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Prediction and validation of protein intermediate
states from structurally rich ensembles and
coarse-grained simulations
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Protein conformational changes are at the heart of cell functions, from signalling to ion

transport. However, the transient nature of the intermediates along transition pathways

hampers their experimental detection, making the underlying mechanisms elusive. Here we

retrieve dynamic information on the actual transition routes from principal component

analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained

simulations, explore the conformational landscapes of five well-studied proteins. Modelling

them as elastic networks in a hybrid elastic-network Brownian dynamics simulation

(eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample

the crystallographic motions, predicting the structures of known intermediates along

the paths. We also show that the explored non-linear routes can delimit the lowest

energy passages between end-states sampled by atomistic molecular dynamics. The

integrative methodology presented here provides a powerful framework to extract and

expand dynamic pathway information from the Protein Data Bank, as well as to validate

sampling methods in general.
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P
roteins function as sensors that cycle between different
states in response to external stimuli. In general, stable
conformers captured experimentally represent the end

states of the functional cycle, while short-lived or highly
flexible intermediates along the transition—which often hold
the key to understand molecular mechanisms—are difficult
to trap. Although a host of theoretical strategies have been
developed to sample transition pathways, the intrinsic difficulty
to predict the routes for conformational change and the lack of
experimentally resolved intermediates hamper the validation of
path-sampling methods.

Hitherto, in silico pathways are typically evaluated on the basis
of stereochemical quality of the structures or by tracking
progression along system-defined coordinates1,2. However, the
selection of heuristic collective variables (CVs) is non-trivial and
dimensionality reduction can be problematic3. Structural quality
or progression along a few order parameters does not assure that
a pathway samples biologically relevant routes to connect
end-states. An interesting approach, proposed by Weiss and
Levitt4, is to benchmark path-sampling methods against
proteins with at least three distinct states solved, and measure
how close the sampled pathway spontaneously approaches
known intermediates in terms of root mean square deviation
(rMSD). Still, such procedure cannot assess the feasibility of the
movements or to what extent they correspond to the biological
motions. To address this issue we propose to take a step beyond
simple two- or three-state benchmarking by making an ensemble-
level analysis that considers all structural information available in
the Protein Data Bank (PDB) for a given protein. Although there
have been works systematizing protein motions in databases5, a
general and reliable framework to unlock and expand the
pathway information contained in structural ensembles is still
missing.

Principal component analysis (PCA)6 is a powerful technique
to decode ensemble motions and has been successfully applied to
extract principal components (PCs) from experimental ensembles
and to evaluate normal modes (NMs)7–10, as well as essential
motions obtained from molecular dynamics (MD) simulations11.
For example, McCammon and co-workers12–14 showed the
utility of PCs obtained from X-ray structural ensembles as CVs
to track MD; a recent work used PCs to estimate free-energies of
transitions15. Here we build on the idea to use the two dominant
PCs as complex multidimensional reaction coordinates to reveal
the direction of ensemble-encoded conformational changes.
The key to our analysis is a selection criterion different from
previous ensemble-based studies16, more focused on the quantity
rather than the quality of the sampling by experimental
structures. We argue that, only when the solved structures
(regardless of their number) sample at least three different
interconnected conformations, the PCs provide optimal CVs to
highlight transition paths in the conformational landscape.
By focusing on five structurally rich and diverse model systems
we demonstrate that X-ray ensemble PCA accurately clusters
resolved structures into different functional states. We show that
for these proteins, the representation of the conformational
space is robust even with minimal numbers of structures as long
as they are well distributed along interconnecting paths. The
projection of experimental conformers onto the PC-space
provides an excellent visual representation of the structural
landscape for a protein with known intermediates. Importantly, it
also allows for immediate evaluation of the sampled pathways as
it gives information on the natural sequence of on-pathway
intermediates, which in turn can reveal information on their
functional significance.

