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Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC
treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional
Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells
to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly
understood.This study aimed to evaluate the effects of ROCK/PTEN/PI3KonZJW-induced apoptosis in vitro and in vivo.We found
that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP
cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while
inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced
tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression
of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These
findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide
a promising treatment strategy for gastric cancer.

1. Introduction

GC is one of the most prevalent cancers characterized by
high morbidity and mortality [1]. Surgery remains the only
curative therapeutic methods so far. However, due to its
late disease presentation, GC was detected in most of the
patients at an advanced stage when the tumor is usually
migrated, causing an extremely low 5-year survival rate
[2]. For advanced gastric cancer, chemotherapy is the pre-
ferred therapeutic strategy. DDP is considered as a common
drug for the treatment of GC [3]. DDP based adjuvant
chemotherapy has been approved to increase survival after
gastric resection [4]. Unfortunately, intrinsic or acquired
drug resistance seriously limits the treatment effect of DDP
[4].Therefore, it is necessary to develop effective strategies to
increase the sensitivity of DDP in GC treatment.

ZJW, a traditional Chinese medicine formula, composed
of Rhizoma Coptidis (Huanglian in China) and Evodia Rutae-
carpa (Wuzhuyu in China) with ratio of 6:1, has been used
to treat gastrointestinal diseases in China for a long time
and showed better therapeutic effects in adjuvant treatment
of tumors [5–7]. Our previous studies have demonstrated
that ZJW could significantly enhance the sensitivity of DDP-
resistant gastric cancer cells to DDP and executed their
biological effects by increasing mitochondrial apoptosis via
PP1 and PP2A induced the dephosphorylation of p-cofilin-
1, which implied that ZJW might serve as a synergistic drug
with DDP in the treatment of gastric cancer [7]. However, it
remains unclear how ZJW inhibits the DDP resistance in gas-
tric cancer cells involving the modulation of cofilin-1 activity.

It is well known that the phosphatidylinositol 3-
kinase/protein kinase B (PI3K/Akt) pathway plays important
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roles in mediating the multiple biological processes in tumor
cells, including proliferation, apoptosis, and migration
[8–11]. In addition, the PI3K/Akt pathway was demonstrated
to function as a crucial pathway in the regulation of
multidrug resistance (MDR) of cancer cells by modulating
the activity of various MDR-related proteins, such as MDR1
and P-gp [12–14]. Recent evidence revealed that PI3K/Akt
activation is strongly correlated with the inactivation
of the tumor suppressor gene phosphatase and tensin
homolog (PTEN) [15]. In tumor cells, at the upstream of
Akt, PTEN serves as a phosphatase to block the activity
of PI3K/Akt, promoting the cell proliferation, migration,
and MDR [16–18]. Inactivation of PTEN is a crucial event
in tumorigenesis and tumor development. Furthermore,
PTEN has been identified as a new Rho-associated kinase
(ROCK) substrate, and the activation of ROCK/PTEN
appears to be involved in negative regulation of PI3K/Akt
signaling [19, 20]. Our previous findings suggested that
activation of PP1 and PP2A contributes to ZJW-induced
mitochondrial apoptosis and translocation of cofilin-1
[7]. Notably, PP1 and PP2A are negatively regulated by
PI3K/Akt pathway [21, 22]. Therefore, we speculated that
the mechanism of ZJW-reversed resistance to DDP may
be associated with the PI3K/Akt signaling pathway, which
was mediated by ROCK1/PTEN, and finally induced PP1
and PP2A mediated dephosphorylation of p-cofilin-1 and
mitochondrial translocation of cofilin-1.

In the present study, in vitro as well as in vivo studies were
preformed to evaluate the role of ROCK/PTEN/PI3K in ZJW-
reversed DDP resistance of gastric cancer. Our work may not
only shed a light on the improvement of GC chemotherapy,
but also provide evidence for further clinical investigation.

