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Background: Ferroptosis is essential for tumorigenesis and progression of hepatocellular
carcinoma (HCC). The heterogeneity of ferroptosis and its relationship with tumor
microenvironment (TME) have still remain elusive.

Methods: Based on 74 ferroptosis related genes (FRGs) and 3,933 HCC samples from
32 datasets, we comprehensively explored the heterogenous ferroptosis subtypes. The
clinical significance, functional status, immune infiltration, immune escape mechanisms,
and genomic alterations of different subtypes were further investigated.

Results: We identified and validated two heterogeneous ferroptosis subtypes: C1 was
metabolismlowimmunityhigh subtype and C2 was metabolismhighimmunitylow subtype.
Compared to C2, C1 owned worse prognosis, and C1 tended to occur in the patients
with clinical characteristics such as younger, female, advanced stage, higher grade,
vascular invasion. C1 and C2 were more sensitive to immunotherapy and sorafenib,
respectively. The immune escape mechanisms of C1 might be accumulating more
immunosuppressive cells, inhibitory cytokines, and immune checkpoints, while C2 was
mainly associated with inferior immunogenicity, defecting in antigen presentation, and
lacking leukocytes. In addition, C1 was characterized by BAP1 mutation, MYC
amplification, and SCD1 methylation, while C2 was characterized by the significant
alterations in cell cycle and chromatin remodeling processes. We also constructed and
validated a robust and promising signature termed ferroptosis related risk score (FRRS)
for assessing prognosis and immunotherapy.

Conclusion: We identified and validated two heterogeneous ferroptosis subtypes and a
reliable risk signature which used to assess prognosis and immunotherapy. Our results
facilitated the understood of ferroptosis as well as clinical management and precise
therapy of HCC.
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INTRODUCTION

Primary liver cancer is the sixth most prevalent malignant tumor
worldwide and ranks fourth among the causes of tumor-related
deaths, with approximately 840,000 new cases each year (1).
Hepatocellular carcinoma (HCC) is major histological type (75–
85%) and characterized by high invasiveness and mortality rate
(1). Surgical resection is mainly performed for early HCC, but
the 5-year recurrence rate is up to 70%, and most patients relapse
within 2 years after surgery (2). Patients with unresectable HCC
usually receive the multi-kinase inhibitors such as sorafenib and
lenvatinib, but drug-resistance and adverse reactions limit the
survival benefit (3). In recent years, although great progress in
immunotherapy represented by immune checkpoint inhibitors
(ICI), only 25% of patients have durable responses (4, 5). Even
when combined with other treatment modalities such as local
ablation and transcatheter arterial chemoembolization (TACE),
the 5-year survival rate of patients is only 18% (6). Therefore,
there is still a long way to improve the therapeutic effect of
HCC patients.

Ferroptosis is a newly discovered pattern of programmed cell
death characterized by iron-dependent lipid peroxidation and
accumulation of reactive oxygen species (ROS), distinguished
from typical apoptosis, autophagy, and programmed necrosis (7).
Sorafenib, as the first-line drug for advanced HCC, could inhibit
cystine-glutamate antiporter (system Xc−), and further lead to
ferroptosis due to glutathione (GSH) depletion. Our previous
studies confirmed that haloperidol could enhance sorafenib-
induced ferroptosis in HCC (8), moreover, sigma‐1 receptor can
antagonize the ferroptosis in HCC, and non-coding RNAs further
regulated the process (9, 10). In addition to iron metabolism, lipid
metabolism also plays a pivotal part in ferroptosis. Ou and
colleagues found that low density lipoprotein docosahexaenoic
acid nanoparticles could induce ferroptosis through glutathione
peroxidase-4 (GPX4) inactivation, GSH depletion, and
lipid peroxidation, thereby significantly inhibiting the growth
of HCC (11). The above suggests that ferroptosis play an
essential role in the progression as well as treatment of HCC, and
further mining mechanisms will help the development of new
therapeutic strategies.

The cancer immunoediting theory suggests that the tumor
microenvironment (TME) can identify the body’s dead cells
(mainly apoptotic cells) and then clear them by immune
system (12). Were ferroptosis cells the same as apoptotic cells?
Wen and colleagues found that ferroptosis cancer cells could
release high mobility group box 1 (HMGB1) of the damage-
associated molecular pattern molecules (DAMPs) family in an
autophagy-dependent manner, and then HMGB1 could elicit an
inflammatory response upon recognition by pattern recognition
receptors (13). Interestingly, previous study demonstrated that
tumor cells with autophagy-dependent ferroptosis could release
KRAS protein, which was further packaged into exosomes to
promote tumor-associated macrophage (TAM) polarization to
exert immunosuppressive effects (14). Recent study also found
that GPX4 was essential for the survival and expansion of newly
activated T cells. The lipid peroxidation of T cells could promote
ferroptosis and further contributing to their low immune
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response rates to infection (15). Nevertheless, most of these
scattered studies focused on the link between ferroptosis and
individual immune cell, the interaction between TME and
ferroptosis have yet to be further deciphered.

With the deepening of ferroptosis studies, its anti-tumor effect
has gradually aroused much interest. Wang and colleagues found
that CD8+ T cells activated by anti-PD-1 therapy enhanced the
lipid peroxidation of tumor cells by releasing interferon gamma
(IFN-g), while the enhanced ferroptosis response could further
elevate the immune efficacy (16). In recent years, the advantages
of various new materials in cancer prevention and treatment
have gradually emerged. Previous studies demonstrated that
manganese-doped silica nanoparticle (MnMSN) can deplete
GSH, and on-demand drug release can be achieved by loading
sorafenib into MnMSN, while dual induction of ferroptosis is
achieved by depletion of GSH and inhibition of intracellular
GSH synthesis, showing efficient anti-HCC activity (17). Jiang
and colleagues observed that a platelet membrane-camouflaged
magnetic nanoparticle could sensitize ferroptosis by inhibiting
system Xc−, which lead to immunosuppressive M2 TAM
reversely polarize to the anti-tumor M1 phenotype, further
increasing response to immunotherapy (18). Therefore, the
more exploration of the ferroptosis heterogeneity might
facilitate the target treatment in HCC.