On the basis of the proposed ensemble PCA, we compare the
performance of a novel coarse-grained (CG) path sampling

algorithm named eBDIMS, using elastic network model (ENM)
driven10 Brownian17 simulations, with several well-established
methods as well as with state-of-the-art MD simulations
(see Methods). Path sampling algorithms span from simple
morphings18 based on interpolations in Cartesian19 or internal
coordinates20, to geometrical targeting21 or atomistic techniques
based on energy minimization4. A number of MD-based
approaches are applied to explore transitions, for example
the nudged elastic band22 or the ‘strings’ method23,24, as
well as enhanced sampling algorithms such as conformational
flooding25, metadynamics26, accelerated MD27 or the accelerated
weight histogram (AWH) method28. Although accurate, these
techniques are computationally expensive and limited to small
systems and short timescale transitions. CG-models29,30, where
each residue is reduced to a few beads interacting by simple
potentials, minimize computational costs. Among CG-methods,
ENMs31,32 are conceptually simple but capable of predicting
accurately conformational changes33. Despite reducing protein
architecture to a minimalist network of Ca-carbons connected by
springs, NMs computed from the ENM potential describe
transitions between X-ray pairs with surprising precision5,34–36

and reproduce the flexibility from experimental ensembles or
long MD simulations8–10,37,38. For years, ENMs have been at
the core of transition methods from simple interpolations39, to
two-state ENMs2,40. Being limited to an equilibrium basin,
pathway generation requires iterative computation and
deformation along selected NMs, which can produce
stereochemical distortions. Although these issues can be
reduced applying internal coordinates20, structure corrections41,
or just using the modes to bias more realistic simulations42,43,
mode selection still poses a problem. Here the use of the
network potential in the context of a BD simulation avoids
unrealistic structure deformations and provides spontaneous
sampling along the relevant modes. We show that, compared with
other approaches, eBDIMS smoothly samples the experimentally
encoded motions, and can predict the sequence of intermediates
as accurately as Climber, an atomistic method4 based on the
Energy Calculation and Dynamics (ENCAD) molecular-
mechanics force-field, but with the versatility of a simulation.

The integrated analysis of the PCs and the in silico pathways
provides novel insights into the conformational changes of
the studied proteins. We further demonstrate that simple
algorithms such as eBDIMS or Climber accurately sample the
conformational space given by experimental data and MD,
predicting the lowest energy paths defined by transition
intermediates. In conclusion, the methodology outlined here
provides a powerful framework to extract and expand
dynamic information from the rapidly growing PDB to evaluate
sampling methods or even the functional status of new
experimental structures.

Results
Pathway validation by PCA of structurally-rich ensembles. We
studied five proteins of different size, stoichiometry and motions
(Supplementary Table 1) that specifically have well-defined inter-
mediates between end-states (either described in the literature or in
the PC1-2 space; see Methods), to perform robust ensemble PCA
(Fig. 1, Supplementary Fig. 1, Supplementary Table 2) for eBDIMS
pathway validation (see further examples in Supplementary Fig. 2
and Supplementary Table 3). The trajectories were compared with
linear (NOMAD-Ref44, MinActPath45 and iENM46) and non-
linear path-sampling algorithms (iMods20, NMSIMs47 and
Climber4) (Supplementary Tables 4–5). We also created
ensembles along the lowest frequency NMs10 to study intrinsic
motions. The apo-like, resting or inactive form was the reference
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for PCA; all analyses focused on the two major PCs, covering
470% of the variance (Supplementary Table 2) and 95% of the
transitions (Supplementary Table 6). For non-linear methods,
trajectories were computed in forward/reverse directions, and
eBDIMS pathway asymmetry quantified (see Methods). Finally,
eBDIMS trajectories were compared with the free energy
landscapes (FELs) sampled by MD for three representative
examples. Interactive PC1-2 plots are provided in Supplementary
Data 1. An alternative version can be found at http://data.
tcblab.org/doi/10.1038/ncomms12575/Transitions.html.

Escherichia coli ribose-binding protein (RBP). RBP is a
periplasmic protein that binds ribose with a 6Å hinge motion of
two similar domains. Although its crystallographic ensemble only
contains eleven structures, they cover the entire closing process;
all the conformers exist at equilibrium and ribose concentration
shifts their distribution48. We selected the open (free) structure
1BA2 and the closed (bound) 2DRI as the end-states (Fig. 2a).
The first PC (PC1), which describes domain closing (bending),
accounts for most of the variance (97%) of the transition, while
the second (PC2) describes a subtle oscillation (twisting; 2%)
(Fig. 2b, Supplementary Tables 2 and 6). PC1 broadly separates
the ensemble into three clusters of decreasing opening angle
(Supplementary Fig. 3a): first, the unbound conformers, then
intermediates 1URP and 2GX6, and finally the ligand-bound
cluster. There is an excellent alignment of the first NM with the
distribution of experimental structures along the path; however,
this mode is not the best aligned with the difference transition
vector between the end points (Supplementary Fig. 4a and
Supplementary Table 7). Trajectory projection onto the PC1-2
subspace shows that the examined methods differ notably in how
they sample the X-ray motions. Although they all approach the
existent intermediates (Fig. 2c, right), reaching as close as
0.5–1.5 Å rMSD (Fig. 2d and Supplementary Table 5), the
PC1-2 Euclidean distances discriminate between paths that
resemble a straight interpolation and the ones that explore the
subtle PC2 oscillations that accompany protein closure.
Interestingly, eBDIMS and Climber converge in the reverse
pathway through a straight-like route with a slightly smaller

