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Abstract. We have examined the in vitro behavior of 
clathrin-coated vesicles that have been stripped of their 
surface coats such that the majority of the clathrin is 
removed but substantial amounts of clathrin assembly 
proteins (AP) remain membrane-associated. Aggre- 
gation of these stripped coated vesicles (s-CV) is ob- 
served when they are placed under conditions that 
approximate the pH and ionic strength of the cell inte- 
rior (pH 7.2, ,~ 100 mM salt). This s-CV aggregation 
reaction is rapid (tl/2 ~< 0.5 min), independent of tem- 
perature within a range of 4-37~ and unaffected by 
ATP, guanosine-5'-O-(3-thiophosphate), and in particu- 
lar EGTA, distinguishing it from Ca2§ 
membrane aggregation reactions. The process is driven 
by the action of membrane-associated AP molecules 
since partial proteolysis results in a full loss of activity 
and since aggregation is abolished by pretreatment of 
the s-CVs with a monoclonal antibody that reacts with 
the ~ subunit of AP-2. However, vesicle aggregation is 
not inhibited by PPPi, indicating that the previously 
characterized polyphosphate-sensitive AP-2 self-associ- 
ation is not responsible for the reaction. The vesicle 

aggregation reaction can be reconstituted: liposomes of 
phospholipid composition approximating that found on 
the cytoplasmic surfaces of the plasma membrane and 
of coated vesicles (70% L-ot-phosphatidylethanolamine 
(type I-A), 15% L-o~-phosphatidyl-L-serine, and 15 % 
L-o~-phosphatidylinositol) aggregated after addition of 
AP-2, but not of AP-1, AP-3 (AP180), or pure clathrin 
triskelions. Aggregation of liposomes is abolished by 
limited proteolysis of AP-2 with trypsin. In addition, a 
highly purified AP-2a preparation devoid of/~ causes 
liposome aggregation, whereas pure/3 subunit does 
not, consistent with results obtained in the s-CV assay 
which also indicate the involvement of the ot subunit. 
Using a fluorescence energy transfer assay we show 
that AP-2 does not cause fusion of liposomes under 
physiological solution conditions. However, since the 
fusion of membranes necessarily requires the close op- 
position of the two participating bilayers, the AP-2- 
dependent vesicle aggregation events that we have 
identified may represent an initial step in the forma- 
tion and fusion of endosomes that occur subsequent to 
endocytosis and clathrin uncoating in vivo. 

T 
hE pathway of receptor-mediated endocytosis pro- 
ceeds first through the binding of extracellular ligands 
to specific cell surface receptors. These ligand recep- 

tor complexes are clustered in plasma membrane clathrin- 
coated pits which are thought to subsequently "pinch off' 
from the plasma membrane, giving rise to coated vesicles. 
Soon after their formation these coated vesicles lose their 
clathrin coats and the resulting uncoated vesicles immedi- 
ately participate in a series of fusion events resulting in the 
accumulation of ligands and receptors in an early endosome 
compartment. Here the ligands and receptors are sorted for 
delivery to either lysosomes or the plasma membrane (for 
review see Goldstein et al., 1985; Pastan and Willingham, 
1985; Gruenberg and Howell, 1989; Rodman et al., 1990). 
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The plasma membrane localized clathrin assembly protein 
AP-2 ~ is thought to be involved in two events that occur 
early in the endocytic pathway. First, it has been demon- 
strated in a number of studies that AP-2 is required for the 
in vitro assembly of clathrin coat structures under physiolog- 
ical solution conditions (Keen et al., 1979; Zaremba and 
Keen, 1983), suggesting that AP-2 functions in cells to pro- 
mote clathrin lattice formation. In addition, AP-2 may play 
some role in the clustering of receptors in plasma mem- 
brane-coated pits (Pearse, 1988). There is also some evi- 
dence suggesting that AP-2 may participate in events that oc- 

1. Abbreviations used in this paper: AP, clathrin assembly protein; CV, 
coated vesicle; DPH, 1,6-diphenyl-l,3-hexatriene; HM-AP, heavy mero-AP; 
LM-AE light mero-AP; NBD-PE, N-(7-nitrobenz-2-oxa-l,3-diazol-4yl)di- 
palmitoyl-ot-phosphatidylethanolamine; Rh-PE, N-(Lissamine rhodamine B 
sulfonyl)dipalmitoyl-L-ot-phosphatidylethanolamine; s-CV, stripped coated 
vesicle. 
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cur at later stages in the endocytic pathway. That AP-2 is 
present during these late events is suggested by the observa- 
tion that after in vitro uncoating of isolated coated vesicles 
by the uncoating protein (hsc 70), AP molecules maintain an 
association with the uncoated vesicles (Heuser and Keen, 
1988). In addition, in vivo immunolocalization studies 
(Guagliardi et al., 1990) have provided evidence for the pres- 
ence of AP-2 on the surfaces of endosomes, indicating that 
AP-2 may participate in some function associated with this 
compartment. In previous studies we have found that micro- 
injection of antibodies to AP-2 into cultured cells gave rise 
to an inhibition of endocytosis that varied in magnitude from 
cell to cell (Chin et al., 1989). In those cells where a partial 
block in endocytic activity was observed, vesicles containing 
newly internalized ligand showed a more peripheral cyto- 
plasmic distribution compared with the perinuclear localiza- 
tion of endosomes in control cells. These results are consis- 
tent with a blockage by the antibodies of some stage of 
endosome maturation, possibly early endosome fusion, and 
hence suggest a role for AP-2 in this process. 

In this study we show that when coated vesicles are treated 
under conditions that strip the majority of surface-bound 
clathrin but leave behind substantial amounts of AP-2, the 
vesicles aggregate in a protein-dependent process. With the 
hypothesis that this stripped vesicle aggregation may reflect 
an initial step in the formation and fusion of endosomes we 
have developed quantitative assays for vesicle aggregation in 
order to characterize the reaction further and to assess the 
role of AP-2. 

Materials and Methods 

L-ct-Phospbatidylinositol (type I, P2517), L-c~-phosphatidylethanolamine 
(type I-A, P7523), and L-~-phospbatidyl-L-serine (P6641) were purchased 
from Sigma Chemical Co. as 10 mg/ml solutions in chloroform. N-(7- 
nitrobenz-2-oxa-1,3-diazol-4yl) dipalmitoyl-a-phosphatidylethanolamine 
(NBD-PE), N-(Lissamine rhodamine B sulfonyl)dipalmitoyl-L-t~-phospha- 
tidytethanolamine (Rh-PE), and 1,6-diphenyl-l,3-hexatriene were from Mo- 
lecular Probes Inc. (Eugene, OR). t~-myo-inositol-l,3,4-trispbosphate was 
purchased from Calbiochem Corp. (La Jolla, CA). Guanosine-5'-O-(3- 
thiophosphate) was from Boehringer Mannheim Corp. (Indianapolis, IN). 
Trypsin (TPCK treated, 241 U/rag) was from Worthington Biochemical 
Corp. (Freehold, NJ). L-c~-Phosphatidylinositol-4,5-bisphosphate was pur- 
chased as a solid sodium salt and was resuspended in water (2 mg/ml) 
and sonicated in a water bath sonicator for 30 s at room temperature. This 
material was then stored at -70~ Immediately before use (no longer 
than 2 d after the initial preparation) the lipid solution was thawed under 
warm water and sonicated 60 rain at room temperature. Monoclonal anti- 
bodies to clathrin light chain LCb (Brodsky et al., 1987) and to the t~ 
subunit of AP-2 (Chin et al., 1989) were prepared and purified as described 
previously. 