2. Materials and Methods

2.1. Cell Lines and Cultures. Human gastric cancer cell
SGC7901 was provided by the Shanghai Cell Collection
(Shanghai, China). Cells were cultured in RPMI-1640
medium (Gibco Laboratories, USA) containing 10% (v/v)
fetal bovine serum, 1% penicillin–streptomycin 100 U/ml
penicillin, and 100 𝜇g/ml streptomycin in a humidified
atmosphere of 5% CO

2
in air at 37∘C.

DDP-resistant SGC7901/DDP cells were induced from
SGC7901 cells, using a concentration gradient method to
increase the half maximal inhibitory concentration (IC50) of
DDP (as previously described) [7].

2.2. Preparation of the ZJW Extracts. Two herbs (Rhizoma
Coptidis and Fructus evodiae) were from TCM pharmacy of
Putuo Hospital, Shanghai University of Traditional Chinese
Medicine (Shanghai, China). ZJW extracts were prepared as
previously described [7].

2.3. Western Blot Analysis. Cell treated as indicated were
harvested. The protein concentration was analyzed by BCA
protein Assay Reagent (Sangon Biotech, Shanghai, China).
Soluble lysates containing about 20𝜇g proteins per sample
were resolved with sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and then transferred onto

polyvinylidene fluoride membranes. After blocking with 5%
BSA, membranes were incubated with primary antibodies
at 4∘C overnight and secondary antibodies at room tem-
perature for 1 h. The membrane signals were detected using
an Enhanced Chemiluminescent Western Blotting Detection
System (Millipore, Billerica, MA, USA) in accordance with
the manufacturer’s instruction. Antibodies against ROCK,
PTEN, p-PI3K, PI3K, p-Akt, Akt, cofilin-1, p-cofilin-1, and
GAPDHwere fromCell SignalingTechnology (Danvers,MA,
USA). Antibodies against cleaved ROCK were purchased
from Abcam (Cambridge, MA, USA). An anti-PP1 antibody
was obtained from Santa Cruz Biotechnology (Dallas, TX,
USA).

2.4. Cell Cycle and Apoptosis Assays. SGC-7901/DDP cells
were treated as indicated. After 48 h of treatment, cells were
collected and prepared to cell cycle and apoptosis assays.
For cell apoptosis analysis, cells were stained with Annexin
V–fluorescein isothiocyanate (FITC) apoptosis detection kit
(BD Biosciences, San Jose, CA, USA) and proportions of
apoptotic cells were also analyzed using flow cytometry (BD
Biosciences). For cell cycle analysis, cells were fixed in ethanol
at -20∘C overnight; after washing with PBS three times, cells
were stained with propidium iodide (PI, Sigma, St. Louis,
MO, USA) at 37∘C for 30 min. The cell cycle distribution
was assessed with flow cytometry (BD Biosciences, Franklin
Lakes, NJ, USA).

2.5. Immunofluorescent Staining. SGC-7901/DDP cells 5000
per well were seeded on cover slips precoated with 0.01%
poly-lysine in a 24-well chamber. After drug treatments,
cells were fixed with 4% paraformaldehyde for 20min,
permeabilizedwith 0.1%TritonX-100 for 10 min, and blocked
with 5% bovine serum albumin (BSA) for 60 min at room
temperature. Cells were probed with primary antibody at
4∘C overnight and Alexa Fluor 488–conjugated goat anti-
rabbit IgG (Life Technologies) in the dark for 1 h at room
temperature. After washing, images were captured with a
fluorescence microscope (Leica, Wetzlar, Germany).

2.6. In Vivo Studies. A total of 36 male athymic nude mice
(4-to-6-week old) were randomly divided into six groups (6
mice/group): a negative control group, a DDP group (0.6
mg/kg), a ZJW group (2000 mg/kg), a DDP plus 2000 mg/kg
ZJW group, a DDP plus 1000 mg/kg ZJW group, and a DDP
plus 500/kg ZJW group; SGC-7901/DDP cells (1 × 106 cells
per mouse) were subcutaneously injected into the six groups
of mice, respectively. The rats were orally administered ZJW
and received intraperitoneal injection of DDP every 2 days
for 4 weeks. The saline was used as control. Finally, the nude
mice were killed and tumor tissues were excised andweighed.

