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Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid
metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate
insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese
diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel
approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune
responses and beta cell biology and their potential as targets for treatment of T1D.

1. Introduction

T1D is an autoimmune disease caused by the pancreatic beta
cells being dysfunctional or killed by autoreactive T cells
resulting in reduced insulin production and hyperglycemia
[1, 2]. The incidence of T1D is increasing, and estimates from
the International Diabetes Federation suggests that the
number of patients (age < 20 years) has doubled from 2015
to 2017 [3, 4]. However, the incidence varies geographically
with high rates in Finland (>60 cases/100.000/year) and
Sardinia (~40 cases/100.000/year), while China has less than
one case/100.000/year [5]. The strongest genetic susceptibil-
ity is the HLA haplotypes DR3-DQ2 and DR4-DQ8 with
90% of diagnosed children having one or both haplotypes
in Scandinavia [6, 7]. Over 50 genetic loci contribute to the
genetic disease predisposition, although the molecular mech-
anisms often remain unknown [8]. Less than 10% of geneti-
cally susceptible individuals develop T1D, demonstrating
that environmental factors such as diet and microorganisms
play a pivotal role in T1D pathology [9, 10]. It was previously
believed that patients had an almost complete loss of beta
cells at onset of disease. However, several recent studies have
shown that new-onset T1D patients retain up to 40% of
insulin-positive islets [11–13]. Furthermore, islets isolated
from T1D patients can regain their ability to secrete insulin

when cultured in a nondiabetogenic environment in vitro
[14]. Thus, beta cell dysfunction is likely to play an important
role in T1D pathology. Current therapeutic approaches have,
with limited clinical efficacy, focused on suppressing the
ongoing immune attack or stimulating beta cell regeneration
[15, 16]. Therefore, strategies that both dampen the immune
response and promote beta cell function are in high need.
The PPAR family is an ideal target for such a strategy, as
PPARs have both anti-inflammatory properties, regulate beta
cell biology, and modulate the pancreatic lipidome.

2. PPARs

PPARs were identified in the 1990s as mediators of peroxi-
some proliferation [17]. They belong to the nuclear receptor
class II superfamily of transcription factors and regulate a
range of biological processes by modulating gene expression.
In mammals, three isoforms have been identified: PPARα
(NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3), which
predominately control genes involved in lipid metabolism
including transport, storage, lipogenesis, and fatty acid oxida-
tion (FAO) [17]. PPARs are important targets for metabolic
disorders and multiple drugs targeting PPARα (fibrates, e.g.,
fenofibrate, bezafibrate, and clofibrate) and PPARγ (thiazoli-
dinediones, e.g., troglitazone, rosiglitazone, pioglitazone, and
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ciglitazone) which have been used to treat hyperlipidemia
and type 2 diabetes. PPARs are dynamic as they shuttle
between the nucleus and cytoplasm, though they are mainly
and constitutively present in the nucleus [18, 19]. The
nuclear-cytoplasmic shuttling of PPARs is regulated by binding
of PPAR ligands to the C-terminal domain (Figure 1) [19].
Binding of ligands induces a conformational change leading
to heterodimerization with members of the retinoid X receptor
(RXR) family [20, 21]. This complex binds to specific DNA
sequences, termed peroxisome proliferator response elements
(PPRE) through the highly conserved zinc finger DNA-
binding domain in the N terminus [22]. Binding of ligands also
results in dissociation of corepressors and recruitment of coac-
tivator proteins, resulting in enhancement of target gene tran-
scription [23]. In the absence of ligands, PPARs instead recruit
corepressors that repress transcription of target genes [24].
PPARs are involved in a mechanism termed “transrepression,”
which is a ligand-dependent but PPRE-independent mecha-
nism of gene repressions through interactions with other
proteins such as NFκB, AP1, and STAT [25–27]. This gener-
ates and stabilizes corepressing complexes, which typically
bind to and repress proinflammatory genes [21].