AP and clathrin were extracted from purified bovine brain coated vesi- 
cles and isolated by Superose 6B gel filtration as described previously (Keen 
et al., 1979; Keen, 1987). For experiments with pure AP-2 and partially 
purified AP-1, fractions corresponding to the trailing half of the Superose 
6B AP peak (fractions 38-40 in Fig, 2 of Keen, 1987), which contain 
mostly AP-1 and AP-2, were pooled and fractionated by clathrin-Sepharose 
chromatography (Keen, 1987). AP-2 subunits were isolated by DEAE chro- 
matography of urea-denatured AP-2 as described (Prasad and Keen, 1991). 

Stripped coated vesicles were prepared as follows. A crude preparation 
of coated vesicles (CVs) was isolated from bovine brain according to the 
method of Keen et al. (1979). This preparation was further fractionated by 
Sepbacryl S-1000 chromatography as follows. 1 g of crude CV protein in 
I0 ml of 0.1 M sodium MES, pH 6.5, was loaded onto an S-1000 column 
(66.2 • 2.5 cm). The column was eluted with 0.1 M sodium MES, pH 6.5, 
at 4~ with a downward flow rate of 6 mi/h and fractions containing pure 
CVs, which eluted as a single peak at 185 ml, were pooled, centrifuged at 
100,000 g for 1 h, and resuspended in 2 ml of 0.1 M sodium MES, pH 6.5. 
To remove their clathrin coats, the vesicles were placed in collodion dialysis 

bags (UHI00/25; Schleicher & Schuell, Inc., Keene, NH) and dialyzed 
against 1 liter of 10 mM Tris, pH 8.5, for 15 h. After dialysis the vesicle 
bilayers were labeled with the lipid-soluble fluorescent probe 1,6-diphenyl- 
1,3-hexatriene (DPH) by adding 2 t~l of a 10 mM stock solution of DPH 
in tetrahydrofuran to 1-2 ml of vesicle suspension. The extracted coat pro- 
teins were then separated from the stripped vesicles by eentrifugation 
(80,000 g for 4.5 h in an SW 28 rotor [Beckman Instruments, Palo Alto, 
CA]) on continuous sucrose gradients (10-30% sucrose [wtlvol] in 10 mM 
Tris, pH 8.5). Gradient fractions containing the sedimented vesicles, re- 
vealed by DPH fluorescence (excitation = 360 rim, emission = 430 ran), 
were pooled and used directly in the assays described below. A typical 
stripped coated vesicle (s-CV) preparation contained <1% of the original 
clathrin heavy chain but maintained substantial amounts of APs (20-50% 
of that in intact CVs). 

Stripped coated vesicle aggregation experiments were conducted by di- 
alyzing s-CVs (300 td) against 1 liter of 0.1 M sodium MES, pH 7.2, for 
15 h at 4~ In addition, s-CV aggregation could be induced to occur over 
a short time course by adding 0.1 vol of 1 M sodium MES, pH 6.5 or 7.2, 
to a solution containing 250 #g/mi s-CV protein in 10 mM Tris-HCl, pH 
8.5. Aggregate formation was quantitated by measuring the absorbance of 
the s-CV solution at 350 nm due to light scatter in the turbid sample. Alter- 
natively, suspensions containing s-CV aggregates were subjected to cen- 
trifugation at 10,000 g for 10 min, which pellets the aggregates, and the 
DPH fluorescence in the resulting supernatant and pellet fractions was mea- 
sured. Proteolysis of s-CV surface proteins was conducted by incubation 
with trypsin (500:1, s-CV protein/trypsin, wt/wt) at 22~ The reaction was 
terminated by the addition of soybean trypsin inhibitor to a twofold molar 
excess with respect to trypsin. 

To prepare liposomes, pure phospholipids in chloroform were first mixed 
together in a borosilicate glass test tube in the following molal proportions: 
70% PE, 15% PS, and 15% PI. DPH was added to this mixture such that 
its final concentration (after sonication; see below) was 10 #M. After evapo- 
ration of the solvent under argon, buffer (0.1 M sodium MES, pH 7.2) was 
added to the dried phospholipids and the mixture was sonieated on ice for 
40 rain using a Branson Sonifier 450 (Branson Ultrasonics Corp., Danbury, 
CT) probe sonicator (setting # 4). The liposome suspension was then cen- 
trifuged 10,000 g for 5 min to remove any aggregated material. The final 
phospholipid concentration was typically 3-5 mM. To assay the ability of 
AP-2 and other purified proteins to cause the aggregation of these lipo- 
somes, a small volume (typically 1/10 the final sample volume) of concen- 
trated protein (1-2 mg/ml in 10 mM Tris-HC1, pH 8.5) was added to a 300- 
~tl solution containing 0.1 M sodium MES, pH 7.2, 300 t~M phospbolipid, 
and 10 mM sodium tripolyphosphate (the latter was present as an inhibitor 
of AP-2 self-association; Beck and Keen, 1991b). Aggregation was quan- 
tiffed by sample absorbance at 350 nm and by measuring the loss of DPH 
fluorescence in the sample after centrifugation at 10,000 g for 5 min. 

Liposome fusion was measured using the phospholipid mixing assay of 
Struck et al. (1981). Liposomes (composition as above) containing NBD-PE 
and Rh-PE at 0.75 and 0.5 mol%, respectively, were prepared as described 
above. At these proportions the surface density of NBD-PE and Rh-PE is 
such that excitation of the NBD moiety with 450-rim light results in efficient 
fluorescence energy transfer to adjacent Rh-PE molecules, whereas fusion 
of these liposomes with liposomes containing no fluorescent phospholipids 
effectively lowers the surface density of NBD and Rh to a level that results 
in an uncoupling of energy transfer. Before they were used in the assay the 
labeled liposomes were passed over a 60-ml Sepharose CL-4B column at 
a flow rate of 0.2 ml/min to isolate unilamellar vesicles, which eluted with 
a K~v of 0.28. Fusion assays were carried out by incubating fluorescent 
liposomes in 0.1 M sodium MES with a 16-fold molar excess of liposomes 
containing no fluorophore for 30 min at 37~ in the presence of added pro- 
tein. After this incubation the samples were excited with 450.nm light and 
the fluorescence emission spectrum between 485 and 640 nm was recorded. 