rotational deviation along PC2. However, the asymmetry score is
low (0.1; Supplementary Fig. 5), and as shown by MD, both
routes are actually sampling the edges of the same low energy
passage connecting the end-conformations (see Supplementary
Fig. 6a and FEL below).

E. coli 50-nucleotidase (50-NTase). 50-NTase, an enzyme that
hydrolyses nucleotides, is formed by two globular domains linked
by an a-helix. Upon binding, an unusual 96� ball-and-socket
rotation (rMSD 9.3 Å) moves the ligand along the interdomain
surface into the catalytic site. The X-ray ensemble (sixteen
structures) covers domain closure, with intermediates trapped
by Cys-bridges. We selected the open 1OID and closed
(RNA-bound) 1HPU structures as end-states (Fig. 3a). Again,
PCA decomposes the ensemble into a major PC1 capturing most
of the ball-and-socket motion (95%) of the transition
(Supplementary Fig. 3b) and a minor PC2 tracking a subtle
orthogonal rotation (4%) (Fig. 3b and Supplementary Tables 2
and 6). PC1 alone clusters the structures into three functional
groups: the open structures (1OID and others), the intermediates
(1OI8 and 4WWL), and the catalytically competent closed state
(1HPU, 1HO5), while PC2 further helps to rank path sampling
algorithms (Fig. 3c). The intermediates are sequentially visited by
all methods reaching as close as 1.8 Å rMSD with eBDIMS
(Fig. 3d and Supplementary Table 5), but projection onto PC2
reveals instabilities in some of the ENM algorithms. Once again,
the NMs of the end-states perfectly align with the distribution of
experimental structures (not shown) and the direction of
conformational change (Supplementary Table 7). Both eBDIMS
and Climber smoothly sample the forward transition, which
departs along PC2, while the reverse paths proceed straightfor-
ward. As in RBP, pathway asymmetry is low (0.2; Supplementary
Fig. 5), indicating that both routes in fact explore the same low
energy through between the end-states, a notion further
supported by spontaneous sampling from unbound forms in MD
(Supplementary Fig. 6b, see below).

Aquifex aeolicus ribonuclease III (RNaseIII). RNaseIII is an
Mg2þ -dependent enzyme that modulates gene expression by
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Figure 1 | Reconstruction of the structural landscape by PCA from structurally rich ensembles and generation of transition pathways by eBDIMS. The

workflow is shown for a typical example (RBP, details in Fig. 2): structures are collected from the PDB (left panel) and the end-states are selected based on

the literature; the ensemble is aligned to the inactive or apo state of the protein for PCA, and forward and reverse trajectories are independently computed

with the eBDIMS sampling method (middle panel). Finally, the two principal PCs are used for projection analysis of the trajectories (right panel), allowing