In the present research, we collected a total of 3,933 HCC
samples from 32 datasets for analysis. Based on the expression of
ferroptosis related genes (FRGs), we identified and validated two
heterogeneous subtypes, high and low ferroptosis subtypes, and
the two subtypes displayed specific clinical outcomes, immune
escape mechanisms, and genomics driver events, respectively.
Besides, we developed and validated a prognosis signature termed
ferroptosis related risk score (FRRS), FRRS demonstrated
outstanding advantages in predicting prognosis and response to
immunotherapy. Overall, our work may deepen the understanding
of ferroptosis, as well as provide a basis and reference for the clinical
management and targeted therapy of HCC.
METHODS AND MATERIALS

Data Source and Processing
The workflow of our study was shown in Figure S1. We retrieved
eligible datasets from GEO (Gene Expression Omnibus), the
Cancer Genome Atlas (TCGA), and the International Cancer
Genome Consortium (ICGC) using the following criteria: (1)
data was acquired using microarray platforms detecting >10,000
genes; (2) the probe-to-gene mapping annotations were clear; (3)
there were >=30 patients in each dataset; (4) patients with
primary liver cancer were retained; (5) untreated patients; (6)
samples taken after intervention (e.g. after cancer resection)
were excluded.

A total of 3,933 eligible HCC samples were enrolled from 32
meta datasets including GSE102079, GSE107170, GSE109211,
GSE112790, GSE116174, GSE121248, GSE14323, NCI (National
Cancer Institute) cohort (GSE14520), GSE16757, GSE19977,
GSE20017, GSE25097, GSE36376, GSE36411, GSE39791,
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GSE43619, GSE45436, GSE46444, GSE50579, GSE54236,
GSE57957, GSE62043, GSE62232, GSE63898, GSE64041,
GSE76297, GSE76427, GSE84005, GSE87630, GSE9843,
TCGA-LIHC, and ICGC-LIRI-JP. Among them, only NCI,
TCGA-LIHC, and ICGC-LIRI-JP datasets possessed completely
clinical and prognosis information (Table S1). All expression
data was log-2 transformed because gene expression data is often
heavily right-skewed in the linear scale. We took the gene
intersection of all datasets and retained the common 8,731
genes; and all other genes can be considered “missing” for at
least one cohort. To our knowledge, there are no guidelines for
handling missing data in multicohort studies. However,
guidelines for randomized clinical trials recommend skipping
imputation and using only observed data when more than
40% of the data is missing. In this study, we served 30
meta cohorts from GEO database as the discovery cohort, and
TCGA-LIHC and ICGC-LIRI-JP datasets as two independent
validation cohorts.

The rma function implemented in affy package was employed
to normalize the raw data from Affymetrix, and normalized
matrix files of the other microarrays from other platforms were
directly downloaded. Batch correction was performed using the
combat algorithm implemented in SVA package. The RNA-seq
data (FPKM normalized) of TCGA-LIHC cohort was obtained
from the UCSC-Xena database and was further transformed to
log2 (TPM+1). The RNA-seq data of ICGC-LIRI-JP dataset was
retrieved from the ICGC data portal. Subsequently, we
transformed the expression data into z-score in both discovery
and validation cohorts. The corresponding clinical information
were obtained from GEO, UCSC, and ICGC databases. The
somatic mutation, copy number variation (CNV), and DNA
methylation data in TCGA-LIHC were all downloaded from the
TCGA portal. We calculated or recruited the tumor mutation
burden (TMB), single nucleotide variants (SNV) and indel
neoantigen load, microsatellite instability (MSI), cancer testis
antigen (CTA) scores, and TCR/BCR diversity from Thorsson
et al. study (19).

Identification of the Ferroptosis
Subtypes of HCC
After a detailed literature research, we selected a total of 74
FRGs (Table S2). According to the FRGs expression, we
performed consensus clustering in the discovery cohort via
ConsensusClusterPlus package (20). The method was set to
Kmeans algorithm based on the Euclidean distance, 1,000 times
iteration, and taking 80% of the samples for each iteration. The
number of clusters was set from 2 to 9, and the optimal number was
determined by the cumulative distribution function (CDF) of the
consensus score and the proportion of ambiguous clustering (PAC)
(21). The NbClust package was applied to further verify the optimal
number (22). Principal component analysis (PCA) was used to
distinguish different subtype information in two-dimensional space.

Validation of the Ferroptosis Subtypes
We further quantitatively assessed the stability and reproducibility
of proposed subtypes in the discovery and validation cohorts with
Frontiers in Oncology | www.frontiersin.org 3
in group proportion (IGP) statistic (23). IGP was defined as the
proportion of the nearest neighbors of a certain subtype sample
that were also assigned to the same subtype. A high IGP indicated
that samples of this subtype were reproducible partitioned. To
measure the IGP, we first calculated the centroid of each subtype
in the discovery cohort. Each sample in the TCGA and ICGC
validation cohorts was assigned to a certain subtype with the
highest Pearson correlation coefficient between centroid and
sample. The permutation in the clusterRepro package was set
to 2000.