The PPAR isoforms have a great degree of structural and
functional overlap but their expression patterns differ. PPARα
is highly expressed in metabolically active tissues including
liver, kidney, and adipose tissue. PPARα is activated during
fasting and is involved in controlling ketogenesis, lipoproteins,
gluconeogenesis, amino acid catabolism, FAO, and inflamma-
tory responses [28]. PPARβ/δ is nearly ubiquitously expressed
and involved in FAO and activation has an anti-inflammatory
effect with reduced secretion of proinflammatory cytokines
[29]. PPARγ is expressed in various tissues including adipose,
intestine, liver, and kidney [30, 31]. It is involved in regulating
fat cell differentiation, lipid storage, and differentiation of
monocytes into macrophages [32, 33]. PPARs have, due to
their immune regulatory functions, been linked to several
autoimmune diseases, i.e., multiple sclerosis [34], lupus
erythematosus [35], autoimmune thyroiditis [36], Graves
ophthalmopathy [37], rheumatoid arthritis [38], psoriasis
[39], and Guillain–Barré [40]. Similarly, PPARs have also been
suggested as targets to treat chronic inflammatory diseases
[20, 41]. An interesting feature is that women seem to be more
susceptible than men to develop autoimmune diseases [42].
This might be connected to PPAR expression asmouse studies
have found that male mice have higher expression of PPARα
in T cells compared to female mice, and that expression was
androgen sensitive [43].

Polymorphisms in PPARβ/δ and PPARγ promoter
regions contribute to the genetic predisposition to T1D and
affect the severity of islet autoimmunity [44]. Additionally,
PPARγ is associated with the development of insulin resis-
tance and type 2 diabetes [45].

3. PPARs and the Immune System

The pathogenesis of T1D includes interactions between beta
cells and components of both the innate and adaptive immune
system [46].Many different immune cells have been implicated
including B cells andmacrophages [47, 48]. However, focus has

primarily been on T cells where evidence suggests that T1D
develops due to a defect in regulatory T cell (Treg) function
[2, 46]. Studies of postmortem pancreas samples from T1D
patients revealed that CD8+ T cells are the most predominant
population in the islet infiltrate followed by (in declining order)
macrophages, CD4+ T cells, B cells, and plasma cells [49]. Why
tolerance is lost in some individuals remains unknown.

The metabolic pathway for ATP production has an
important role in regulating immune cell function. Differen-
tiation of activated CD4+ T cells thus depends on the meta-
bolic pathway; Th1, Th2, and Th17 cells use glycolysis
while Tregs have a high level of lipid oxidation [50, 51]. In
this way, T cell differentiation can be manipulated as inhibi-
tion of glycolysis blocks Th17 and promotes Treg differenti-
ation [51]. The inflammatory M1 phenotype of macrophages
uses glycolysis while the anti-inflammatory M2 phenotype
utilizes lipid oxidation [52]. Hence, modulation of FAO
through PPARs can induce immunological changes. PPARs
are expressed in various types of immune cells including
macrophages, dendritic cells, B cells, and T cells, and all three
isoforms have anti-inflammatory activities [53]. Activation
of all PPARs potentiates the polarization of mouse macro-
phages to the anti-inflammatory M2 phenotype, while M2
is diminished in PPARγ and PPARβ/δ knockouts [20, 32,
54, 55]. Deletion of PPARγ in macrophages blocks FAO
and renders the macrophages incapable of making a full
conversion to the M2 phenotype. Only PPARγ seems to
have the same role in human macrophages [20]. This anti-
inflammatory effect appears to depend on the repression of
NFκB and AP-1 [20, 54, 56, 57].

The role of PPARs in T cell regulation is more complex
with differences between the isoforms. Tregs from PPARα
knockout mice have impaired suppressive activities towards
both CD4+ and CD8+ T cells [58]. This was associated with
reduced migratory abilities and diminished expression of
several chemokine receptors. In support of this, PPARα
knockout mice have prolonged inflammatory response to
inflammatory agents such as arachidonic acid [59]. The
PPARα agonist fenofibrate has been demonstrated to pro-
mote FOXP3+ regulatory T cells in mice [60, 61]. PPARα is
involved in regulating effector T cells with high expression
of PPARα leading to increased production of Th2 cytokines
and knockout mice having increased differentiation towards
a Th1 phenotype [43]. Also, fenofibrate treatment prevented
the differentiation of Th17 cells in mice [62]. In addition,
PPARα agonist WY14643 diminishes human T cell prolifer-
ation and induce T cell depletion by trapping the cells in the
G2/S phase [63]. In hyperlipidemia patients, treatment with
fenofibrate decreases TNFα and IFN-γ levels [64]. These
findings were validated in PPARα knockout mice as they
had increased levels of TNFα and IFN-γ [43].

PPARβ/δ activation inhibits Th1 and Th17 while
enhancing Th2 [65–67]. Deletion of PPARβ/δ gives the
opposite result. This is likely a consequence of PPARβ/δ
increasing FAO [68], thereby blocking the proliferative burst
following antigen recognition in T cells as a consequence of a
shift from oxidative metabolism to glycolysis [20, 69].