for straightforward detection of on-pathway intermediate states.
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cleaving double-stranded RNA (dsRNA). It is a symmetric
homodimer where each subunit is composed of two domains
(an RNaseIII domain, RIIID, and a dsRNA-binding domain,
dsRBD) separated by a flexible linker. RIIID dimerization forms a
‘catalytic valley’ to accommodate dsRNA; the dsRBDs need to
rotate dramatically (180o) to position RNA on it. However, this
region is negatively charged, requiring Mg2þ -coordination to
mitigate dsRNA repulsion. In absence of Mg2þ , dsRNA binds
outside the valley in a ‘non-catalytic’ form (1YYO, 2NUE), but
with Mg2þ present, it moves inside the valley leading to a
‘catalytic’ form (2NUG, 2NUF, 2EZ6). Since a true apo structure
is missing, the 11 RNA-bound crystallized structures represent
intermediate snapshots in dsRNA processing between non-
catalytic/catalytic states. Therefore, we focused on the transition
between the non-catalytic complex RNaseIII–RNA4 (1YYO),
and the pre-catalytic RNaseIII–RNA3 (1YYW), where dsRNA is
reorienting (Fig. 4a). Between these two conformers (18 Å rMSD),
there is a well-characterized intermediate, RNaseIII E110Q–
RNA2 (1YZ9; ref. 49). Here the complexity of the movements
decomposes the ensemble into two similarly weighted
components (Fig. 4b and Supplementary Table 2): PC1
describes dsRBD-arms opening or ‘breathing’49 (51% variance),
while PC2 tracks their concerted rotation (43% variance)
(Supplementary Fig. 3c) capturing most of the transition
(see Supplementary Table 6). Altogether they separate the
structures into four functional groups: the 1YYO cluster, the
intermediate 1YZ9, the pre-catalytic 1YYW cluster and
catalytic 2EZ6 cluster (Fig. 4c, left). Along PC1 the structures
separate into only three groups according to dsRBD-opening,

because the closed non-catalytic and catalytic complexes
are not differentiated; PC2 clearly distinguishes their
opposite orientations (with the RNA-binding surface looking
outwards/inwards to the catalytic valley). Four of the methods
(Fig. 4c, right) cannot track this challenging transition, which
both eBDIMS and Climber sample smoothly visiting the
1YZ9 intermediate within 4 Å rMSD (Fig. 4d, Supplementary
Table 5 and Fig. 6a,b). As above, the lowest NMs point to the
nearest intermediate rather than to the transition direction
(Supplementary Fig. 4b and Supplementary Table 7); at the
1YYW bifurcation, they split into two directions pointing back to
1YYO or to the Mg2þ -bound region (not shown). Here,
the asymmetry score is high (0.4; Supplementary Fig. 5) but the
trajectories approach on-pathway X-ray structures in both
directions: the forward path crosses the 1YZ9 point as expected,
and the reverse deviates along PC2 approaching the region
populated by Mg2þ -bound structures. In fact, the transition from
the pre-catalytic (1YYW) towards the catalytic state (2EZ6) is the
next natural step along the RNaseIII cycle with Mg2þ present.
This suggests a multi-step mechanism (Fig. 6a,b) agreeing with
experimental models49 in which, as RNA binds (1YYO), the
dsRBDs first separate along PC1 (crossing 1YZ9) and once they
are wide-open, start to rotate along PC2 to reach 1YYW (90o

rotation, forward). Then, as the bias (that is, Mg2þ in vivo)
favours closing again (reverse), the dsRBDs naturally approach
the catalytically competent region (180o) up to a point where they
start to rotate back to resting position (1YYO). Thus, the eBDIMS
trajectory suggests that the topologically accessible route to relax
and close the protein naturally approaches the catalytically
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Figure 2 | Conformational transition of E. coli ribose-binding protein (RBP). (a) Crystallographic unbound (1ba2) and ribose-bound (2dri) state of RBP;

the two ligand-binding domains are coloured in blue and orange. (b) Principal components of the X-ray ensemble (11 structures) track domain closing and

subtle rotation versus the reference 1ba2. (c) Left: projection of the ensemble structures and the eBDIMS trajectories onto the PC1-2 subspace; note how

PC1 separates the crystal structures into three–four clusters (shown as red (unbound), white (intermediates) and blue (bound) regions). Right: comparison

between the forward pathways computed by eBDIMS, iENM, NOMAD-Ref, MinActionPath and Climber. Reverse pathways generated by eBDIMS, iMODS,

NMSIM and Climber also shown. (d) rMSD and PC1-2 distance between the forward trajectory and the sequence of crystallographic intermediates.
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competent form. Our eBDIMS simulation does not mimic the
presence of Mg2þ , but the fact that it spontaneously approaches
the region populated by such conformations implies that the
transition to a catalytic complex is pre-conditioned by the
peculiar domain arrangement independent from electrostatic
effects. The MD spontaneous sampling from the unbound
structures seems to supports this, hinting at two possible
different pathways (Supplementary Fig. 6c).