2.7. Hematoxylin-Eosin (HE) Staining. Paraffin-embedded
tissues were sliced into 4-𝜇m-thick sections and stained with
hematoxylin and eosin.

2.8. Immunohistochemistry Staining. Tumor tissues were col-
lected, fixed with 10% neutral-buffered formalin, dehydrated,
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Figure 1: ZJW effects on ROCK/PTEN/PI3K signaling pathway in SCG-7901/DDP. (a) Cells were exposed to ZJW (50 𝜇g/mL) for 0-48
h. Western blotting was performed to evaluate protein levels involved in the ROCK/PTEN/PI3K pathway. (b) Cells were treated with the
indicated concentration of ZJW for 48 h; representative images of three independent western blots (n = 3) are shown.

paraffin-embedded, and sectioned by microtome. The sec-
tionswere then incubated overnight at 4∘Cwith primary anti-
p-cofilin-1, anti-cleaved ROCK, and anti-p-PTEN antibodies.
HRP-conjugated anti-secondary IgG (Cell Signaling Tech-
nology) was next applied for 30 min at room temperature.
Color was developed for 3min by incubation with 3,3-
diaminobenzidine (Sigma). Sections were counterstained
with hematoxylin and examined under microscope.

2.9. Statistical Analysis. In vivo data are presented as the
mean± SEMand in vitro data are presented as themean ± SD.
Group means were compared using Student’s t-test or one-
wayANOVA followed byDunnett’s multiple-comparison test
with GraphPad Prism version 5.01 (GraphPad Software, Inc.,
San Diego, CA, USA). P < 0.05 was considered as statistically
significant.

3. Results

3.1. Modulation of ZJW on ROCK/PTEN/PI3K Signaling
Pathway in SGC-7901/DDP Cells. To investigate the effect of
ZJW on ROCK/PTEN/PI3K pathway of gastric cancer, we
examined the protein expression of ROCK/PTEN/PI3K in
SGC-7901/DDP cells. SGC-7901/DDP cells were exposed to
ZJW (50 𝜇g/mL) for 0, 1, 3, 6, 12, 24, and 48 h. We found that

ZJW significantly increased activity of ROCK by assessing
the expression level of cleaved ROCK. To determine whether
PTEN is a downstream effector of ROCK in ZJW-regulated
cell apoptosis, we detected the expression of PTEN and p-
PTEN. The expression level of p-PTEN was upregulated in
relation to control in a time dependent manner; however,
the phosphorylation levels of PI3K and Akt were decreased
in SGC-7901/DDP cells after ZJW 24 or 48 h treatment
(Figure 1(a)).

Then SGC-7901/DDP cells were treated with different
concentrations of ZJW (0, 10, 50, 100, 200, 400 𝜇g/mL) for
48 h (Figure 1(b)). In comparison with the control group
(0 𝜇g/mL ZJW), ROCK, p-PI3K, Akt, and p-Akt expression
were significantly reduced while cleaved ROCK and p-PTEN
were significantly elevated in a dose-dependent manner.
These results demonstrated that ZJW triggered ROCK/PTEN
pathway and inhibited PI3K/Akt pathway in SGC-7901/DDP
cells in a time- and dose-dependent manner.