PPARγ seems to have a role in regulating the balance
between regulatory and effector T cells. Reduced PPARγ
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activity increases the amount of effector T cells as evidenced
by increased antigen-specific proliferation and overproduc-
tion of IFN-γ in response to IL-12 in PPARγ knockout mice
[70]. There is also evidence indicating that PPARγ inhibits
expression of RORγt and thereby differentiation of Th17 cells
in both mice and humans [71]. PPARγ appears to be
involved in the formation of follicular helper T cells (Tfh)
as mice with a knockout in CD4 cells had increased Tfh cell
activation and increased formation of germinal centers [72].
PPARγ agonist troglitazone and rosiglitazone have addi-
tional in a mouse model of colitis been shown to shift the
immune response from Th1 towards Th2, with a correspond-
ing decrease in Th1-associated transcription factors, cytokine
and chemokine, and an increase in Th2-associated factors
[73, 74]. On the other hand, PPARγ deficiency leads to a
decreased number of CD4+FOXP3+ regulatory T cells [75].
This is exemplified by the identification of a specific Treg
population with a high expression of PPARγ in visceral adi-
pose tissue [76]. PPARγ is the major orchestrator of these
Tregs, and Treg-specific deletion of PPARγ prevented the
formation of this cell type. Furthermore, the loss of PPARγ
in Tregs leads to increased effector T cell responses while
PPARγ activation increases the amount of FOXP3+ regula-
tory T cells [70, 75, 77]. Another study has though described
how rosiglitazone had no effect on Tregs in a mouse model of

allergic asthma [78], thereby suggesting the effect of PPARγ
on Tregs might be tissue-specific.

4. PPARs and Pancreatic Islets

Beta cells are highly specialized cells each making millions of
insulin molecules per day [79]. This puts tremendous pres-
sure on the cells, as insulin is prone to misfolding with
approximately 20% of all insulin molecules failing to reach
its mature conformation [80]. Misfolded insulin can lead to
ER stress, which again can lead to the formation of neoanti-
gens and activate the immune system resulting in further
beta cell death and loss of insulin production [81]. As
described above, beta cell dysfunction rather than beta cell
death has recently been emphasised as a major contributor
to T1D. Thus, the possibility of restoring beta cell function
has become an alluring research area. In this regard, the
PPAR isoforms are possible targets as they are expressed in
pancreatic islets [82–84] and appear to have important roles
as regulators of beta cell biology.

PPARα is expressed in pancreatic islets and beta cell lines
with expression depending on glucose level [85]. High
glucose represses PPARα in isolated rat islets and INS-1E
cells [86, 87]. The glucose-dependent upregulation of insulin
expression might rely on PPARα as glucose did not increase
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Figure 1: Structure and function of PPARs. (a) The peroxisome proliferator-activated receptor (PPAR) isoforms have a large degree of
structural overlap, consisting of an N-terminal ligand-independent transactivation domain (NTD). The DNA-binding domain (DBD)
contains two zinc finger (Zn) domains, which bind to peroxisome proliferator response element (PPRE) sequences. The DBD is connected
through a hinge domain to the C terminal ligand-binding domain (LBD). (b) Illustration of the biological role of PPARs. PPARs
heterodimerize with members of the retinoid X receptor (RXR) family. The isoforms are involved in a variety of pathways; shown are
pathways with relation to type 1 diabetes. c-jun: transcription factor c-Jun; GLUT2: glucose transporter 2; MafA: MAF bZIP transcription
factor A; NFκB: nuclear Factor-kB; Nkx6.1: NK6 homeobox 1; Pdx-1: pancreatic and duodenal homeobox 1; Tfh: follicular helper T cells;
Th1: T helper 1 cells; Th17: T helper 17 cells; Th2: T helper 2 cells; TNFα: tumor necrosis factor alpha; Treg: regulatory T cells.
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insulin expression in islets from PPARα knockout mice [88].
PPARα knockout mice have reduced mRNA levels of insulin,
Nkx6.1 (a transcription factor essential for maintaining func-
tionally mature beta cells [89]), MafA (regulator of insulin
secretion [90]), GLUT2, and glucokinase [91]. PPARα has
likewise been found to upregulate Pdx-1 (transcription factor
with a critical role in pancreas and beta cell development
[92]) in INS-1 cells and isolated rat islets [93, 94]. On a
whole-body level, PPARα knockout mice are normoglycemic
in a fed state but hyperglycemic when fasted [85]. This was
associated with a 55% higher plasma insulin level. The mice
had improved glucose tolerance and increased insulin secre-
tion from isolated islets.

