cann KF et al. (2013) Extreme water-related weather events and water-
borne disease. Epidemiology and Infection 141, 671–686.

7. Todd ECD (2014) Foodborne diseases: overview of biological hazards and
foodborne diseases. Encyclopedia of Food Safety 1, 221–242.

8. Canadian Paediatric Society (2008) Foodborne infections. Journal of
Paediatrics and Child Health 13, 779–788.

9. Centers for Disease Control and Prevention, National Center for
Emerging and Zoonotic Infectious Diseases, Division of Foodborne,
Waterborne, and Environmental Diseases. Available at https://www.
cdc.gov/foodsafety/foodborne-germs.html (Accessed 1 March 2021).

10. Naumova EN, O’Neil E and MacNeill IB (2005) INFERNO: a system for
early outbreak detection and signature forecasting. Morbidity and
Mortality Weekly Report 54, 77–83.

11. Naumova EN and MacNeill IB (2005) Signature-forecasting and early
outbreak detection system. Environmetrics 16, 749–766.

12. Naumova EN (2006) Mystery of seasonality: getting the rhythm of nature.
Journal of Public Health Policy 27, 2–12.

13. Alarcon Falconi TM et al. (2020) Effects of data aggregation on time ser-
ies analysis of seasonal infections. International Journal of Environmental
Research and Public Health 17, 5887.

14. Cleveland RB et al. (1990) STL: a seasonal-trend decomposition. Journal
of Official Statistics 6, 3–73.

15. Naumova EN and MacNeill IB (2007) Seasonality assessment for biosur-
veillance systems. In Balakrishnan N, Auget JL, Mesbah M and
Molenberghs G (eds), Advances in Statistical Methods for the Health
Sciences. Boston: Birkhäuser, pp. 437–450.

16. Simpson RB, Zhou B and Naumova EN (2020) Seasonal synchronization
of foodborne outbreaks in the United States, 1996–2017. Scientific Reports
10, 17500.

17. Simpson RB et al. (2020) An analecta of visualizations for foodborne ill-
ness trends and seasonality. Scientific Data 7, 346.

18. Alsova OK, Loktev VB and Naumova EN (2019) Rotavirus seasonality: an
application of singular spectrum analysis and polyharmonic modeling.
International Journal of Environmental Research and Public Health 16, 4309.

19. Ureña-Castro K et al. (2019) Seasonality of rotavirus hospitalizations at
Costa Rica’s National Children’s Hospital in 2010–2015. International
Journal of Environmental Research and Public Health 16, 2321.

20. Cox R et al. (2012) Spatial and temporal patterns in antimicrobial resist-
ance of Salmonella Typhimurium in cattle in England and Wales.
Epidemiology and Infection 140, 2062–2073.

12 Ryan B. Simpson et al.

https://doi.org/10.1017/S0950268822000243
https://doi.org/10.1017/S0950268822000243
https://www.cdc.gov/foodsafety/foodborne-germs.html
https://www.cdc.gov/foodsafety/foodborne-germs.html
https://www.cdc.gov/foodsafety/foodborne-germs.html


21. Jokinen CC et al. (2012) Spatial and temporal drivers of zoonotic patho-
gen contamination of an agricultural watershed. Journal of Environmental
Quality 41, 242–252.

22. Kvitsand HM and Fiksdal L (2010) Waterborne disease in Norway:
emphasizing outbreaks in groundwater systems. Water Science and
Technology 61, 563–571.

23. Bhaskaran K et al. (2013) Time series regression studies in environmental
epidemiology. International Journal of Epidemiology 42, 1187–1195.

24. MacNeill IB (1974) Tests for periodic components in multiple time series.
Biometrika 61, 57–70.

25. Alonso WJ et al. (2007) Seasonality of influenza in Brazil: a traveling wave
from the Amazon to the subtropics. American Journal of Epidemiology
165, 1434–1442.

26. Lofgren E et al. (2007) Influenza seasonality: underlying causes and mod-
eling theories. Journal of Virology 81, 5429–5436.

27. Simonsen L et al. (2005) Impact of influenza vaccination on seasonal
mortality in the US elderly population. Archives of Internal Medicine
165, 265–272.

28. Wenger JB and Naumova EN (2010) Seasonal synchronization of influ-
enza in the United States older adult population. PLoS ONE 5, e10187.

29. United States National Library of Medicine, National Center for
Biotechnology Information. Available at https://www.ncbi.nlm.nih.gov/
home/about/mission/ (Accessed 18 July 2019).