3.2. ROCK, PI3K Inhibition Altered the Effect of ZJW in SGC-
7901/DDP Cells. Given that ROCK and PI3K were major
regulators of cell growth and apoptosis [19], ROCK inhibitor
Y27623 or PI3K inhibitor LY294002 were used to assess
the potential role of ROCK/PTEN/PI3K in ZJW increased
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Figure 2: Inhibition of ROCK and PI3K effects on the apoptosis and cycle induced by ZJW. (a) Annexin V–FITC/PI double staining and
flow cytometry were used to detect apoptosis in SCG-7901/DDP cells. (b) Cells were stained with PI and cell cycle distribution was analyzed
by using flow cytometry. Experiments were performed three times independently. All data are represented as mean ± SD. ∗P < 0.05, ∗∗P <
0.01, ∗∗∗P < 0.001.

chemosensitivity in SGC-7901/DDP cells. As shown in Fig-
ure 2(a), ZJW significantly promoted the apoptosis of SGC-
7901/DDP cells. However, the combined exertion of ZJW
and Y27623 yielded a significantly lower apoptosis rate than
that of ZJW alone (Figure 2(a)). Furthermore, inhibition of
PI3K obviously promoted ZJW-induced SGC-7901/DDP cells
apoptosis. In addition, the notable increment of G2/M-phase
cells was observed in SGC-7901 cells treated with ZJW and
Y27623 as compared to ZJW alone (Figure 2(b)), when com-
bined administration of ZJW and LY294002 inhibited the
number of G2/M-phase phase cells. These data indicated that
ROCK/PTEN/PI3K pathway contributed to the inhibitory
effect of ZJW on drug resistance of SGC-7901/DDP cells.

3.3. Regulation of ROCK/PTEN/PI3K Signaling Pathway
on ZJW-Mediated Dephosphorylation and Mitochondrial
Translocation of Cofilin-1. We previously reported that

changes in p-cofilin-1 and cofilin-1 protein expression levels
were a potential mechanism of ZJW-mediated apoptosis in
SGC-7901/DDP cells [7]. Therefore, we further validated
whether the increased dephosphorylation and mitochon-
drial translocation of cofilin-1 in SGC-7901/DDP cells could
be targeted by ROCK/PTEN/PI3K. We applied ZJW and
ROCK inhibitor Y27623 separately and in combination,
detecting the protein levels of ROCK, cleaved ROCK, p-
PTEN, PTEN, p-PI3K, PI3K, Akt, p-Akt, p-cofilin-1, and
cofilin-1. As shown in Figures 3(a) and 3(c), ZJW sig-
nificantly activated ROCK/PTEN, inhibited PI3K/Akt, and
induced mitochondrial translocation of cofilin-1 in SGC-
7901/DDP cells, whereas Y27623 treatment had the opposite
effect. In addition, the combination of ZJW and Y27623
reversed the ROCK/PTEN elevation, mitochondrial translo-
cation of cofilin-1, and PI3K/Akt inhibition induced by
ZJW.
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Figure 3: ROCK1/PTEN/PI3K signaling pathway regulates ZJW-mediated mitochondrial translocation of cofilin-1. Cells treated with
ZJW(50 𝜇g/mL) were cotreatedwith or without Y27632 for 24 h, andwestern blotting was used to detect expression levels of proteins involved
in the ROCK/PTEN/PI3K pathway (a). Depolymerisation of F-actin and translocation of cofilin-1 from the cytoplasm to the mitochondria
in SGC7901/DDP cells were detected using an immunofluorescence assay (b). Quantification of protein levels (c). ∗∗P < 0.01, ∗∗∗P < 0.001
versus control.

Immunofluorescence images (Figure 3(b)) demonstrated
that ZJW treatment induced the degradation of F-actin and
aggregation of cofilin-1 in the mitochondria. Y27623-treated
SGC7901/DDP cells exhibited an increased expression of
F-actin, while SGC7901/DDP cells treated with ZJW and
Y27623 showed a significantly lower F-actin degradation and
cofilin-1 accumulation in mitochondria than that observed
with ZJW alone. These results indicated that the activation of
ROCK played an important role in ZJW-mediated dephos-
phorylation of p-cofilin-1.