Oryctolagus cuniculus sarco-endoplasmic reticulum Ca2þ -
ATPase (SERCA). The SERCA pump is the best-studied P-type
ATPase, which transport ions across cell membranes. There are
460 SERCA structures bound to ligands and ATP analogues,
which cover nearly all the catalytic cycle. The cytosolic ‘headpiece’
domains, A (actuator), N (nucleotide binding) and P
(phosphorylation) undergo translations and rotations as they
bind and hydrolyse ATP. These motions are coupled to piston-
like movements of transmembrane helices (TM) reshaping
Ca2þ accessibility. The pump cycles between E1/E2 conforma-
tions: in the E1 state (E1-free), the Ca2þ high-affinity sites facing
the cytoplasm are occupied (E1-2Ca2þ ) favouring ATP binding
(E1-2Ca2þ -ATP); then nucleotide hydrolysis triggers Ca2þ

transport (E2-2Ca2þ ) releasing ions into the lumen (E2-free).
We focused on the transition from the open E1-2Ca2þ state
(2C9M), with a splayed-headpiece, to the closed-headpiece

E1-2Ca2þ -ATP structure (1T5S) (rMSD 14 Å) (Fig. 5a), locked
onto an ATP-binding pocket. As with RNaseIII, the complexity
and amplitude of the motions along the catalytic cycle yields
similarly weighted components (Fig. 5b and Supplementary
Table 2): PC1 (57% variance), which tracks most of the E1-4E2
ion pumping, and PC2 (28% variance), which describes 95% of
the A/P closure to bind ATP (Supplementary Table 6); both PCs
correlate with heuristic variables (Supplementary Fig. 3d).
Altogether, these motions separate structures into seven clusters
(Fig. 5c, left), with E1-2Ca2þ showing great dispersion due to
headpiece mobility.

For this transition, we were not aware of well-identified
crystallographic intermediates. However, PCA neatly distributed
structures into three groups along PC2: a cluster of E1-Mg2þ -
bound structures (4H1W, 3W5A and 3W5B), visited by the
eBDIMS closing trajectory (Fig. 5d, Supplementary Table 5 and
Fig. 6c,d), appears between the most open E1-2Ca (2C9M and
1SU4) and most closed E1-2Ca2þ -ATP bound structures
(1T5S cluster). Although most methods track this transition
(Fig. 5c, right), some become unstable in the intermediate region,
where the lowest NMs from nucleotide-bound/intermediate states
split onto two orthogonal directions (Supplementary Fig. 4c,
Supplementary Table 7).

To further test the versatility of eBDIMS, we reconstructed
the structure 4NAB, a catalytically incompetent mutant E309Q.
This structure was not included in the ensemble since the
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Figure 3 | Conformational transition of E. coli 50-nucleotidase (50NTase). (a) Crystallographic unbound (1oid) and nucleotide-bound (1hpu) states,
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A-domain is missing, but the loops connecting to TM1-2
allowed eBDIMS to approximate its position (Supplementary
Fig. 7a). Upon projection, 4NAB surprisingly appeared as a
potential topological intermediate in the reverse path (Fig. 5c
left, red dot). Although here intermediates are present
in forward/reverse routes, the subtle asymmetry (0.15; Supple-
mentary Fig. 5) and similar sampling of heuristic variables
(Supplementary Fig. 7b,c), suggests identical opening/closing
routes. Inspection of the MD FEL supports this view, and hints
again that non-linear pathways delimit the edges of a
single low-energy trough with X-ray intermediates on both
sides (see below).

Gloeobacter violaceus ligand-gated ion channel (GLIC).
Pentameric ligand-gated ion channels form a large family of
membrane proteins with a central role in signal transduction,
transmitting ligand binding through the opening of their
ion-conducting pore. The proton-gated channel GLIC50 has been
intensely studied as a model for eukaryotic counterparts.
Crystals of closed GLIC were recently determined51, which
together with locally closed52 and open structures53,54 track
the gating mechanism. Upon Hþ -binding, the extracellular
domain undergoes a contraction (un-blooming) propagated to
the intracellular region, triggering the tilting of pore-lining M2
helices in a cooperative iris-like motion that opens the gate; then
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the forward pathways computed by eBDIMS, iENM, NOMAD-Ref, MinActionPath and Climber. Reverse pathways generated by eBDIMS, iMODS,

NMSIM and Climber also shown. (d) rMSD and PC1-2 distance between the forward (left) and reverse (right) trajectories and the crystallographic

intermediates approached.
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the quaternary twist of the subunits locks the receptor in the
conducting state.