Production of AP fragments for sandwich radioimmunoassay. Purified 
AP's were digested with elastase at 1:100 enzyme/AP (wt/wt) for 30 rain 
at 23 ~ and the digestion was terminated with PMSF. The digest was chro- 
matographed on a Sephadex G-75 Superfine column and analyzed by gel 
electrophoresis. Peak I (fractions 19-24) contained ~60-70.kD NH2- 
terminal domains of the c~ and/3 polypeptides in a complex with the intact 
50- and 17-kD subunits defined as heavy mero-AP (HM-AP) (Zaremba and 
Keen, 1985; Keen and Beck, 1989; Kirclthausen et al., 1989), peak l/(frac- 
tions 34-36) contained 30-40.kD polypeptides termed light-mero-AP (LM- 
AP), and peak HI (fractions 52-54) contained smaller digest products. 

Sandwich radioimmunoassay. The anti-AP mouse monoclonal antibod- 
ies AP.1, AP.6, and AP.7 were produced as described (Chin et al., 1989). 
Antibodies were purified (Brodsky, 1985) and iodinated using Iodobeads 
(Pierce Chemical Co., Rockford, IL), I mCi/25/~g antibody. Purified anti- 
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Results 

A 

Aggregation of Stripped Clathrin-coated Vesicles 

In examining the physical properties of pure coated vesicles 
under various solution conditions, it was observed that when 
coat proteins are stripped from their surfaces by treatment 
with 10 mM Tris-HC1, pH 8.5, extensive aggregation of the 
vesicles occurs after exposure to conditions approximating 
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body (50 #g/ml) was applied to the wells of a polyvinylchloride 96-well 
plate, 1 h at 23 ~ and then washed and incubated 1 h RT with 2% BSA in 
phosphate-buffered saline, pH 7.4. AP fragments or intact AP were then 
added, 1 h at 23 ~ After washing in PBS-BSA (0.5%), the radioactive anti- 
bodies (350,000 cpm/well) were bound for 1 h at 23 ~ Wells were then 
washed and counted for bound radioactivity. 

Protein quantitation in membrane fractions was carried out using the 
Pierce bicinchoninic acid assay method (Pierce Chemical Co.). Quantita- 
tive densitometry of Coomassie blue-stained gels was performed on a 
Hoefer GS-300 densitometer with Hoefer GS-360 Data System software 
(Hoefer Scientific Instruments, San Francisco, CA). 
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physiological pH and ionic strength (pH 7.2, 100 mM salt; 
see Fig. 1). Since within the intact cell the event that immedi- 
ately follows the uncoating of coated vesicles is their rapid 
fusion either with each other or with pre-existing membrane 
compartments, we speculated that this aggregation reaction 
represents an initial step in the fusion process. Accordingly, 
a quantitative assay for examining this s-CV aggregation 
reaction was developed in order to conduct a biochemical 
characterization of the event, identify the vesicle compo- 
nents responsible for it, and assess the potential for its in- 
volvement in endosome fusion. 

s-CVs were prepared by dialyzing purified bovine brain 
coated vesicles against 10 mM Tris-HC1, pH 8.5, and were 
isolated by sucrose gradient centrifugation (Fig. 1 A). After 
this treatment the majority of the released protein was found 
at the top of the gradient (fractions 1-6), whereas the s-CVs 
(revealed by DPH fluorescence; see Materials and Methods) 
sedimented as a single peak between fractions 10 and 15. 
Analysis of the protein composition of a typical s-CV prepa- 
ration (see Fig. 2 A, lane/)  showed the presence of substan- 
tial amounts of AP (20-50% of the initial coated vesicle AP) 
and only minimal amounts of the 180-kD clathrin heavy 
chain (<5 % of the total coated vesicle clathrin). Upon dialy- 
sis of the s-CVs against 0.1 M sodium MES, pH 7.2, there 
was a marked increase in sample light scatter (measured as 
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Figure 1. An assay for stripped-coated vesicle aggregation. (A) 
Sephacryl S-1000 purified CVs were stripped by dialysis against 10 
mM Tris, pH 8.5, and the vesicle bilayers were labeled with DPH. 
The s-CVs were then centrifuged (100,000 g) on a 10-30% contin- 
uous sucrose gradient, s-CVs were pooled from fractions 11-16. (B) 
Equal aliquots of s-CVs ([AP] = 50-100 #g/ml) were dialyzed 
against either 10 mM Tris-HC1, pH 8.5 (control, stippled bars), or 
0.1 M sodium MES, pH 7.2 (hatched bars). Sample light scatter, 
measured as absorbance at 350 nm (A350), was recorded (before 
spin). The samples were then centrifuged 10,000 g for 2 min, and 
the supernatant A350 was recorded (after spin). (C) DPH fluores- 
cence in both the supernatant and pellet fractions of these same 
samples was also measured. Plotted are the averages and standard 
deviations of triplicate samples. 

Figure 2. Limited proteolysis of s-CVs blocks their aggregation. 
S-CVs (in 10 mM Tris-HC1, pH 8.5) were treated with trypsin 
(1:500, wt/wt) for increasing times, dialyzed against 0.1 M sodium 
MES, pH 7.2, and assayed for vesicle aggregation by A35o (B, e). 
The A350 of intact s-CVs maintained in 10 mM Tris-HCl is indi- 
cated on the ordinate (zx). The proteolyzed vesicles were subjected 
to SDS-PAGE in the presence of urea (Ahle et al., t988) to enhance 
separation of a and/3 subunits (A). The positions of the AP 100-kD 
(a and/3) and 50-kD subunits (AP50) as well as tubulin are indi- 
cated to the left of the figure. The c~ and/3 subunits were quantitated 
by densitometry (B, o and o). 
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absorbance at 350 nm; Fig. 1 B) with respect to the control 
(in 10 mM Tris-HCl, pH 8.5), suggesting that the vesicles 
had aggregated. This is supported by the observation that af- 
ter brief low-speed centrifugation the sample A350 was re- 
duced to control levels (Fig. 1 B) and there was a substantial 
accumulation of pelleted vesicles as assessed by the distribu- 
tion of DPH fluorescence in the supernatant and pellet frac- 
tions (Fig. 1 C). 