3.4. PI3K Contributes to ZJW-Induced Activation of PP1/PP2A
and Mitochondrial Translocation of Cofilin-1. PI3K/Akt sig-
naling pathway occupies a crucial position in regulating cell
growth, viability, apoptosis, chemoresistance, etc. [23]. To
further verify whether PI3K/Akt represented a key step in

the ZJW-induced activation of PP1/PP2A and mitochondrial
translocation of cofilin, the PI3K inhibitor LY294002 was
performed. Western blotting analysis (Figures 4(a) and 4(c))
indicated that either ZJW or LY294002 alone could signif-
icantly repress the phosphorylation levels of PI3K and Akt
and increase the activation of PP1/PP2A and mitochondrial
translocation of cofilin-1. Moreover, cells cultured on both
ZJW and LY294002 displayed decreased protein levels of p-
PI3K, p-Akt, and cofilin-1(C), while the expressions of PP1,
PP2A, and cofilin-1(M) were upregulated.

Immunofluorescence analysis (Figure 4(b)) demon-
strated that ZJW or LY294002 treatment significantly
increased the level of F-actin. However, there was no cofilin-1
accumulation observed. ZJW and Y27623 combined exerted
further enhanced F-actin expression and cofilin-1 accumu-
lation in mitochondria than that observed with ZJW alone.
These results indicated that the activation of PI3K plays an
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Figure 4: PI3K contributes to ZJW-induced activation of PP1/PP2A and mitochondrial translocation of cofilin. Cells treated with
ZJW (50 𝜇g/mL) were cotreated with or without LY294002 for 24 h, and western blotting was used to detect expression levels of proteins
involved in the PI3K/Akt pathway (a). Depolymerisation of F-actin and translocation of cofilin-1 from the cytoplasm to the mitochondria
in SGC7901/DDP cells were detected using an immunofluorescence assay (b). Quantification of protein levels (c). ∗∗P < 0.01, ∗∗∗P < 0.001
versus control.

important role in ZJW-induced activation of PP1/PP2A and
mitochondrial translocation of cofilin-1.

3.5. ZJW Inhibits TumorGrowth in SCG-7901/DDPXenogra�s
Animal Model. Next, we determined whether the addition
of ZJW increased the sensitivity of SCG-7901/DDP cells to
DDP in vivo. Compared with control, DDP therapy exhibited
significantly reduced tumor weights, but not ZJW. Mice
receiving DDP and ZJW (2000 mg/kg) combination therapy
exhibited significantly reduced tumor volumes compared
with DDP alone (Figure 5). However, DDP and ZJW (1000
mg/kg) or DDP and ZJW (500 mg/kg) combination therapy
did not show a significant alternation in tumor growth when
compared to DDP group. It is possible that increasing the
dose of ZJW may sensitize DDP-resistant cells to reach
clinical efficacy. Taken together, with high dose of ZJW (2000
mg/kg), combination therapy could strongly suppress DDP-
resistant gastric cancer xenograft tumor growth.

3.6. Effects of ZJW on ROCK/PTEN /PI3K and p-Cofilin-
1 In Vivo. The representative HE staining of the indicated

tumors of mice was shown in Figure 6. Our results showed
that tumors treated with the combination of DDP and ZJW
(2000 mg/kg) showed more cell vacuolization and nuclear
shrinkage than with DDP alone, which was closely associated
with a decrease in the tumor size in the SCG-7901/DDP
xenografts mice.

Furthermore, The expression of cleaved ROCK, p-PTEN,
p-PI3K, and p-cofilin-1 was assessed using immunohisto-
chemistry to evaluate the effect of ZJW in vivo. Similar
to the in vitro results, the combination of ZJW and DDP
increased the expression of cleaved ROCK and p-PTEN and
decreased the expression of p-PI3K and p-cofilin-1 compared
toDDP alone.These results suggested that ZJW increased the
sensitivity of DDP in GC through ROCK/PTEN/PI3K and p-
cofilin-1.