PPARβ/δ is the most abundant PPAR isoform in beta
cells [83, 95]; however, not much is known about its role in
beta cell biology. PPARβ/δ appears to have an important role
in pancreas development as pancreatic PPARβ/δ knockout
mice had an increased number of pancreatic islets and a 2-
fold increase in beta cell mass [96]. This was associated with
increased plasma insulin levels, hypoglycemia, and improved
glucose tolerance, while isolated islets had an increased
second-phase insulin secretion. This suggests that PPARβ/δ
is a negative regulator of insulin secretion in the mature pan-
creas, which is in contrast to a study demonstrating that
PPARβ/δ promotes beta cell differentiation from stem cells
by upregulating Pdx-1 [97]. GW501516, a PPARβ/δ agonist,
was shown to attenuate dysfunction of palmitate-induced
insulin secretion by promoting MafA [98]. Furthermore, this
agonist promoted FAO and protected against palmitate-
induced ER stress in a beta cell line [99]. PPARβ/δ was also
demonstrated to reduce ER stress in rodent models [100,
101]. Additionally, GW501516 improved beta cell mito-
chondrial function in Desnutrin knockout mice and reduced
lipolysis, which resulted in improved glucose tolerance and
glucose-stimulated insulin secretion (GSIS) [95].

The role of PPARγ in insulin secretion is not fully under-
stood. Some studies have demonstrated that PPARγ activa-
tion or overexpression suppresses insulin secretion and
proinsulin biosynthesis [102–106]. For example, it was
shown that overexpressing PPARγ in INS-1E cells leads to
impairment of GSIS [105]. However, other studies have dem-
onstrated that PPARγ activation or overexpression potenti-
ates GSIS in beta cells and isolated islet [107–110]. What
we do know is that PPARγ is involved in controlling several
key beta cell genes. Activation of PPARγ by troglitazone (a
PPARγ agonist) leads to upregulation of Pdx-1, Nkx6.1, glu-
cokinase, and GLUT2 [111, 112]. In addition, PPARγ pan-
creatic knockout mice had reduced Pdx-1 protein levels in
islets [113]. This is supported by findings of PPRE sequences
in the promoter region of GLUT2 [114], glucokinase [115],
and Pdx-1 [111, 113]. Furthermore, troglitazone was dem-
onstrated to increase the half-life of Pdx-1 and MafA by
inhibiting ubiquitination, which otherwise targets them for
degradation by the proteasome [116]. The role of PPARγ
in pancreas development is not completely understood as
PPARγ pancreatic knockout mice are hyperglycemic despite
having a normal pancreas morphology [113]. In vivo studies
found that long-term rosiglitazone (a PPARγ agonist) or
troglitazone treatment maintains beta cell proliferation and

prevents the age-related loss of pancreatic mass in rats and
mice [117–119]. Troglitazone can also prevent age-related
pancreatic abnormalities and increases in fasting insulin
levels [120, 121].

Other studies have shown that PPARγ agonists improve
beta cell function and prevent mitochondrial alterations
and diabetes in obese mice and rats [117, 118, 122]. In addi-
tion, activation of PPARγ protects against cytokine-induced
apoptosis [123], lipotoxicity [124], and human islet amyloid
polypeptide toxicity [125, 126]. A molecular explanation for
these findings might be that activation of PPARγ is associ-
ated with a reduced amount of reactive oxygen species by
inhibiting iNOS through NFκB [123]. PPARγ activation
reduces islet ER stress in db/db mice and a diabetic ER stress
mouse model [112, 127].