Unlike other documented vesicle aggregation and fusion 
events (Wilschut and Hoekstra, 1986; Feigenson, 1989), 
s-CV aggregation occurred readily in the absence of Ca 2§ 
and was not affected by the addition of EGTA (not shown). 
Rather, it was found that the reaction was protein mediated 
since aggregation of s-CVs was blocked after proteolysis of 
surface proteins with trypsin (Fig. 2 B). To identify the 
specific protein components responsible for s-CV aggrega- 
tion, we treated s-CVs with trypsin for increasing periods of 
time and measured the loss of surface proteins due to pro- 
teolysis by SDS-PAGE (Fig. 2 A). There was a progressive 
loss of both the 100- and 50-kD subunits of AP with increas- 
ing time of proteolysis, a result consistent with the conclu- 
sion that surface-bound AP molecules are responsible for 
vesicle aggregation. Conversely, small amounts of con- 
taminating 180- and 55-kD species (the latter presumably 
vesicle-bound tubulin) were unaffected. 

Interestingly, of the two 100-kD AP subunits, the loss of 
the et subunit closely parallels loss of aggregation activity 
(Fig. 2 B), suggesting the involvement of this subunit. The 
preferential loss of the AP-2 ot subunit compared with the/3 
subunit on trypsinization of s-CVs is in contrast to studies ex- 
amining the trypsin sensitivity of pure AP-2 performed in a 
different buffer, in which both subunits are equally suscepti- 
ble to proteolysis (Keen and Beck, 1989). Control experi- 
ments (not shown) have demonstrated that the difference in 
proteolysis is due to the difference in buffer conditions used 
(10 mM Tris-HCl, pH 8.5, this study; 0.5 M Tris-HC1, pH 
7.0, Keen and Beck, 1989) rather than the membrane associ- 
ation of the AP. Nevertheless, since proteolysis under both 
conditions causes the release of a 30-kD COOH-terminal 
fragment of the AP-2 ot subunit (Keen and Beck, 1989; 
Krichhausen et al., 1989), the results shown in Fig. 2 suggest 
that this domain could be involved in the membrane aggrega- 
tion reactions. Though the 50-kD subunit is also cleaved un- 
der the conditions used here, further proteolysis and anti- 
body inhibition experiments indicate that it is unlikely to be 
involved in the aggregation reaction (see below). 

To test the hypothesis that surface-bound AP-2 molecules 
cause the aggregation of s-CVs more rigorously, we mea- 
sured the ability of a number of monoclonal antibodies 
raised against coated vesicle proteins (Brodsky, 1987; Chin 
et al., 1989) to inhibit the reaction (Fig. 3). A monoclonal 
antibody, AP.6, which recognizes the 30-kD COOH-terminal 
domain of the tx subunit of AP-2 inhibited s-CV aggregation 
in a concentration-dependent manner, causing 80 % inhibi- 
tion at a molar ratio of antibody/AP-2 of ~1.0. Monoclonal 
antibody LCB.2, which reacts with the clathrin light chain 
LCB, produced no effect on s-CV aggregation even at con- 
centrations 10-fold greater than the effective range of AP.6, 
indicating that the result seen with AE6 is not due to a 
nonspecific effect of antibody addition. Furthermore, two 
other mAbs to the 30-kD domain of the ot subunit (LM-AP), 
AP.1 and AP.7, also were without effect (Fig. 3), although all 

Figure 3. (A) Inhibition of s-CV aggregation by an antibody to the 
a subunit of AP-2. s-CVs in 10 mM Tris-HC1 (300/~l, 10/tg AE 
31 pmol) were preincubated with the indicated amounts of mAbs 
for 20 min at 22~ After this treatment the s-CVs were induced 
to aggregate by the addition of a small volume (30 ~l) of 0.1 M so- 
dium MES, pH 6.5 (see Materials and Methods). Shown is the per- 
centage of control light scatter observed 20 min after the addition 
of sodium MES as a function of the amount of antibody present. 
AP.1 (A), AP.6 (e), and AP.7 (m) are antibodies to the a subunit 
of AP-2. LCB2 ([]) recognizes the clathrin light chain LCb. (B) 
Sandwich radioimmunoassay demonstrating distinct epitopes on 
the LM-AP fragments, mAbs AP.1, AP.6, and AP.7 were bound to 
the wells of plastic plates (indicated at the bottom) and chro- 
matographed fragments of APs and intact APs were added to the 
wells (indicated at the top). Then iodinated antibodies were added 
to each well and the binding of the iodinated antibodies (1251- 
MAb) is indicated by the labeled bars. Peak I contains the HM-AP 
and peak II contains the LM-AP. The binding of a radioactive anti- 
body will occur only if it binds to a distinct site from the antibody 
bound to the plate. However, the site must be on the same AP frag- 
ment. These results show that all three antibodies bind to the LM- 
AP (30-kD piece) and that AP.6 recognizes a distinct site from AP.1 
and AP.7. The binding sites of AP.1 and AP.7 are too close for the 
antibodies to bind simultaneously, but they behave distinctly in im- 
munofluorescence. CON refers to the binding of iodinated control 
antibody (29B5, anti-dinitrophenol). 

of the AP-2-directed mAbs used were found to recognize and 
bind to native AP-2. When tested for binding to the 30-kD 
fragment of AP-2 and intact AP-2 it was found that AP.1 and 
AP.7 bound to different epitopes than that recognized by 
AP.6. This was demonstrated by a sandwich radioimmunoas- 
say (Fig. 3 B) in which AP.6 and AP.1 or AP.6 and AP.7 
bound simultaneously to the 30-kD fragment of AP-2; how- 
ever, the binding of AP.1 and AP.7 were mutually exclusive. 
Finally, Fab' fragments of mAb AP.6 retained their inhibitory 
activity toward s-CV aggregation, although greater concen- 
trations were required consistent with a decrease in avidity. 
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Figure 4. Time course of s-CV 
aggregation, s-CVs were ag- 
gregated by the addition of 30 
/zl 0.1 M sodium MES, pH 6.5, 
to 270 #1 s-CV in 10 mM Tris- 
HCI, pH 8.5 (e). As a control 
30 t.tl of 10 mM Tris-HCi, pH 
8.5, was added to an identical 
sample (-). Aggregation was 
recorded as a function of time 
by measuring the A350 of the 
sample. 

Again, Fab' fragments of AP.1 and AP.7 were without effect. 
Collectively, these results indicate that the COOH-terminal 
domain of the AP-2 o~ subunit recognized by the mAb AP.6 
is involved in s-CV aggregation. 

To characterize the s-CV aggregation reaction further, we 
developed an assay that measures the formation of vesicle ag- 
gregates after the addition of a small volume of concentrated 
buffer to the s-CV preparation in 10 mM Tris-HCl, pH 8.5 
(see Materials and Methods). This treatment results in an 
immediate increase to physiological ionic strength and a 
simultaneous lowering of the pH to levels (pH 7.2) that sup- 
port vesicle aggregation. Under these conditions rapid for- 
mation of s-CV aggregates is observed (tv2 ~< 0.5 min; Fig. 
4), indicating that the reaction occurs at a rate compatible 
with the time course of endosome fusion in intact cells (1-5 
min). 