The GLIC X-ray ensemble contained 46 near-intact penta-
mers (Supplementary Table 2). We selected the structures
4NPQ and 4HFI as representatives of the resting and Hþ -
bound conducting states, respectively (Fig. 7a). In this case the
transition is subtle (rMSD¼ 2.66 Å) but requires cooperative
motion of five subunits. Here the main PCs are similarly
weighted (Fig. 7b): while PC1 (42% variance) tracks blooming-
like motions of the extracellular domains, PC2 (30% variance)
(Fig. 8a, left) describes quaternary twisting and pore gating
(Fig. 8a, right), in accordance with the literature51,55

(Supplementary Fig. 8a). Notably, structures are separated
into functional clusters predominantly by PC2, which shows the
strongest correlation with pore radius and contributes with up
to 84% to the gating transition (Supplementary Table 6). The
projections onto the PC1-2 subspace divide the ensemble into
five well-defined clusters related to their functional status and
crystallization conditions (Fig. 7c, left). Remarkably, the PCs
split the locally closed as well as the open structures into two
groups along PC1, which differ in their extracellular diameter
(80 versus 70 Å) (Fig. 8b) suggesting two possible routes for
gating: one ‘bloomed’ leading from 4NPQ to 4HFI, crossing
a series locally closed structures (3TL*) stabilized by
Cys-bridges52 and a structure in equilibrium between locally
closed/open (4NPP)51; the other route, with ‘un-bloomed’

structures, leads from 4NPQ to the rightmost open cluster
passing the locally closed 4LMJ and 4LMK. The fact that both
groups distribute concentrically along a near diagonal axis
suggests that they are functionally equivalent, and that the
difference in compactness is due to their extracellular mobility
in the crystal lattice. After examining crystallization
conditions, we found that 490% of the bloomed structures
were solved at a higher temperature (293K) than those
un-bloomed at the right (277K). Only five outliers are found
(Supplementary Fig. 8b): the open structures 4IRE and 4F8H,
which appear in the high-temperature (bloomed) region but
were solved at 277K, and the structures 4LMJ, 4LMK and 4LML,
in the low-temperature (compact) region but solved at 298K.
Interesting, the first two correspond to GLIC bound to ketamine
(4F8H) and loop C mutations (4IRE) that actually inhibit the
channel. Although they are open in the TM region (pH 4), these
pentamers appear more bloomed than other non-inhibited
structures at 277K. In contrast, the un-bloomed 4LM* locally
closed and open structures are more compact than others at
high-temperature. They harbour TM2-TM3 loop mutations
designed to impair proton binding and gating: loss-of-function
changes in the locally closed ones, and a double rescuer
mutation in the open-like one56. This suggests that extracellular
blooming at a given temperature may be a subtle signature of
the channel functional status, and certainly deserves further
investigation.
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Figure 5 | Conformational transition of O. cuniculus sarcoplasmic Ca2þ -pump (SERCA). (a) Crystallographic E1-Ca2þ bound open (2c9m) and

E1-Ca2þ - nucleotide bound (1t5s) state, showing the headpiece domains coloured in red (A), blue (P) and green (N) and the TM helices in brown.

(b) Principal components of the X-ray ensemble (65 structures) describe the E2-4E1 pumping transition (PC1) and the closing of the headpiece (PC2).

(c) Left: projections of the X-ray ensemble structures and the eBDIMS trajectories onto the PC1-2 subspace; PC2 separates the crystal structures into open

(red) and closed (blue); the reconstructed structure 4nab is shown as a red dot. Right: comparison between the forward pathways computed by eBDIMS,

iENM, NOMAD-Ref, MinActionPath and Climber. Reverse pathways generated by eBDIMS, iMODS, NMSIM and Climber also shown. (d) rMSD and PC1-2

distance between the forward trajectory and two crystallographic intermediates.
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The projection of the eBDIMS opening trajectory onto the
PC1-2 subspace shows a smooth sampling of the motions
encoded in the X-ray ensemble, sequentially visiting the locally
closed intermediates (Fig. 7d); the ordering of locally closed
structures by PCs perfectly agrees with their rMSD from the
end points. Un-blooming precedes the quaternary twist
decrease as previously suggested51,55 and in accordance with
PCs (Supplementary Fig. 9a–e). Even in such a concerted
multi-subunit transition, the motions are again encoded in
low-frequency NMs (Supplementary Table 7). For GLIC, most
methods are capable of sampling this small transition but
nevertheless differ in their linearity when projected onto the
PC1-2 subspace, with eBDIMS providing the broader sampling
(Fig. 7c). There is once again only a subtle asymmetry of the
reverse pathway (0.06; Supplementary Fig. 5): while the transition
starting from resting GLIC proceeds through locally closed
structures as the channel opens, the closing transition follows a
path slightly left-shifted. Considering that bloomed locally closed
and open structures are poorly separated by PC1, both pathways