5. PPARs Regulate Sphingolipid Metabolism

We have recently described how the onset of T1D is associ-
ated with an abnormal sphingolipid metabolism in pancre-
atic islets. This was illustrated by newly diagnosed T1D
patients having a reduced amount of the sphingolipid sulfa-
tide and altered expression of several enzymes involved in
sphingolipid metabolism in islets [44]. Sphingolipid metabo-
lism is also altered before the onset of diabetes. Peripheral
blood mononuclear cells from children progressing to T1D
have altered levels of several sphingolipid species and altered
expression of genes involved in sphingolipid metabolism
[128]. PPARα is known to control the expression of cerebro-
side sulfotransferase (CST), which catalyses the last step in
sulfatide biosynthesis. PPARα knockout mice had decreased
CST expression associated with decreased serum sulfatide
[129]. PPARα activation by fenofibrate leads to increased sul-
fatide concentration in the pancreas and multiple other
organs [44, 130, 131]. This was associated with an increased
CST expression in the corresponding tissue [130, 131]. Sim-
ilarly, fatty acids have been shown to activate PPARα and
increase sulfatide levels through SPTLC2 (subunit of serine
palmitoyltransferase), which regulates the first step in sphin-
golipid synthesis [132]. Treatment with PPARα agonist
WY14643 or bezafibrate leads to increased expression of
SPTLC2 in various cell types [133–135]. SPTLC2 and CST
both have PPARα binding sequences in their promoter
region [132]. PPARα is similarly involved in regulating the
composition of sulfatide species with C16 (insulin folding
and secretion) and C24 (immune regulation) having different
functions [136, 137]. In the pancreas, fenofibrate especially
increased the amount of C24 sulfatide thereby creating an
anti-inflammatory sulfatide composition [138].

Another sphingolipid with a suspected role in T1D
pathology is the proapoptotic ceramide of which C16 pro-
motes apoptosis, mitochondrial dysfunction, and insulin
resistance [139–142], while C24 has beneficial roles in regu-
lating metabolic health [141, 143]. Recently, we demon-
strated that fenofibrate altered ceramide composition in the
pancreas of NOD mice increasing C24 and decreasing C16,
hence creating a more beneficial ceramide composition
[138]. WY14643 was otherwise found to increase ceramide
levels in rat hearts [134], suggesting organ-specific regulation
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of ceramide synthesis. PPARβ/δ and PPARγ are both known
to regulate sphingolipid metabolism with PPARβ/δ agonist
GW0742 and PPARγ agonist troglitazone increasing de novo
synthesis in rat hearts [144].

6. PPAR Activation Prevents Diabetes in
NOD Mice

NOD mice share many autoantigens and biomarkers with
human patients, and much has been learned from this model
concerning the identification of genetic and environmental
risk factors [145]. Experiments on NOD mice are primarily
performed on females owing to a diabetes incidence of
approximately 80%, compared to approximately 20% in
males [146]. The higher incidence in females might be con-
nected to the gender-specific changes in the expression of
PPARα and PPARγ. Female NOD mice had increased
expression of PPARα, while PPARγ was decreased in macro-
phages and CD4+ lymphocytes compared to male NODmice
[147]. Additionally, NOD mice have altered expression of
PPARα and PPARγ in CD4+ or CD8+ lymphocytes and mac-
rophages compared to non-obese diabetic-resistant (NOR)
mice [148].

We and others have demonstrated that activation of
PPARα by fenofibrate or PPARγ by troglitazone and rosigli-
tazone results in reduced autoimmune diabetes incidence
[44, 149]. Fenofibrate treatment initiated after disease onset
could even reverse diabetes in 46% of female NOD mice
[44]. In addition, troglitazone prevents hyperglycemia and
reduces insulitis in mice following streptozotocin injections
[150]. PPARs are also regulated by various naturally occur-
ring agonists, of which several have been examined for their
effect on autoimmune diabetes in NOD mice (Table 1). This
includes epigallocatechin [151, 152], curcumin [153, 154],
cannabidiol [155, 156], omega 3 fatty acids [157], and capsa-
icin [158, 159], which induce PPAR activity and protect
against autoimmune diabetes in NOD mice.

Taurine, which stimulates PPARα, in the diet during
gestation and lactation reduces diabetes development in
offspring of NOD mice [160, 161]. On a similar note, a
gluten-free diet, which leads to increased expression of
PPARα and PPARγ [162], was found to reduce diabetes

incidence in NOD mice [163], even after exclusive exposure
of the diet in utero [164, 165].

7. Conclusions

Numerous studies have examined PPARs in relation to their
role as regulators of lipid metabolism. However, the isoforms
are also potent regulators of inflammation and beta cell biol-
ogy (Figure 1). The effects of PPAR activation on T cell
survival, activation, and differentiation are likely beneficial
in a T1D setting but remain unstudied to a large extent.
The same is true for studies of pancreas biology with most
studies being conducted in relation to type 2 diabetes. Thus,
we need further studies to determine the precise role of
PPARs in T1D pathology. The beneficial effect on NODmice
by PPAR agonists is promising, and we believe that modula-
tion of PPARs represents a novel treatment strategy targeting
both the immune system and the pancreas.
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