Diaz et al. (1989) have developed a reconstituted endo- 
some fusion assay and used it to test effectors of the process 
and to identify a clustered vesicle intermediate. We have 
measured the activities of a number of effectors of the pro- 
cess in the s-CV aggregation assay to determine if the two 
events share common properties (Table I). Like the endo- 
some fusion intermediate, s-CV aggregation is minimal in 
the presence of "fusion buffer" lacking KCI, and is induced 
upon addition of 50 mM KCI. In addition, treatment of endo- 
somes with high concentrations of KC1 destroys their ability 
to undergo fusion by stripping from their surfaces proteins 
that are required for the fusion reaction (Colombo, M. I., 
and P. D. Stahl. 1990. J. Cell Biol. l l l :80a.  [Abstr.]). Simi- 
larly, s-CV aggregation is reduced in the presence of high 
KCI concentrations (Table I). Hence both the endosome fu- 

Table L Characterization of Stripped Vesicle Aggregation 

Effect on stripped 
Agent vesicle aggregation 
(condition) (% of control) 

37~  * 100 
20~  * 92 

4~  * 106 

Fusion buffer* without KC1 0 
Fusion buffer* with 50 m M  KC1 49 

5 0 0 / z M  GTP~/S* 90 
1.5 m M  ATP* 113 
1.5 m M  MgATP* 116 
0.67 M KCI* 41 

* In 0.1 M NAMES, pH 6.5 .  
* In 20 mM Hepes, 1.5 mM MgCI2, 0.5 mM EGTA, and 1 mM 
7.0. 

DTT, pH 

sion and s-CV aggregation reactions show a requirement for 
moderate salt concentrations. 

However, the two events differ in several important 
respects (Table I). For instance, incubation at 4~ which has 
been shown to block the formation of the fusion intermediate 
(Diaz et al., 1989), has no effect on s-CV aggregation. Like- 
wise, the fusion intermediate requires ATP, whereas s-CV 
aggregation is unaffected by either the free or Mg2+-bound 
form of this molecule. In addition, endosome fusion has 
been found to be sensitive to GTP3,S (Mayorga et al., 
1989a,b), which also has no effect on s-CV aggregation. The 
potential significance of these differences will be discussed 
below. 

AP-2 Induces Aggregation of  Pure 
Phospholipid Liposomes 

We were able to reconstitute the vesicle aggregation reaction 
using purified AP-2 and phospholipid liposomes (Fig. 5). 
Liposomes were prepared composed of 70% L-c~-phosphati- 
dylethanolamine (type I-A), 15% L-a-phosphaddyl-L-serine, 
and 15 % L-ot-phosphatidylinositol, approximating the phos- 
pholipid composition of the cytoplasmic surface of CVs and 
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Figure 5. Aggregation of pure phospholipid liposomes by AP-2. 
Sonicated pure phospholipid liposomes (composed of 70% 
L-~x-phosphatidylethanolamine (type I-A), 15 % L-c~-phosphatidyl- 
L-serine, 15 % L-a-phosphatidylinositol, and 10 mM DPH; approx- 
imating the phospholipid composition of the cytoplasmic surface of 
CVs and the plasma membrane; Altstiel and Branton, 1983) were 
incubated (20 min) with the indicated concentrations of the follow- 
ing proteins: AP-2 (zx), a mixture of AP-1/AP-3 (o), and pure 
clathrin triskelions (<>). Light scatter was measured as A350 (A). 
The samples were also centrifuged (10,000 g, 2 min) and DPH 
fluorescence of the supernatant fractions was measured to assess 
the sedimentability of the vesicles (B). 
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the plasma membrane (Alstiel and Branton, 1983). Incuba- 
tion of liposomes with AP-2 resulted in a rapid (h:2 = 0.5 
min; see Fig. 6) increase in sample light scatter (A35o, Fig. 
5 A) and a corresponding increase in sedimented liposomes 
(Fig. 5 B), indicating that liposome aggregates were formed. 
SDS-PAGE of pellet and supernatant fractions obtained after 
brief centrifugation of liposomes incubated in the presence 
of 100 #g/rnl AP-2 revealed the presence of substantial 
amounts of AP-2 in the pellet fraction (50% of the total), in- 
dicating that the aggregates formed are indeed composed of 
both AP-2 and phospholipid vesicles (data not shown). 

In contrast to the result seen with AP-2, an AP preparation 
containing a mixture of the neuron-specific protein desig- 
nated AP-3 or AP180 (Ahle and Ungewickell, 1986; Murphy 
et al., 1991) and the Golgi localized AP-1 (Robinson, 1987; 
Ahle et al., 1988) did not cause liposome aggregation (Fig. 
5), a result which demonstrates that aggregation of lipo- 
somes, like that of s-CVs, is a function unique to AP-2. 
Pure clathrin triskelions were also unable to cause liposome 
aggregation; however, coassembled AP-2-clathrin coat struc- 
tures did induce significant aggregation. The significance of 
the latter observation is unclear at this time. 

The conditions used here for examining liposome aggrega- 
tion are identical to those under which AP-2 alone undergoes 
a specific self-association reaction which gives rise to large 
aggregates of AP-2 (Beck and Keen, 1991a). To determine 
if this AP-2 self-association reaction is responsible for lipo- 
some aggregation we measured the effect of high-affinity 
polyphosphate inhibitors of AP-2 self-association (Beck and 
Keen, 1991b) to affect tiposome aggregation (Fig. 6). ATP 
and inositol4,4,5-trisphosphate produced no effect on lipo- 
some aggregation even at concentrations 25-50-fold greater 
than those required to block AP-2 self-association. It can 
therefore be concluded that the interactions involved in AP- 
2-induced liposome aggregation are distinct from those in- 
volved in the polyphosphate-sensitive AP-2 self-association 
reaction. Interestingly, however, PIP~ micelles did signifi- 
cantly inhibit liposome aggregation at concentrations equiv- 
alent to those required for inhibition of self-association. This 
result is likely due to the physical size of the 1-a-phosphati- 
dylinositol-4,5-bisphosphate micelle (,,,6 nm in diameter; 
Suguira, 1981), which is comparable in size to the AP-2 mol- 
ecule. Occupancy of the polyphosphoinositol site by the low 
molecular weight polyphosphates apparently does not in- 
trude on the region of the t~ subunit that is involved in lipo- 
some aggregation; however, occupancy of the same site by 
the relatively large 1-tx-phosphatidylinositol-4,5-bisphos- 
phate micelle may give rise to a steric effect that results in 
an inhibition of liposome aggregation. 
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Figure 6. Effect of inhibitors 
of AP-2 self-association on 
AP-2-induced liposome ag- 
gregation. AP-2-induced ag- 
gregation of liposomes (100 
t~g/ml AP) was measured in 
the presence of 10/zM Ins-l, 
4,5-P3 (u), 500/~M ATP (o), 
40 I~M 1-a-phosphatidylino- 
sitol-4,5-bisphosphate (B), or 
no added inhibitor (A). 