30. Tack DM et al. (2020) Preliminary incidence and trends of infections with
pathogens transmitted commonly through food – Foodborne Diseases
Active Surveillance Network, 10 U.S. sites, 2016–2019. Morbidity and
Mortality Weekly Report 69, 509–514.

31. Centers for Disease Control and Prevention, Office of Public Health
Scientific Services, Center for Surveillance, Epidemiology, and
Laboratory Services, Division of Health Informatics and Surveillance.
Available at https://wwwn.cdc.gov/nndss/conditions/ (Accessed 1 March
2021).

32. United States Food and Drug Association. Available at https://www.fda.
gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%
29.pdf (Accessed 1 March 2021).

33. United States Food and Drug Association. Available at https://www.fda.
gov/food/consumers/what-you-need-know-about-foodborne-illnesses
(Accessed 1 March 2021).

34. World Health Organization. Available at https://www.who.int/news-
room/fact-sheets/detail/food-safety (Accessed 1 March 2021).

35. World Health Organization (2015) WHO Estimates of the Global Burden
of Foodborne Disease: Foodborne Disease Burden Epidemiology Reference
Group 2007–2015. Geneva, Switzerland: World Health Organization,
Control of Neglected Tropical Diseases, Foodborne Disease Burden
Epidemiology Reference Group, Nutrition and Food Safety, WHO/FOS/
15.02 (ISBN 9789241565165).

36. Centers for Disease Control and Prevention, National Center for
Emerging and Zoonotic Infectious Diseases, Division of Foodborne,
Waterborne, and Environmental Diseases. Available at https://www.
cdc.gov/foodnet/publications/index.html (Accessed 18 July 2019).

37. National Center for Immunization and Respiratory Diseases, Division
of Viral Diseases. Available at https://www.cdc.gov/nors/publications.html
(Accessed 18 July 2019).

38. Merriam-Webster. Available at https://www.merriam-webster.com/dic-
tionary/season (Accessed 1 March 2021).

39. Chao DL et al. (2019) The seasonality of diarrheal pathogens: a retro-
spective study of seven sites over three years. PLoS Neglected Tropical
Diseases 13, e0007211.

40. Muchiri JM et al. (2009) Seasonality of Cryptosporidium oocyst detection
in surface waters of Meru, Kenya as determined by two isolation methods
followed by PCR. Journal of Water and Health 7, 67–75.

41. Chambers R (1983) Seasonality, poverty and nutrition: a professional
frontier. In Neelakantan S (ed.), EFNAG National Workshop on Poverty
and Malnutrition. Coimbatore: Tamil Nadu Agricultural University, pp.
1–16.

42. Kulinkina AV et al. (2016) Seasonality of water quality and diarrheal dis-
ease counts in urban and rural settings in south India. Scientific Reports 6,
20521.

43. National Geography Society. Available at https://www.nationalgeo-
graphic.org/encyclopedia/season/#:∼:text=Powered%20by-,A%20season%
20is%20a%20period%20of%20the%20year%20that%20is,on%20December
%2021%20or%2022 (Accessed 1 March 2021).

44. Box GEP and Jenkins GM (1976) Time Series Analysis: Forecasting and
Control. Oakland: Holden-Day.

45. Helfenstein U (1996) Box-Jenkins modelling in medical research.
Statistical Methods in Medical Research 5, 3–22.

46. Rogerson PA (1996) A generalization of Hewitt’s test for seasonality.
International Journal of Epidemiology 25, 644–648.

47. Shumway RH, Stoffer DS and Stoffer DS (2000) Time Series Analysis
and its Applications, Vol. 3. New York: Springer.

48. Pio-Abreu JL (1997) Seasonal variation in bipolar disorder. The British
Journal of Psychiatry 170, 483–484.

49. Lofgren ET et al. (2010) Disproportional effects in populations of concern
for pandemic influenza: insights from seasonal epidemics in Wisconsin,
1967–2004. Influenza and Other Respiratory Viruses 4, 205–212.

50. Sarkar R, Kang G and Naumova EN (2013) Rotavirus seasonality and age
effects in a birth cohort study of southern India. PLoS ONE 8, e71616.

51. Stashevsky PS et al. (2019) Agglomerative clustering of enteric infections
and weather parameters to identify seasonal outbreaks in cold climates.
International Journal of Environmental Research and Public Health 16,
2083.

52. Colston JM et al. (2018) Seasonality and within-subject clustering of rota-
virus infections in an eight-site birth cohort study. Epidemiology and
Infection 146, 688–697.