Functional Analysis and Immune Cell
Infiltration Assessment
The gene set variation analysis (GSVA) was performed to identify
specific pathways of each subtype (24). We downloaded Hallmark
and KEGG gene sets from the Molecular Signatures Database
and further transformed the gene expression matrix into gene
set matrix using the GSVA package. Afterwards, we performed
gene sets difference analysis using the limma package and the
screening threshold were set to |log2 fold change (FC)| >0.2 and
adjusted P-value <0.05. Adjusted P-value was obtained from the
Benjamini–Hochberg multiple test correction.

Referring to Charoentong et al. study (25), we obtained the
markers of 23 immune cells including: innate immune cells
(activated dendritic cells, CD56+ natural killer cells, CD56−
natural killer cells, eosinophils, immature dendritic cells,
macrophages, mast cells, MDSC, monocytes, natural killer cells,
neutrophils, and plasmacytoid dendritic cells) and adaptive
immune cells (activated B cells, activated CD4+ T cells, activated
CD8+ T cells, Gamma delta T cells, immature B cells, natural killer
T cells, Treg cells, follicular helper T cells, Th1 cells, Th2 cells, and
Th17 cells). Endothelial cells and fibroblasts, also the important
components of TME, played a crucial role in tumor inflammation,
angiogenesis, invasion, and metastasis. The markers of endothelial
cell and fibroblast were retrieved from the MCP-counter (26)
(Table S3). Based on these markers, we applied the single sample
gene set enrichment analysis (ssGSEA) algorithm to evaluate the
infiltration abundance of 25 TME cells.

Assessing Clinical Significance of the
Ferroptosis Subtypes
We compared the differences between the two subtypes in age,
gender, Body Mass Index (BMI), AJCC stage, grade and vascular
invasion, and estimated relapse-free survival (RFS) and overall
survival (OS) by the Kaplan-Meier survival analysis. Afterwards,
we applied the pRRophetic package to predict the sensitivity to
sorafenib in both discovery and validation cohorts (27). The
IC50 (half maximal inhibitory concentration) values of the two
subtypes were estimated by ridge regression, the smaller its IC50,
the more sensitive it was to the drug. In addition, we also utilized
TIDE web tool (http://tide.dfci.harvard.edu) to predict the
sensitivity of the two subtypes to immunotherapy (28). TIDE
algorithm was a computational method to model two primary
mechanisms of tumor immune evasion: the induction of T cell
dysfunction in tumors with high infiltration of cytotoxic
T lymphocytes (CTL) and the prevention of T cell infiltration
March 2021 | Volume 11 | Article 619242
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in tumors with low CTL level. The Subclass mapping algorithm
was used to evaluate the similarity of gene expression
patterns between the two subtypes and immunotherapy-
sensitive/insensitive populations (29).

Deciphering the Genomic Variation
Landscape of the Two Subtypes
We identified significantly mutated genes (SMGs) in the two
subtypes using MutSigCV 1.41 software, and genes with q values
<0.05 were retained to further analysis. The MutationalPatterns
package was applied to extract the mutational signatures of each
subtype, and non-negative matrix factorization (NMF)
determined the optimal number of mutational signatures. It
turned out that the optimal number was 3 in both subtypes
(Figures S8K, L). We then calculated the cosine similarity
metrics between these extracted mutational signatures and 30
mutational signatures from the COSMIC database, and named
after the most similar COSMIC signature. The GISTIC 2.0
software in GenePattern was applied to identify significantly
amplified or deleted broad and focal segments. The global
methylation level (GML) was retrieved from Jung et al. study
(30). Moreover, we performed the following procedure to
identify epigenetically silenced genes (ESGs): (1) excluding the
CpG sites methylated in normal tissues (mean b-value of >0.2);
(2) the DNA methylation data was divided into the methylation
group and unmethylation group, according to the cutoff (b-value
= 0.3), and further removed the probe that less than 10% of the
tumor samples in the methylated group; (3) for each probe, if the
difference between the corresponding gene mean expression in
the unmethylated group and that in the methylated group was
>1.64 standard deviations of the unmethylated group, the probe
would be labeled as epigenetically silenced; (4) when multiple
probes were assigned to the same gene, the gene with more than
half of the corresponding probes were labeled as epigenetically
silenced, and identified as ESG.

Generation of Ferroptosis
Related Risk Score
We applied the limma package to identify differentially expressed
genes (DEGs) between the two subtypes, setting the thresholds: |log2
FC| > 1 and adjusted P-value < 0.05. Adjusted P-value was obtained
from the Benjamini–Hochberg multiple test correction. Combined
with the previously obtained significant CNV associated genes
(CAGs), SMGs and ESGs, we used Venn diagram to illustrate the
relationship among the four gene sets, and then selected genes present
in at least two gene sets for further analysis. A univariate Cox
regression analysis revealed the prognosis value of these genes. The
genes with statistically significant (p < 0.05) were incorporated into
multivariate Cox regression analysis. Afterwards, we constructed the
ferroptosis related signature using stepwise regression, and selected
the optimal model when the AIC (Akaike Information Criterion)
score was the smallest. This optimal model was as follows:

risk score =o(Expression(gene) ∗ coef (gene))

where expression (gene) denoted the expression level of a gene and
coef (gene) represented its regression coefficient. We named the
Frontiers in Oncology | www.frontiersin.org 4
signature the ferroptosis-related risk score (FRRS). The HCC samples
were categorized into high and low FRRS groups according to the
optimal cut-off value determined by the survminer package. Then, we
performed Kaplan-Meier analysis of FRRS in three independent
cohorts: TCGA, ICGC, and NCI, and further assessed the
predictive accuracy of model with Concordance index (C-index).