Like s-CV aggregation, AP-2-induced liposome aggrega- 
tion was sensitive to limited proteolysis (Fig. 7). Incubation 
of soluble AP-2 with trypsin (300:1, wt/wt) completely de- 
stroyed its ability to induce liposome aggregation (Fig. 7 A, 
left). Since treatment under these conditions affects only the 
100-kD subunits of AP-2 and not the AP50 (Zaremba and 
Keen, 1985; Keen and Beck, 1989) it can be concluded that 
either the a or the/3 subunits of AP-2 are responsible for the 
reaction. Importantly, it was also found that treatment of AP- 
2-1iposome aggregates with protease causes the dissociation 
of the aggregates (Fig. 7 A, right), a result which demon- 
strates that AP-2 molecules act to reversibly and noncova- 
lently cross-link the liposomes. This observation provides 
strong evidence that AP-2 is aggregating, rather than fusing, 
liposomes since fusion would not be expected to be reversed 
by subsequent proteolysis; more direct evidence for a lack 
of fusion under physiological conditions is described below. 

Limited proteolysis of AP-2 under the conditions used in 
this experiment gives rise to two distinct domains of AP-2 
(Zaremba and Keen, 1985; Heuser and Keen, 1988; Keen 
and Beck, 1989) termed HM-AP and LM-AP (see Materials 
and Methods). To determine which of these domains is 

Figure 7. Effect ofproteolysis of AP-2 on liposome aggregation. (A) 
Left, AP in 10 mM Tris-HC1, pH 8.5, was treated with (stippled 
bar) or without (open bar) trypsin (1:300, wt/wt) for 7 min at 27~ 
and tested for liposome aggregation activity. Right, AP-liposome 
aggregates were treated with trypsin (1:150) for 60 rain and the 
A350 was measured both before (open bar) and after (stippled bar) 
proteolysis. (B) The product of the incubation of dipped AP with 
liposomes was subjected to a 10,000-g spin to pellet aggregates fol- 
lowed by a 150,000-g spin to pellet nonaggregated membranes. 
Equal amounts of the tow speed pellet (LSP), high speed pellet 
(HSP), and high speed supernatant were electrophoresed on a 8.5 % 
polyacrylamide gel. HM-AP and LM-AP refer to the heavy- and 
light-mere AP domains. 
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Figure 8. ct but not B subunits aggregate liposomes. 
100-kD subunits of AP-2 were dissociated from the 
AP-2 complex by treatment with 6 M urea, partially 
purified by ion exchange chromatography, and rena- 
tured as described (Prasad and Keen, 1991). (A) To 
determine if these isolated 100-kD subunits of AP-2 
can promote liposome aggregation, the protein prep- 
arations (64/~g/ml) were incubated in the presence 
of liposomes and the resulting A350 was measured. 
Open bar, control (lipid alone); stippled bar, ct sub- 
unit; hatched bar, B subunit. The samples were sub- 
jected to low speed centrifugation (10,000 g for 
2 rain) followed by a high speed centrifugation step 
(150,000 g) and the supernatant DPH fluorescence 
in the low speed supematant (LSS) and high speed 
supernatant (HSS) was measured. (B) SDS-PAGE 
of these fractions confirmed that the c~ subunit was 
present in the low speed pellet (LSP) and that the/~ 
subunit was found in the high speed pellet (HSP). 
HSS, high speed supernatant. 

responsible for bilayer interactions, liposomes incubated 
with clipped AP-2 were subjected to successive high and low 
speed centrifugations (Fig. 7 B). No protein was found in the 
low speed pellet, consistent with the absence of aggregate 
formation, whereas the high speed spin pelleted the majority 
of the HM-AP. Conversely, the LM-AP domain was found 
exclusively in the supernatant fraction. Since the lipids are 
quantitatively precipitated under these conditions (not 
shown), these results indicate that the isolated HM-AP do- 
main maintains an association with the liposome bilayer. 
However, since aggregation does not occur under these con- 
ditions, the HM-AP domain alone cannot cause liposome 
aggregation. 

To determine if liposome aggregation is specifically a 
function of the a subunit of AP-2, the following experiments 
were performed. First, the effects of mAbs AE1, AP.6, and 
AE7 on liposome aggregation were tested (not shown). The 
mAb AE6 was able to significantly block liposome aggrega- 
tion, consistent with its effects on s-CV aggregation noted 
above. AE1 produced only a modest effect, whereas AP.7 
and LCB.2 were completely inactive. As an additional ap- 
proach to demonstrating a role for the c~ subunit in this pro- 

cess we took advantage of the observation that the 100-kD 
subunits of AP-2 can be dissociated from the AP-2 complex 
by treatment with 6 M urea and partially purified by ion ex- 
change chromatography (Prasad and Keen, 1991). Subse- 
quent removal of urea from these purified proteins appears 
to give rise to renatured subunits, as assessed by intrinsic 
tryptophan fluorescence (Prasad and Keen, 1991), by the ob- 
servation that the renatured subunits are capable of binding 
clathrin (Ahle and Ungewickell, 1989; Prasad and Keen, 
1991) and in some combinations can also facilitate coat as- 
sembly (Prasad and Keen, 1991). 

To determine if these separated 100-kD subunits of AP-2 
can promote liposome aggregation, they were incubated in 
the presence of liposomes and the resulting light scatter in- 
crease was measured (A35o; Fig. 8). The o~ subunit (which 
retained a small amount of 50-kD polypeptide; stippled bar) 
caused a substantial increase in sample A35o with respect to 
the control (open bar). The :3 subunit (hatched bar) pro- 
duced no significant effect. The samples were then subjected 
to low speed centrifugation (10,000 g for 2 min) and the 
resulting supernatants were fractionated further by a high 
speed centrifugation step (150,000 g). The supernatant DPH 
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fluorescence of each successive step was then measured (Fig. 
8 A). Consistent with the light scatter results, only the ct 
subunit (stippled bar) caused the vesicles to pellet in the low 
speed spin. The/~ subunit (hatched bar) did, however, cause 
the vesicles to pellet in the high speed spin, suggesting that 
it was bound to the vesicles. SDS-PAGE of these fractions 
(Fig. 8 B) confirmed that the ot subunit was present in the 
low speed pellet and that the/~ subunit was indeed found in 
the high speed pellet. These results, which demonstrate that 
of the two large subunits only the AP-2 t~ subunit is capable 
of causing liposome aggregation, are in agreement with the 
results obtained with s-CV aggregation which also implicate 
the AP-2 a subunit as the location of the relevant functional 
domains. Interestingly, they also indicate that the fl subunit 
can bind to liposomes but does not cause aggregation. 