53. Stratton M et al. (2017) A comparative analysis of three vector-borne dis-
eases across Australia using seasonal and meteorological models. Scientific
Reports 7, 40186.

54. Chui KK, Cohen SA and Naumova EN (2011) Snowbirds and infection –
new phenomena in pneumonia and influenza hospitalizations from winter
migration of older adults: a spatiotemporal analysis. BMC Public Health
11, 444.

55. Simpson RB et al. (2021) Completeness of open access FluNet influenza
surveillance data for Pan-America in 2005–2019. Scientific Reports 11, 795.

56. Angulo FJ and Scallan E (2007) Activities, achievements, and lessons
learned during the first 10 years of the Foodborne Diseases Active
Surveillance Network: 1996–2005. Clinical Infectious Diseases 44, 718–725.

57. Jones TF, Scallan E and Angulo FJ (2007) FoodNet: overview of a decade
of achievement. Foodborne Pathogens and Disease 4, 60–66.

58. United States Government Accountability Office (2014) Federal Food
Safety Oversight: Additional Actions Needed to Improve Planning and
Collaboration. Washington, DC, USA: Government Accountability
Office, Report to Congressional Addressees no. GAO-15–180.

59. Buzby JC et al. (1996) Bacterial Foodborne Disease: Medical Costs and
Productivity Losses. Washington, DC, USA: US Department of
Agriculture, Economic Research Service, Agricultural Economic Report
no. 741.

Epidemiology and Infection 13

https://www.ncbi.nlm.nih.gov/home/about/mission/
https://www.ncbi.nlm.nih.gov/home/about/mission/
https://www.ncbi.nlm.nih.gov/home/about/mission/
https://wwwn.cdc.gov/nndss/conditions/
https://wwwn.cdc.gov/nndss/conditions/
https://www.fda.gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%29.pdf
https://www.fda.gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%29.pdf
https://www.fda.gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%29.pdf
https://www.fda.gov/files/food/published/Most-Common-Foodborne-Illnesses-%28PDF%29.pdf
https://www.fda.gov/food/consumers/what-you-need-know-about-foodborne-illnesses
https://www.fda.gov/food/consumers/what-you-need-know-about-foodborne-illnesses
https://www.fda.gov/food/consumers/what-you-need-know-about-foodborne-illnesses
https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.cdc.gov/foodnet/publications/index.html
https://www.cdc.gov/foodnet/publications/index.html
https://www.cdc.gov/foodnet/publications/index.html
https://www.cdc.gov/nors/publications.html
https://www.cdc.gov/nors/publications.html
https://www.merriam-webster.com/dictionary/season
https://www.merriam-webster.com/dictionary/season
https://www.merriam-webster.com/dictionary/season
https://www.nationalgeographic.org/encyclopedia/season/#:~:text=Powered%20by-,A%20season%20is%20a%20period%20of%20the%20year%20that%20is,on%20December%2021%20or%2022
https://www.nationalgeographic.org/encyclopedia/season/#:~:text=Powered%20by-,A%20season%20is%20a%20period%20of%20the%20year%20that%20is,on%20December%2021%20or%2022
https://www.nationalgeographic.org/encyclopedia/season/#:~:text=Powered%20by-,A%20season%20is%20a%20period%20of%20the%20year%20that%20is,on%20December%2021%20or%2022
https://www.nationalgeographic.org/encyclopedia/season/#:~:text=Powered%20by-,A%20season%20is%20a%20period%20of%20the%20year%20that%20is,on%20December%2021%20or%2022
https://www.nationalgeographic.org/encyclopedia/season/#:~:text=Powered%20by-,A%20season%20is%20a%20period%20of%20the%20year%20that%20is,on%20December%2021%20or%2022

	Investigating seasonal patterns in enteric infections: a systematic review of time series methods
	Introduction
	Methods
	Literature search
	Exclusion criteria and study abstraction
	Structure of findings

	Results
	Motivation and rationale for investigating seasonality
	Describing trends in infections over time
	Comparing seasonal peak timing by subgroups
	Explaining associations between infections and risk factors

	Describing seasonality with discrete seasons
	Two seasons
	Four seasons
	Calendar months

	Describing seasonality using seasonal curves
	Splines, smoothers and STL
	Seasonal ARIMA models, harmonic models and spectral analyses

	Recommendations for improving time series reporting

	Discussion
	Conclusion
	Acknowledgments
	References