Collection of Immunotherapy Cohorts
and Biomarkers
We systematically collected immunotherapeutic cohorts that were
publicly available and had expression data and complete clinical
information, and three cohorts finally enrolled in our study: (1)
advanced urothelial cancer patients who received the intervention
of anti-PD-L1 antibody atezolizumab (IMvigor210 cohort) (31); (2)
metastatic melanoma treated with anti-PD-1 antibody
pembrolizumab (GSE78220 cohort) (32); (3) melanomas received
adoptive T cell therapy (GSE100797 cohort) (33). According to the
RECIST v1.1 criterion, patients whose treatment effectiveness could
not be assessed were excluded. The complete response and partial
response were regarded as immunotherapy response, the stable
disease and progressive disease were regarded as immunotherapy
non-response. The normalized expression data was further
transformed into z-score. We evaluated the predictive
performance of FRRS in three immunotherapy cohorts, and
compared FRRS with seven other known biomarkers, including
TMB, TIDE, MSI score, Merck18, IFGN, CD8, and CD274 (28, 34–
36) (Table S4). The receiver operator characteristic (ROC) curves
and the area under the ROC curve (AUC) were applied to estimate
the predictive accuracy of each biomarker.

Statistical Analysis
The Pearson’s chi-squared test or Fisher’s exact test was employed
to compare categorical variables. Continuous variables were
compared between two groups through Wilcoxon rank-sum test
or T test. Survival analysis including Kaplan-Meier and Cox
regression analysis was performed by survival R package. The
optimal cut-off value was determined by survminer R package.
The ROC for predicting immunotherapy was performed by pROC
R package. All P value were two-side, with p < 0.05 as statistically
significance. The whole data processing, statistical analysis, and
plotting were conducted in R 3.6.3 software.
RESULTS

Genomic Variation Landscape of FRGs
in HCC
We retrieved 74 FRGs from previous literatures and KEGG
pathways (Table S2). The multi-omics landscape of FRGs were
summarized from the TCGA-LIHC cohort (Figure 1).
According to these genes, we can separate tumor tissue from
normal tissue distinctly (Figure S2A). Most of FRGs displayed
significant expression differences between tumor and normal
tissues. For instance, SLC7A11, CDKN2A, and ALOX15 were
up-regulated in HCC, while PTGS2, CFTR, and GLS2 were
down-regulated. Further studies observed infrequent mutations
of FRGs and widespread copy number variations (CNVs), which
March 2021 | Volume 11 | Article 619242
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suggested that CNVs might play a dominant role in the
regulation of FRGs relative to mutation. For example, EGLN1,
ENPP2, and MUC1 focused on amplification of copy number,
whereas SLC39A14, ALOX15, and ACSL1 preferred deletion.
Besides, the DNA methylation also displayed a broad regulatory
effect on FRGs, such as ACSL1, ACSL5, and SCD. Univariate
Cox regression analysis further demonstrated that most of FRGs
played a protective role in HCC, which in line with the protective
biological function of FRGs (Figure 1).
Identification and Validation of the
Ferroptosis Subtypes
A total of 3,327 samples from 30 GEO datasets were defined as
the discovery cohort, and further divided into k groups (k = 2 ~
9) via ConsensusClusterPlus R package. We found that k = 2 was
optimal choice according to the CDF curve of the consensus
score (Figures 2A, B). The PAC and NbClust methods further
verified the result (Figures 2C and S2B). The principal
component analysis of 74 FRGs expression showed significant
separation between two clusters (Figure 2D). To ensure the
reliability and stability of the clustering results from the meta
cohorts, we further performed IGP analysis in two independent
cohorts. The results exhibited that the IGP values of C1 was
90.3% and C2 was 92.9% in the TCGA cohort, while was 88.4%
and 91.7% in the ICGC cohort (all p < 0.001). The NbClust also
indicated it was optimal to split into two clusters in both cohorts
(Figures S2C, D).

Compared to C1, most of FRGs were significantly up-regulated
in the C2 (Figure 2E). Recent studies revealed that ferroptosis can
induce tumor-specific immune responses and enhance the effect of
immunotherapy (18, 37). Further correlation analysis suggested
intense correlations between 74 FRGs and TME cells in HCC
(Figure S2E). We then explored the differences of TME cells
infiltration in the two subtypes. It turned out C1 exhibited a higher
overall level of infiltration (Figure 2F). In addition to display
superior immune activated cells (e.g., CD 4+/CD8+ T cells), C1
also showed higher abundance of immunosuppressive cells (e.g.,
Treg, MDSC, Th17 cell, and fibroblast) (Figure 2G). The above
implied that ferroptosis may have a profound impact on TME in
HCC. To further clarify the biological characteristics of the two
subtypes, we performed GSVA enrichment analysis using Hallmark
and KEGG gene sets. As illustrated, C1 was observably enriched in
inflammation related pathways, such as allograft rejection,
inflammatory response, and T cell receptor signaling pathway;
while C2 was predominantly associated with metabolism
related pathways, such as oxidative phosphorylation, fatty acid
metabolism, bile acid metabolism, and amino acid metabolism
(Figures 2H, I). The similar results were obtained from the
TCGA and ICGC cohorts (Figures S3, S4). Overall, the two
subtypes were defined as follows: 1) metabolismlowimmunityhigh