Using the liposome fusion assay of Struck et al. (1981), we 
asked whether AP (or clathrin) causes fusion of the pure 
phospholipid vesicles under these conditions (Fig. 9). The 
fusion assay measures the loss of fluorescence energy trans- 
fer between NBD- and Rh-labeled PE that occurs upon fu- 
sion of labeled vesicles with target vesicles containing no 
fluorophore (see Materials and Methods). In the absence of 
any fusion-promoting factor (Fig. 9 A), energy transfer be- 
tween excited NBD-PE and acceptor Rh-PE is observed as 
a strong Rh emission at 590 nm. This condition is stable over 
a wide pH range (5-7.2). Fusion induced by 1 mM CaC12 
(Fig. 9 B) results in a loss of energy transfer manifested as 
a reduction in Rh emission intensity at 590 nm and a corre- 
sponding increase in NBD emission at 530 nm. Dispersion 
of the phospholipids in 0.5 % Triton X-100 gives a similar re- 
suit. Addition of AP or clathrin at 0.1 mg/ml under condi- 
tions where AP-induced liposome aggregation is observed 
(0.1 sodium MES, pH 7.2) did not cause vesicle fusion (Fig. 
9 C). However, at lower pH (Fig. 9, D-F), fusion is ob- 
served with both AP and clathrin. Dilution of both proteins 
results in loss of activity, indicating that neither fraction is 
active because it is contaminated with the other (Fig. 9 F). 
These results confirm previous reports which showed that 
clathrin can induce fusion at acidic pH (Blumenthal et al., 
1982; Maezawa and Yoshimura, 1990). Thus, this assay re- 
veals that although AP and clathrin will induce fusion under 
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Figure 9. Fusion of liposomes 
by AP-2 and clathrin. The abil- 
ity of pure AP-2 to cause the 
fusion of liposomes was as- 
sessed using a fluorescence 
energy transfer assay as de- 
scribed in Materials and Meth- 
otis. Fusion of liposomes was 
measured in the absence of 
added reagents (A) or in the 
presence of 1 mM CaCI2 (B), 
0.5% Triton X-100 (B), 100 
#g/ml AP (C-E), 100 t~g/ml 
clathrin (C, D), 10 #g/ml AP 
(F), or 10 ttg/ml clathrin (F). 
Incubations were carried out 
for 30 min at 37~ The pH of 
the reaction mix is indicated 
in each panel. 

acidic conditions, under the physiological conditions in 
which we see AP-mediated liposome aggregation, the pro- 
teins do not induce either overt fusion or mixing of the vesi- 
cle bilayer lipids. 

Discussion 

The available evidence indicates that very soon after the for- 
marion of detached coated vesicles within cells, the clathrin 
coats of these structures are removed and the resulting un- 
coated vesicles immediately participate in a series of fusions 
which ultimately result in the delivery of their contents to 
early endosome compartments. From in vitro studies which 
have shown that AP molecules remain associated with the 
vesicle surface after clathrin uncoating by hsc 70 (Heuser 
and Keen, 1988) and from in vivo immunolocalization 
studies which show that AP-2 is present on the surfaces of 
endosomes (Guagliardi et al., 1990), it appears that vesicle- 
bound AP-2 survives uncoating and is present on these more 
distal organelles of the endocytic pathway. In this study we 
report that upon treatment of coated vesicles under condi- 
tions that cause the removal of the majority of the clathrin 
from their surface but fail to remove all of the AP-2 (presum- 
ably mimicking the in vivo process), the resulting s-CVs un- 
dergo a rapid and extensive aggregation reaction (Fig. 1). 

That this reaction is driven by the action of surface-bound 
AP-2 molecules is indicated by the following observations. 
First, proteolytic loss of s-CV aggregation follows a time 
course that correlates well with the time-dependent proteoly- 
sis of the ot subunit (Fig. 2). Most importantly, a mAb that 
specifically recognizes the ct subunit of AP-2 blocks s-CV 
aggregation (Fig. 3). The intrinsic ability of AP-2 molecules 
to self-associate in solution does not appear to be involved 
in vesicle aggregation since partial proteolysis under condi- 
tions that do not affect self-association (Beck and Keen, 
1991a) destroys s-CV aggregation activity (Fig. 2). Further- 
more, treatment with ATP or 1,4,5-inositoltrisphosphate to 
block a previously characterized AP-2 self-association reac- 
tion (Beck and Keen, 1991b) also has no effect on the aggre- 
gation of s-CVs (Table I). 

Experiments with pure phospholipid liposomes have 
shown that they can also be aggregated by the addition of 
purified AP-2 (Fig. 5). The liposome aggregation reaction 
shares many characteristics in common with s-CV aggrega- 
tion and hence is very likely to represent a partial reconstitu- 
tion of this process. These characteristics include the follow- 
ing: (1) both reactions give rise to aggregates that pellet after 
brief low speed centrifugation; (2) both require intact, non- 
proteolyzed AP-2; (3) both reactions occur rapidly (t~ ~< 
0.5 rain) under physiologically relevant solution conditions 
(100 mM salt, pH 7.2); (4) both reactions occur with AP con- 
centrations in the range of 30-100 ~g/ml; (5) neither reaction 
requires the presence of Ca 2§ nor are they affected by 
EGTA; (6) finally and most importantly, both s-CV and lipo- 
some aggregation are inhibited by monoclonal antibody AP.6 
and hence are dependent on the AP-2 t~ subunit. In addition, 
s-CVs with surface-bound AP-2 will aggregate liposomes 
(data not shown). AP-induced liposome aggregation there- 
fore demonstrates a minimal requirement for the aggregation 
reaction, namely AP-2 and phospholipid bilayers. The lipo- 
some aggregation studies also demonstrate the ability of 
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AP-2 to interact significantly with lipid bilayers of phos- 
pholipid composition approximating that seen on the inner 
leaflet of the plasma membrane (70 % L-oL-phosphatidyletha- 
nolamine (type I-A) and 30% acidic phospholipid), suggest- 
ing that AP-2-phospholipid interactions occur within the in- 
tact cell, perhaps contributing to the steady-state association 
of AP-2 with the membrane. 

The observation that the mAb AP.6, which recognizes a 
30-kD COOH-terminal region of the ot subunit of AP-2, 
blocks s-CV aggregation (Fig. 3) suggests that the appendage 
domain of tx subunit of the AP-2 (Heuser and Keen, 1988; 
Keen and Beck, 1989) actively participates in the reaction. 
This hypothesis is supported by the observation that vesicle 
aggregation activity is lost in parallel with cleavage of a but 
not B (Fig. 2) or 50K (Fig. 7) subunits. Furthermore, under 
conditions that cause the release of the LM-AP domain, iso- 
lated HM-AP does maintain an interaction with the liposome 
surface after proteolysis (Fig. 8 B). These observations sug- 
gest that AP-2 binds to the membrane surface through the 
HM-AP or core domain. Interaction of the appendages of 
AP-2 molecules bound to separate bilayers could then lead 
to vesicle aggregation. However, at present we have no direct 
evidence for such appendage-appendage interactions. Also, 
it is important to note that such interactions must be distinct 
from those responsible for AP-2-AP-2 self-association in so- 
lution (Beck and Keen, 1991a) as polyphosphate reagents 
that block self-association do not affect vesicle aggregation. 