4. Discussion

DDP is a core component of chemotherapeutic treatment for
gastric cancer. However, DDP resistance remains an obstacle
to chemotherapy in tumor patients [24].Our previous studies
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Figure 5: ZJW inhibits tumor growth and induces apoptosis in SCG-7901/DDP xenogra
s animal model. Xenograft mice were divided
into six groups: negative control (NC), DDP, ZJW, DDP combined with 500 mg/kg ZJW, DDP combined with 1000 mg/kg ZJW, and DDP
combined with 2000 mg/kg ZJW. After 30-time treatment the nude mice were killed and tumor tissues were excised and weighed. (a)
Representative tumor tissues isolated from each treatment group. (b) The weight of the dissected tumors from each treatment group. Mean
± SE, n = 6. ∗P < 0.05, ∗∗P < 0.01.

have shown that a combination of DDP with the herbal
extraction ZJW could cause the mitochondrial apoptosis of
DDP-resistant gastric cancer cells by dephosphorylation of p-
cofilin-1 via activation of PP1 and PP2A [7], but themolecular
mechanism remains largely unknown.

The ROCK/PTEN signaling pathway plays an important
role in tumor cells apoptosis via mitochondrial translocation
of cofilin-1. Activation of ROCK/PTEN could induce human
prostate LNCaP cancer apoptosis by mitochondrial translo-
cation of cofilin-1 [25]. It is clear that PI3K/Akt is essential
for the development of resistance to carcinoma therapy [6]
and PTEN is the main negative regulator of the PI3K/Akt
pathway. Thus, the present study investigated whether the
apoptosis in SCG-7901/DDP cells in response to ZJW was
correlated with ROCK/PTEN/PI3K signaling pathway.

We found that ZJW had the ability to activate ROCK/
PTEN signaling pathway in a time- and dose-dependent
manner, and a high level of p-PTEN antagonizes the effects
of PI3K/Akt in cells. More importantly, the suppression
of ROCK dramatically attenuated ZJW-induced apoptosis,
anti-proliferation, and p-cofilin-1 dephosphorylation while
the inhibition of PI3K had the opposite effect, determining
the regulatory effects of ZJW on SCG-7901/DDP associated
interactions with ROCK/PTEN/PI3K signaling pathway.

Recent studies have suggested that various mechanisms
contribute to PP1 and PP2A activity [26]. PI3Kwas identified
as a negative regulator [21, 22]. In our study, ZJW was able
to inhibit PI3K and Akt. Additionally, our results revealed
that PI3K inhibitor not only increased ZJW-induced apop-
tosis, but also enhanced expression of PP1 and PP2A and
translocation of cofilin-1, suggesting that ZJW might induce
activation of PP1 and PP2A in DDP-resistant gastric cells by
suppressing PI3K/Akt pathway. Furthermore, accumulating

literature indicated that PTEN is an important negative reg-
ulator in PI3K/Akt signaling pathway, which plays a pivotal
role in cell apoptosis, growth, and proliferation [16–18], while
its expression and activity can be regulated by ROCK [19].
Previous reports indicated that Rho/ROCK enhanced PTEN
activity and, in the contrary, inhibited Akt activation. In
MDA-MB-231 cells, the activation of RhoA/ROCK/PTEN
signaling could inhibit the phosphorylation of PI3K and
Akt, leading to mitochondria-mediated apoptosis [27]. Our
experiment results were consistent with these reports and
suggested that ROCK/PTEN activation and PI3K/Akt inhibi-
tion contributed to the cofilin-1 mitochondrial translocation
and apoptosis induced by ZJW via PP1 and PP2A activation.

Preclinical in vivo evaluation of ZJW for anticancer drug
resistance activity has also been conducted in subcutaneous
xenograft models. A simple practice guide for dose con-
version between animals and human was used to calculate
the dose of ZJW and DDP used in our animal model.
Consistent with the in vitro results, DDP and ZJW (2000
mg/kg) combination therapy significantly reduced tumor
volumes compared with DDP alone (Figure 5). Moreover,
the combined ZJW and DDP treatment markedly enhanced
activation of ROCK and PTEN and suppressed PI3K/Akt,
PP1 and PP2A activation mediated dephosphorylation of p-
cofilin-1, and translocation of cofilin-1 from the cytoplasm
into the mitochondria.