type (LMHI): low levels of FRGs expression and inflammation-
related pathways enrichment as well as high abundant of immune
cells infiltration; 2) metabolismhighimmunitylow type (HMLI): high
levels of FRGs expression and metabolism-related pathways
enrichment as well as low abundant of immune cells infiltration.
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Clinical Characteristics of the Ferroptosis
Subtypes
The clinical significance of two subtypes were further explored.
Survival analysis revealed C2 had a better OS and RFS relative to
C1 in three cohorts (Figures 3A–E). Previous studies indicated
sorafenib could induce ferroptosis by inhibiting System Xc- (38).
We thus predicted the sensitivity of two subtypes to sorafenib
using the pRRophetic package, and the result prompted that C2
was more likely to benefit from sorafenib (Figure 3F and Figures
S5A, D). Besides, the previous analysis displayed C1 possessed
superior immune cells infiltration, the checkpoint molecules
(e.g., PD-L1 and CTLA-4) also were over-expressed in C1
(Figure 3G). These results hinted C1 may be more sensitive to
immunotherapy. Therefore, we further assessed the effectiveness
of immunotherapy on both subtypes. Using the TIDE web tool,
C1 displayed a higher response compared to C2, and similar
results was obtained in the two validation cohorts (Figure 3H
and Figures S5B, E). Moreover, the Submap algorithm were
applied to evaluate the similarity of expression profiles between
the two subtypes and 47 pretreated patients with comprehensive
immunotherapy information, and the results indicated C1 was
significantly related to patients responding to anti-PD-1
treatment, and similar results was obtained in the two
validation cohorts (Figure 3I and Figures S5C, F). In addition,
we also observed that patients in C1 subtype was significantly
associated with the features such as younger, female, advanced
stage, higher grade, and vascular invasion (Figures 3J–N). There
was no difference of BMI between two subtypes (Figure 3O).
Potential Extrinsic Immune Escape
Mechanism of the Two Subtypes
We questioned whether the effect of ferroptosis on HCC could
cause the differences in immune escape mechanisms between the
two subtypes. Therefore, we first researched the extrinsic
immune escape mechanism (12). Previous publications have
shown that extrinsic immune escape mainly includes four
aspects: lack of leukocytes, massive immunosuppressive cells,
high concentrations of immunosuppressive cytokines, and
increase in fibroblasts (39).

According to the above results, we summarized the abundance
distribution of TME cells in the two subtypes. As shown in Figure
4A, the abundance of immunosuppressive cells and fibroblasts in
C1 were superior, while C2 demonstrated a lack of innate immune
cells and adaptive immune cells. In addition, the infiltration levels of
immunosuppressive cells such as MDSC, Treg, Th17, and
fibroblasts were also higher in C1 (Figures 4B–E). Consistent
with these results, C1 also exhibited an increase in chemokines,
interleukins, interferons, and other important cytokines and their
receptors, such as CCL5 (recruiting MDSC to migrate to tumor
areas), IL-10 (a cytokine synthesis inhibitor), and TGF-b3 (having a
wide range of immunosuppressive activities) (40–42) (Figure 4F
and Figures S6A, B). Overall, we speculated that the aggregation of
immunosuppressive cells, fibroblasts, and the high concentrations of
immunosuppressive cytokines might lead to the extrinsic immune
escape of C1, while C2 was mainly related to immune cells defects.
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FIGURE 1 | The expression, genomic variation and hazard ratios of FRGs in TCGA-LIHC. From left to right panel, the expression difference of FRGs in tumor tissues
compared with normal tissues, the mutation and copy number variation frequency of FRGs, the correlation of DNA methylation modifications and expression for
FRGs, and univariate Cox regression analysis presented hazard ratios of FRGs. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2 | (A) The consensus score matrix of all samples when k = 2. A higher consensus score between two samples indicates they are more likely to be
grouped into the same cluster in different iterations. (B) The cumulative distribution functions of consensus matrix for each k (indicated by colors). (C) The proportion
of ambiguous clustering (PAC) score, a low value of PAC implies a flat middle segment, allowing conjecture of the optimal k (k = 2) by the lowest PAC. (D) Two-
dimensional principle component plot by the expression of 74 FRGs in the two subtypes. The orange dots represented C1, and blue dots represented C2. (E) The
expression heatmap of 74 FRGs in the two subtypes. (F) The heatmap of immune cells in the two subtypes. (G) The infiltration difference of TME cells between the
two subtypes. The asterisks represented the statistical p value (nsP > 0.05; **P < 0.01; ***P < 0.001). (H, I) GSVA enrichment analysis revealed activated Hallmark
(H) and KEGG (I) pathways of the two subtypes.
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FIGURE 3 | (A, B) Kaplan-Meier analysis for OS (A) and RFS (B) of the two subtypes in the TCGA cohort. (C, D) Kaplan-Meier analysis for OS (C) and RFS (D
Meier analysis for OS in the ICGC cohorts. (F) The estimated IC50 of sorafenib between the two subtypes in the discovery cohorts. (G) Comparison of ICP mol
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Potential Intrinsic Immune Escape
Mechanism of the Two Subtypes
We next investigated the potential intrinsic immune escape
mechanism in HCC, including the following three aspects:
antigen presentation capacity, expression of immune checkpoints
(ICPs), and tumor immunogenicity (12). Compared to C1, the
expression of MHC and APS were significantly lower in C2,
suggesting that defective antigen presentation capacity might be
an intrinsic immune escape mechanism for C2 (Figure 5A and
Figures S7A, B). Subsequently, we explored the expression and
regulatory patterns of the immune checkpoints in the two subtypes.
C1 displayed the higher expression of costimulatory and
coinhibitory molecules, which implied that C1 might overexpress
immune checkpoints (e.g., CTLA4, CD274, PDCD1) to evade the
immune elimination after immune activation (Figure 5A and
Figures S7C, D). Notably, the expression difference of ICPs were
not derived from mutation, but were strongly associated with CNV
and methylation. For example, TNFSF4, TNSF18 and CD48 focus
on amplification, whereas TNFSF13 possessed a high frequency of
deletion (Figure 5A). The DNA methylation of CD28, CD27, and
LAG3 obviously negatively regulated their expression, implying
epigenetic silencing (Figure 5A). Therefore, CNV and
methylation modification might play a dominant role in
Frontiers in Oncology | www.frontiersin.org 9
regulating ICPs compared to mutation, which pointed a new
direction for the development of immune checkpoint
inhibitors (ICIs).