Under physiologically relevant conditions we found no 
evidence for bilayer mixing or fusion induced by AP-2 (Fig. 
9). Furthermore, the observation that vesicle aggregation 
was readily reversible by proteolytic clipping of AP-2 pro- 
vides further evidence that AP-2 does not induce gross per- 
turbations of the vesicle bilayer under these conditions. 
However, the observation that fusion of the aggregated vesi- 
cles could be readily induced by mild acidification indicates 
that AP-2 binding does bring the bilayers into close apposi- 
tion. Close approach of membrane bilayers is obviously a 
necessary initial step in membrane fusion processes and 
previous studies have shown that proteins and other agents 
that promote membrane apposition can increase fusion rates 
(Duzgunes et al., 1984; Hoekstra and Duzgunes, 1986). 
Thus, AP-2-dependent vesicle aggregation may represent an 
important initial step in vesicle fusion reactions. In this con- 
text, AP-2 may function analogously to the armexins which 
are thought to participate in stimulated secretion processes 
by promoting vesicle aggregation and thereby fusion, under 
some conditions (Drust and Creutz, 1988; Meers et al., 
1988). Indeed, this parallel may extend further in that an- 
nexins have also been shown to form calcium channels in 
membranes. Recently, we (Voglmaier et al., 1992) and 
others (Timerman et al., 1992) have shown that the AP-2 is 
similar or identical to an inositolhexakisphosphate receptor 
protein and Timerman and colleagues have reported that this 
preparation will induce the formation of selective potassium 
channels in synthetic planar bilayers. However, an important 
difference between the activities of these preparations and 
annexin activities is that annexin-dependent aggregation of 
membrane vesicles requires Ca 2§ as does secretory vesicle 
fusion, whereas endosome fusion and s-CV aggregation by 
AP-2 do not. 

It may be premature to rule out totally the ability of AP-2 
to act as an independent fusogen within the cell. For in- 

stance, the low pH-dependent fusion observed here could re- 
sult from a conformational change in AP-2 that exposes a do- 
main that mediates the fusion process, as has been proposed 
for a number of fusion-promoting proteins (White and 
Helenius, 1980; White et al., 1981; Stegmann et al., 1989) 
including clathrin (Blumenthal et al., 1982; Maezawa et al., 
198; Maezawa and Yoshimura, 1990). It is possible that cel- 
lular factors could bind AP-2 and induce this conformational 
change in a regulated fashion. 

A role for AP-2 in the fusion of endosomes within the in- 
tact cell is suggested by the observation that microinjection 
of antibodies to AP-2 limits the accumulation of internalized 
ligand in late perinuclear compartments (Chin et al., 1989). 
Since perinuclear localization is preceded by the transport of 
internalized materials sequentially through multiple com- 
partments (early-late endosomes), this observation is consis- 
tent with blockage of a number of possible steps in the endo- 
cytic pathway including membrane fusions, and hence 
implicates a role for AP-2 in these processes. Our results 
provide support for such a role for AP-2 for several reasons. 
First, the velocity of the s-CV aggregation reaction (tu2 ~< 
0.5 min; Fig. 4) is comparable to the time course (2-5 min) 
of endosome fusion in cells (Salzman and Maxfield, 1989), 
so that the former event could be an early but not necessarily 
rate-limiting step in the fusion reaction. In addition, the 
ionic strength dependence of s-CV aggregation is similar to 
that of the formation of a vesicle cluster intermediate 
identified by Diaz et al. (1989). However, several effectors 
of in vitro endosome fusion (low temperature, ATP, cytosol, 
and GTP'yS) either are not required for or have no effect on 
s-CV aggregation. It is possible that these differences may re- 
sult from a loss or disruption of factors that are responsible 
for the sensitivity of the reaction to these agents, or, perhaps 
more likely, that these agents affect later steps leading to en- 
dosome fusion but not the initial stages of vesicle aggre- 
gation. 

The most direct way presently available to demonstrate a 
role for AP-2 in endosome fusion is to measure the effect of 
anti-AP-2 antibodies in a reconstituted endosome fusion as- 
say. M. Colombo and P. Stahl at Washington University 
School of Medicine have recently conducted such experi- 
ments and found that monoclonal antibody AP.6 caused a 
significant (>60%) inhibition of endosome fusion, whereas 
AP.1, recognizing a determinant that had little or no effect 
on vesicle aggregation, produced no significant effect at simi- 
lar concentrations. These results, to be reported in more de- 
tail elsewhere, agree well with the results presented in this 
study (Fig. 3) and hence strongly support the hypothesis pro- 
posed here that AP-2 is a participant in the endosome fusion 
mechanism. 

One problem in proposing a role for AP-2-induced vesicle 
aggregation in endosome fusion is the lack of specificity of 
the aggregation reaction, as it appears to be dependent only 
on the presence of phospholipid bilayers and AP-2. Further- 
more, we have found that pure phosphatidylcholine vesicles 
also readily undergo aggregation in the presence of AP-2 (not 
shown), indicating both that the reaction is not due to a 
charge interaction with the basic AP50 subunit and that it is 
not specific for a particular phospholipid head group. In con- 
trast, recent studies have demonstrated considerable tem- 
poral and spatial specificity in endosomal fusion reactions 
using several experimental systems (Diaz et al., 1988; Dunn 
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et al., 1989; Parton et al., 1989). One possibility is that AP-2 
may convey a degree of intelligence to the fusion mechanism 
through its interaction, either direct or indirect, with the 
cytoplasmic domains of transmembrane "cargo molecules7 
That is, a requirement for an initial aggregation step involving 
AP-2 would ensure that only those endocytic vesicles contain- 
ing cargo molecules would be aggregation prone and fusion 
competent. Nonspecific aggregation of this discrete subset of 
endocytic vesicles with a variety of intracellular membranes 
may be followed by the action of additional factors that can 
assess the appropriateness of the target membrane selected 
(perhaps through a G protein-mediated mechanism; Wil- 
schut, 1989) and directly facilitate fusion. Such error- 
checked cargo molecule-AP-2 interactions could also con- 
ceivably stimulate a fusogenic activity intrinsic to AP-2, 
analogous to the fusion activity seen under slightly acidic 
conditions (Fig. 9 E). In such ways AP-2 would serve to 
bring information about vesicle content to the fusion ma- 
chinery. It is possible that for other fusion events that occur 
within cells (i.e., secretory vesicle fusion and late endo- 
some-lysosome formation) there may also exist additional 
molecules that serve a similar function. 
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