Studies revealed that PI3K signaling pathway could be
activated after DDP treatment by EGFR, which is one of
the main causes of DDP treatment failure for PI3K activa-
tion and appears to be involved in several chemotherapy
resistance mechanisms [28]. Therefore, PI3K/Akt inhibition
seems to be a promising approach to reverse chemoresistance
in cancer therapy via targeting and negatively regulating
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Figure 6: �e effects of ZJW on the expression ROCK/PTEN/PI3K signaling and p-cofilin-1 of tumor bodies in vivo. (a) Representative
HE staining of the indicated tumors of mice. (b) Representative photographs of IHC analysis of ROCK, PTEN, p-PI3K, and p-cofilin-1 in
indicated tumors of mice.

PI3K signaling [29]. However, Phase I and II clinical trials
utilizing PI3K inhibitor have shown there was no significant
upregulation in survival time of advanced cancer patients
[30–32]. Compared to PI3K/Akt inhibitors with serious side
effects, the combination therapy using novel agents that are
nontoxic, efficacious such as traditional Chinese medicine,
and conventional chemotherapeutic agent like DDP signifi-
cantly increased sensitization of cancer cells and reduced the
toxicity of drugs via systemic regulation of multiple targets
including PI3K/Akt [33–37]. Some studies have suggested
that ZJW can be used as an adjuvant to many cancer
therapies, improving efficacy and/or reducing adverse effects
via multiple-target action like PI3K, NF-KB, and P-gp [6,
38, 39]. Thus, although the data in this study demonstrated
that the ROCK/PTEN/PI3K signaling pathway plays a critical
role in ZJW-induced cofilin-1 mitochondrial translocation
and apoptosis via PP1 and PP2A activation, further studies
are needed for future clinical use. Gastric carcinogenesis is a
multistep process; Helicobacter pylori, a spiral-shaped Gram-
negative bacterium, has been recognized as the causative
agent for gastric cancer which was also associated with drug

resistance [40–43]; multiple pharmacological effects of ZJW
and its chemical constituents need to be learned to analyze
its plausible role as chemopreventive agent in relation to
Helicobacter pylori.

Alkaloids were proved to be the main ingredients in
the treatment of digestive tract diseases [44]. Prior phar-
macokinetics/pharmacodynamic studies revealed that the
absorption, elimination, and systemic exposure level of these
alkaloids were mainly influenced by the proportion of Cop-
tidis Rhizoma and Evodiae Fructus, the pharmacological
effect on gastrointestinal motility, and the physicochemi-
cal property of these alkaloids [45]. ZJW compatibilities
reduced both Parameter apparent permeability coefficient
(Papp)basolateral→apical and efflux rate values of three indole
alkaloids, and increased efflux rate values of two quinolone
alkaloids from Evodiae Fructus [46]. Microemulsion gel
delivery system can accelerate the transdermal absorption
rate of ZJW, compared with the hydrogel drug delivery
system, while bioavailability has no significant difference
[47]. However, administration of ZJW inhibited moder-
ately CYP2D6-mediated metabolism of dextromethorphan
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in healthy volunteers. The inhibition of CYP2D6 by ZJW
could result in clinically relevant effects, either beneficial
or deleterious, depending on the nature of the CYP2D6
genotype [48]. These findings would be helpful for a better
understanding of the activities and clinical applications of
ZJW.

5. Conclusion

In summary, we found that ROCK/PTEN/PI3K plays an
important role in ZJW-reversed chemotherapeutic resistance
of gastric cancer as a critical regulator of p-cofilin-1 dephos-
phorylation and mitochondrial translocation of cofilin-1.
Understanding the precise role of ZJW in gastric cancer
chemotherapeutic resistance and in ROCK/PTEN/PI3K sig-
naling pathways increases our knowledge of the biological
basis of cancer development and may also facilitate the
development of new therapeutic strategies against gastric
cancer.
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