Afterwards, we focused on evaluating eight indicators related to
HCC immunogenicity. As the main source of tumor-specific
antigens (43), TMB, neoantigen load (including SNV neoantigens
and indel neoantigens), and MSI status had no significant difference
between the two subtypes, while C1 displayed the higher CTA score
(Figures 5B–E and Figure S7E). Besides, we found that C1 has
evidently higher CNV load in the level of focal, chromosomal arm
and base, respectively (Figures 5F–I and Figure S7F). In line with
this, the TCR/BCR diversity were superior in C1 (Figures 5J, K and
Figures S7G, H). These results suggested C1 possessed higher
immunogenicity relative to C2, and CNV may dominate the
differences in immunogenicity of the two subtypes.
Comprehensive and Integrative Genomic
Characterization of the Two Subtypes
Based on the MutSigCV algorithm, a total of nine SMGs was
identified in the two subtypes (Figure 6A and Figures S8A, I).
We observed the mutation of these genes had an influenced on
their expression such as CTNNB1, AXIN1, and RB1. Univariate
A B
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F

C

FIGURE 4 | (A) Signature score distributions of five cell subsets between the two subtypes. (B–E) Comparison of MDSC (B), Treg (C), Th17 (D), and fibroblasts
(E) between the two subtypes. (F) The relative expression levels of chemokines and their ligands of the two subtypes. The asterisks represented the statistical p
value (nsP > 0.05; **P < 0.01; ***P < 0.001).
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Cox regression further revealed the prognostic value of SMGs
(Figure S8J). The two subtypes shared five common SMGs
including TP53, CTNNB1, ALB, RB1 and AXIN1, suggesting
their mutations were prevalent in HCC. Specifically, tumor
suppressor BAP1 was a SMG of C1, while SMGs related to
chromatin remodeling such as ARID1A, ACVR2A, and
CDKN2A mainly occurred in C2 (44, 45). In addition, we
further explored the mutation signatures of the two subtypes
and found that signature 6 (associated with defective DNA
mismatch repair) and signature 22 (had a history of exposure
Frontiers in Oncology | www.frontiersin.org 10
to aristolochic acid) presented in both subtypes, but with
different proportions (Figures 6B–E). Notably, we also
discovered that signature 24 associated with aflatoxin was
specifically presented in C1, whereas age-related signature 5
only existed in C2 (Figures 6B, C). Overall, C1 was mainly
dominant in signature 6 and signature 22, while signature 5 had a
master proportion in C2, indicating that different leading
carcinogenic factors in the two subtypes (Figures 6D, E).

GISTIC2.0 was utilized to define recurrently amplified and
deleted regions in the two subtypes (Figure 6F and Table S5).
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FIGURE 5 | (A) From left to right: mRNA expression; mutation frequency; amplification frequency; deletion frequency, and expression versus methylation (gene
expression correlation with DNA methylation b value) for MHC molecules, co-stimulators and co-inhibitors in the two subtypes. (B–E) Comparison of the two
subtypes in four immunogenicity associated indicators such as TMB (B), SNV neoantigens (C), indel neoantigens (D), and MSI score (E). (F–I) Comparison of the
two subtypes in focal (F, G) and broad (H, I) CNV burden. (J, K) The distribution of TCR (J) and BCR (K) diversity in the two subtypes.
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The results showed that the two subtypes had frequent CNVs in
the regions where oncogenes and tumor suppressor genes (e.g.
MYC and TP63), as well as cell cycle regulators (e.g. CDK3,
CDK8, and MAPK11) were located, which indicated the CNVs
might have a profound impact on the tumorigenesis and
progression of HCC. We observed recurrent focal CNVs in C1
included amplifications containing 8q24.21 (MYC) and 1p11.2
(NOTCH2) and deletion of 10q23.1(GRID1). Recurring focal
CNVs in C2 included amplifications of 6p21.1 (VEGFA) and
17q25.1 (CDK3), and deletion of 3q28 (TP63), 13q13.3 (BRCA2,
CDK8), and 22q13.33 (MAPK11). These specific CNVs might
contribute to formation of the two subtypes.

We further investigated methylation modification in the two
subtypes and found that C1 had a higher GML than C2 (Figure
S9A). Next, we identified 30 and 17 ESGs from C1 and C2,
respectively (Figures S9B, C). Among them, we observed that the
expression levels of three FRGs (e.g. TF, CDO1, and SCD) were
significantly lower in methylated group (Figures 6G–I). Notably,
both subtypes possessed a common ESG, HOXA3, which was
associated with focal adhesion and ECM-receptor (46). We also
discovered some specific ESGs such as ACOX2 and SCD that
played a crucial role in lipid metabolism only appeared in C1. This
might explain that C1 was a hypometabolic status. Whereas
WIPF3 and LAMA3 that associated with pathogen infection and
inflammatory diseases specifically presented in C2. These ESGs
might lead to defects in TME cells and cytokines in C2.