appear essentially equivalent, suggesting reversible forward/
reverse routes for gating in which blooming and quaternary
twist motions proceed in concerted fashion. As for SERCA
and RBP, MD simulations suggest that both pathways explore
the same low-energy passage connecting closed and open GLIC
(see below).

Intermediates sampling in atomistic FELs. To explore the
significance of pathway divergences on the PC-subspace, the
sampled intermediates and how they relate to the lowest energy
paths between end-states, we computed FELs from atomistic MD
for three cases: (i) RBP hinge bending; (ii) SERCA headpiece
closing and (iii) GLIC cooperative gating. These examples have
been previously studied with MD57–59 and are known to
reversibly transition between end-states in the absence of
complex ligands, thus being suitable for comparison with
eBDIMS. The atomistic methods to track these changes are also
representative of common MD implementations (see Methods):
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shows how they spontaneously sample PC1 approaching the 1yz9 intermediate (shadowed); then, they leave it behind as rotation along PC2 progresses.

(b) Superimposition between X-ray intermediate structure 1yz9 and the best overlapped eBDIMS frame. (c) Upper row: The complete X-ray structures

for the SERCA open and closed end-states and one of the Mg2þ -bound visited intermediates (4h1w) are shown; the structure is approached within 4 Å

(d) by the forward eBDIMS pathway tracking headpiece closing.
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biasing along a heuristic reaction coordinate (RBP); standard MD
from unbound structures (50NTase); multi-run MD simulations
(SERCA) and a single microsecond-trajectory (GLIC). For RBP,
we collected transition pathways from end-states with steered
MD and AWH28 using domain distance as reaction coordinate.
In accordance with former studies57, trajectories from the closed
structure (2DRI) rapidly converge on open and partially open
conformations, while simulations from the open (1BA2) overlap
with the former but never reach the fully closed state in the
absence of ribose. The FEL for the opening transition (Fig. 9a)
reveals that the lowest energy through connecting end-state
basins actually comprises most of the area delimited by eBDIMS
forward/reverse paths; interestingly, experimental intermediates
are found along the edges of this region, indicating that they
correspond to meta-stable states captured by crystallization but
not to energy minima in solution. For SERCA, several MD studies

have shown spontaneous Ca2þ -independent closing of the
headpiece58,60 in the absence of bound nucleotide. Specifically,
a recent computational study58 (also supported by FRET
measurements) reported saltatory headpiece closure reaching
long-lived states similar to the Mg2þ -bound structure (3W5B)
here identified as an on-pathway intermediate. The E1-Mg2þ

configuration was suggested to approach an elusive E1-apo
intermediate between E2-free and the E1-2Ca2þ state, which
would explain the accelerating effects of Mg2þ on Ca2þ

binding61,62. According to the combined PCA/eBDIMS analysis,
this configuration may as well represent a transient state in which
Ca2þ and ATP sites are pre-poised for efficient nucleotide
binding. We compared the FEL sampled by MD58 from the
open cluster (1SU4) which show spontaneous closing, with the
eBDIMS pathways from/to 1T5S. Once again, the forward/reverse
routes sample the boundaries of a wide low-energy area for
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the closing transition (Fig. 9b), populated by crystallographic
intermediates. Finally, we compared the GLIC eBDIMS pathways
with a microsecond-long simulation from the open state that
spontaneously closes at pH 7 (ref. 59), and a shorter 500 ns from
the closed state at pH 4 that evolves to the open state. Inspection
of the corresponding FELs (Fig. 9c,d) suggests again that both
eBDIMS pathways delimit the same low-energy route connecting
the open/closed basins and thus are equally significant. Notably,
as in the former cases, crystallographic locally closed
intermediates do not fall into energy minima but rather sample
the boundaries of the low-energy region sampled in the closing
transition.