A Novel Prognostic and Immunotherapy
Biomarker: FRRS
We identified 1,023 DEGs between the two subtypes (Figure
S10A). GO enrichment analysis showed that these genes were
strongly correlated with extracellular matrix organization and
organic acid transport, and KEGG pathway analysis revealed that
cytokine-cytokine receptor interaction, bile secretion, and Wnt
signaling pathway were significantly enriched (Figure S10B).
Among the four gene sets including DEGs, SMGs, CAGs, and
ESGs (Figure S10C), we selected 33 genes that were present in at
least two of the four categories for further study (Table S6).
Univariate COX regression analysis indicated that six genes had
predominant prognostic significance (p < 0.05). Next, we
enrolled the six genes (p < 0.05) for multivariate COX
regression analysis, a stepwise regression approach was applied.
Based on the smallest AIC value, we determined the best model:
FRRS = 0.348 * Expression (SLC16A3) − 0.151 * Expression
(CPS1). Survival analysis exhibited patients with high FRRS had
a worse prognosis (HR: 2.511 [2.145–2.876] in the TCGA cohort,
1.542 [1.236–1.847] in the ICGC cohort, and 1.614 [1.351–1.877]
in the NCI cohort) (Figures 7A–C and Figure S11A). The
concordance index (C-index) analysis also confirmed that
FRRS had high accuracy in the three independent cohorts of
TCGA, ICGC, and NCI (C-index = 0.785; 0.716; 0.733;
respectively; Figure S11B). Combined with clinical factors, we
observed FRRS was an independent prognosis factor in HCC
through multivariate Cox regression analysis (Figure 7D).

Although immunotherapy represented by ICIs has been
gradually recognized as a promising tumor treatment, only a
small number of patients can benefit from it (47). We explored
Frontiers in Oncology | www.frontiersin.org 12
the biological characteristics of FRRS related to immunotherapy
response, and found that FRRS was significantly positively
correlated with the expression of ICP molecules such as
HAVCR2, CTLA4, and PDCD1, as well as the infiltration
patterns of Treg cells and MDSC (Figures S11C, D). Thus, we
included three immunotherapy cohorts to further investigated
whether FRRS could predict responsiveness of the patients to
immunotherapy. In line with the above, patients with high FRRS
showed an unfavorable survival in these three cohorts (Figures
7E, H, K). In addition, patients who were clinically responsive to
immunotherapy showed lower FRRS, suggesting that patients
with lower FRRS were more likely to benefit from immunotherapy
(Figures 7F, I, L). The area under the curve (AUC) for the ROC
curve was used to measure the accuracy of FRRS in predicting the
response to immunotherapy. These results strongly suggested that
FRRS was a reliable biomarker (IMvigor210: AUC = 0.769;
GSE78220: AUC = 0.778; GSE100197: AUC = 0.942; Figures
7G–M). Then we calculated seven widely used immunotherapy
biomarkers, including TMB, TIDE, MSI score, Merck18, IFGN,
CD8, and CD274. In all three cohorts, FRRS afforded greater
accuracy in the prediction of immunotherapy (Figures 7N–P).
Notably, TIDE performed worse in predicting response to
immunotherapy in the IMvigor210 cohort and GSE100797
cohort (AUC = 0.52 and 0.54; respectively), although the
predictive power of FRRS in the GSE78220 cohort is slightly
lower than that of TIDE (Figures 7N–P). Overall, our study
strongly confirmed that FRRS can be used to assess the
prognosis and immunotherapy response of patients, and
outperformed widely used biomarkers.
DISCUSSION

Ferroptosis, as a recently recognized programmed cell death
modality, has been confirmed to be significantly associated with
tumor progression, immune status, and anti-tumor response,
and its role in HCC has gradually attracted people’s attention
(48, 49). Our study identified and validated two heterogeneous
ferroptosis subtypes in HCC. C1 possessed low levels of FRGs
expression and high abundance of innate and adaptive immune
cells, and were closely associated with inflammation, which was
defined as the metabolismlowimmunityhigh subtype. C2 expressed
high FRGs expression but lacked infiltrating immune cells,
presented a metabolism-related functional characteristic, which
was defined as the metabolismhighimmunitylow subtype. We also
validated the stability and reproducibility of the two subtypes in
two independent cohorts. The two subtypes also exhibited
heterogeneity in immune escape mechanisms, genome-driven
events, and clinical outcomes (Table 1). In addition, based on the
two subtypes, we proposed a prognosis signature: FRRS, which
was an independent prognosis factor for HCC. Further
immunotherapy prediction also indicated FRRS might be a
promising immunotherapy marker. These results facilitated the
understood of ferroptosis as well as clinical management and
precise therapy of HCC.

The two subtypes demonstrated distinct clinical characteristics.
We observed C1 owned worse OS and RFS relative to C2.
March 2021 | Volume 11 | Article 619242
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In addition, C1 was more prone to occur in the patients with
clinical characteristics such as younger, female, advanced stage,
higher grade, vascular invasion relative to C2. Further predictions
for sorafenib displayed the drug sensitivity of C2 was higher than
C1, which might be due to the overexpression of FRGs that could
be targeted by sorafenib in C2 (38). Conversely, C1 displayed
Frontiers in Oncology | www.frontiersin.org 13
superior response to immunotherapy. These results might
facilitate personalized treatment for patients with HCC.

We then explored the specific immune escape mechanisms of the
two subtypes. TheTMEofC1 accumulatedmore immunosuppressive
cells and inhibitory cytokines, and its overexpressed ICPs could evade
immune recognition and clearance after activation. C2 had a lower
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FIGURE 7 | (A–C) Kaplan-Meier survival analysis of high FRRS and low FRRS group in TCGA (A), ICGC (B), and NCI (C) cohorts. (D) FRRS and clinical factors
were combined for multivariate Cox regression analysis. (E–G) Kaplan-Meier survival analysis of high FRRS and low FRRS groups (E), the distribution of FRRS
between response and nonresponse groups (F), and ROC curve of the FRRS signature for predicting immunotherapy response (G) in IMvigor210 cohort.
(H–J) Kaplan-Meier survival analysis of high FRRS and low FRRS groups (H), the distribution of FRRS between response and nonresponse groups (I), and ROC
curve of the FRRS signature for predicting immunotherapy response (J) in GSE78220 cohort. (K–M) Kaplan-Meier survival analysis of high FRRS and low FRRS
groups (K), the distribution of FRRS between response and nonresponse groups (L), and ROC curve of the FRRS signature for predicting immunotherapy response
(M) in GSE100797 cohort. (N–P) AUC values of FRRS and seven other biomarkers for predicting the immunotherapy response in IMvigor210 (N), GSE78220 (O),
and GSE100797 (P) cohorts.
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abundance of immune killer cells, which might arise from its inferior
immunogenicity and antigen presentation capacity. These results
provided critical references for immunotherapy of HCC. In addition,
we alsoobserved thatCNVandDNAmethylationmightplay amaster
role in regulating immunoregulatory factors compared to mutations,
which points out the directions for the development of ICIs.

Next, in order to depict the molecular characteristics of the
two subtypes, we separately investigated the distinct genome
alterations of the two subtypes. As a particular SMG of C1, BAP1
Frontiers in Oncology | www.frontiersin.org 14
has been certified to block cystine uptake by inhibiting the
expression of SLC7A11, leading to lipid peroxidation and
ferroptosis, thereby inhibiting tumor progression (50).
However, the mutation of BAP1 deprived the above ability,
which might partially explain its poor prognosis to some
extent. Consistent with the immune escape mechanism, the
amplification of oncogene MYC was widespread in C1, which
could further inhibit immune surveillance by increasing the
expression of CD47 and PD-L1 (51). Topper and colleagues
had demonstrated that depletion of MYC could reversed
immune evasion in mouse, which in turn achieved the purpose
of treating non-small cell lung cancer, corresponding clinical
trial is still ongoing (52). In addition, an intervention study
indicated that higher methylation levels of SCD1 were related to
weight loss in subject, which was consistent with the lower BMI
of C1 (53). The unique SMGs of C2 such as ARID1A, ACVR2A,
and CDKN2A were closely associated with chromatin
remodeling, which could inhibit the ferroptosis process by
altering lipid metabolic genes (54, 55). This suggested that we
can target chromatin remodeling to develop drugs for C2.
Notably, C2 is more sensitive to the multi-kinase inhibitor
sorafenib, which might be attributed to its significant copy
number alterations in cell cycle-related kinases such as CDK3,
CDK8, and MAPK11 (56). Overall, the specific genomic
variation landscape of the two subtypes not only might lead to
the formation of heterogeneous ferroptosis subtypes, but also
partially contributed to the underlying mechanism of their
sensitivity to different drugs. In addition, these results also
point the directions for drug development and clinical
treatment of HCC patients.

Finally, we developed and validated a prognosis signature termed
FRRS in three independent cohorts. The high FRRS predominantly
associated with poor prognosis. FRRS demonstrated a favorable
performance in predicting the prognosis, and was an independent
prognosis factor in HCC. Taking into account the close link between
FRRS and TME cells, we further explored the potential significance in
predicting immunotherapy response and it turned out FRRS also
achieved a high accuracy. In addition, the accuracy of FRRS was
superior to seven prevalent indicators including TMB, TIDE, MSI
score, Merck18, IFGN, CD8, and CD274 in predicting
immunotherapy response, which hinted FRRS was a promising
marker for selecting patients who might be sensitive
to immunotherapy.

Nevertheless, the study also had several limitations. First,
owing to the lack of data, our study only considered the
interpatient heterogeneity and did not take into account the
intratumoral heterogeneity. Second, although we had applied
some algorithms to assess the two subtypes in predicting the
sensitivity of sorafenib and immunotherapy, prospective cohort
studies and clinical data are still need.

In summary, our work identified and validated two
heterogeneous ferroptosis subtypes. The two subtypes also
exhibited heterogeneity in functional status, immune escape
mechanisms, genome-driven events, and clinical outcomes. In
addition, we developed a scoring system termed FRRS, which
was a reliable prognosis and immunotherapy signature. These
TABLE 1 | Summary of FRGs expression, TME cells infiltration, biological and
clinical characteristics, immune escape mechanisms, and genome-driven events
for the two ferroptosis subtypes.

Subtype Cluster 1 Cluster 2

FRGs expression lower higher
TME cells infiltration higher lower
Biological
characteristics

inflammation metabolism

Dominant clinical
characteristics
Prognosis worse better
Age younger older
Gender female male
Stage more advanced less advanced
Grade senior junior
Vascular invasion macro or

microvascular
none

Sensitivity to sorafenib lower higher
Sensitivity to
immunotherapy

higher lower

Extrinsic immune
escape mechanism
All TME cells higher lower
Innate immune cells higher lower
Adaptive immune cells higher lower
Immunosuppressive
cells

higher lower

Fibroblasts higher lower
Intrinsic immune
escape mechanism
MHC expression higher lower
APS score higher lower
ICPs expression higher lower
Immunogenicity higher lower
TMB had no significant difference
Neoantigen load
MSI status
CTA score higher lower
CNV load higher lower
TCR/BCR diversity higher lower

Cluster-specific
genomic variation
landscape
Mutations BAP1 ARID1A, ACVR2A,

and CDKN2A
Copy number
amplifications

8q24.21
(MYC);1p11.2
(NOTCH2)

6p21.1(VEGFA);17q25.1
(CDK3)

Copy number deletions 10q23.1(GRID1) 3q28 (TP63);13q13.3 (BRCA2,
CDK8); 22q13.33 (MAPK11)

DNA methylation
GML higher lower
ESGs ACOX2; SCD WIPF3; LAMA3
March 2021 | Volume 11 | Article 619242

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. A Novel Ferroptosis Classification
results facilitated the understood of ferroptosis as well as clinical
management and precise therapy of HCC.
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