Discussion
The aim of this work was to explore the possible reconstruction of
protein transition pathways by prediction of intermediates from
pairs of static structures. For that purpose, we developed a new
sampling method, eBDIMS, and in parallel, a thorough
PCA-based validation scheme to assess its biological relevance
as well as to retrieve pathway information from structural
ensembles. Although PCA has been used to extract motions
sampled by MD11, or to evaluate NMs from experimental
ensembles8, here it is applied to ensembles with enough sampled
states to reconstruct the conformational landscape along
meaningful CVs. We have shown that PCA of such ensembles
automatically yields reaction coordinates that contain the
one-dimensional system-defined parameters typically described
for each protein. Moreover, the variance distribution informs on
the dimensionality of the transitions: whether they are reducible
to one (RBP or 5NTase) or a few coordinates (RNaseIII) or

rather need several (GLIC) to be fully described. The complexity
of the PCs emphasizes the risk of biasing trajectories using
simple variables, and also suggests that a deeper study of
ensemble-PCs can help to understand how complex motions are
coupled in transitions. Furthermore, structure clustering by PCs
can distinguish not only functional states, but also specific
experimental conditions. For the GLIC ensemble, PCA clustering
detected a previously unnoticed partition of the solved structures
into two groups dependent on the two crystallization
temperatures used for solving them (277 and 293K). The
fact that the only outliers in both groups are either bound
to molecules or harbour mutations to perturb channel activity
suggests a possible link between intrinsic mobility of the
extracellular piece and the channel status which is reflected in
its compactness in the crystal lattice. Thus, the PCA method by
itself can help to assign a functional status to new structures,
understand how they relate to each other or even raise
experimentally testable hypotheses.

More important, PC-clustering automatically provides the
most probable sequence of structures along a transition avoiding
uncertainties introduced when dealing with several heuristic
variables in complex transitions such as GLIC. By extracting
the common pattern of motion not for a pair but for all
representative conformations for a protein, the PCs uncover the
ensemble-encoded routes for conformational changes. Using the
PC1-2 bidimensional space as reference for benchmarking, it is
also straightforward to evaluate how well sampling algorithms
explore the conformational space. The projections onto the major
PCs clearly distinguish feasible trajectories, characterized by a
smooth and stable sampling of the experimental motions that
spontaneously approaches intermediate states. On the basis of
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this stringent evaluation, we demonstrate that it is possible to
reconstruct the structural landscape and predict possible
intermediate structures using path-sampling algorithms. Notably,
the CG eBDIMS trajectories greatly overlapped with the atomistic
method Climber, based on pulling and energy minimization
of the force-field ENCAD. The ability of a pure ENM
topology-based simulation such as eBDIMS to predict
intermediate states is a strong demonstration of the emerging
paradigm that the large-scale functional dynamics of proteins is
greatly encoded in their overall shape32 and does not depend on
fine-grained sequence details.

While in some proteins (for example, RNaseIII) apparently there
is one topologically accessible sequence of motions that allows for a
transition, in others (for example, GLIC) several concerted motions
proceed simultaneously until completion. Our results suggest that
the ability to spontaneously sample a transition is pre-encoded in
the structures, not only for ligand-free forms63 but throughout the
conformational change. We observed that the NMs were well
aligned with either the distribution of structures around each
basin, and/or with the actual direction of changes defined by
the nearest intermediates. It has been common practice to evaluate
the significance of NMs by their overlap with the difference vector
between conformations. Although it is a fair approximation for
most proteins, it can fail when the experimental path follows an
intermediate that departs enough from both end points
(Supplementary Fig. 4). Similarly, it becomes clear why following
the modes better overlapped with the transition vector can render

distorted pathways as such motions are often not sampled
experimentally. Nevertheless, most ENM-based algorithms
perform extremely well providing fast approximations to the
experimental paths in simple cases (see Supplementary Note 1).

Interestingly, both Climber and eBDIMS show nearly identical
divergence in the forward/reverse pathways; however, considering
PCs variance, this asymmetry is small and only for some
examples hints to distinct sequences of motions as a protein
progresses along its functional cycle. The latter is notable in the
hysteresis-like cycle between RNaseIII RNA-bound structures
(Fig. 4c), with nearby intermediates in both directions. In this
extremely complex transition, eBDIMS and Climber suggests
asynchronous motions (RBDs opening/rotation in the
forward route, followed by closing/rotation in the reverse). Here
pathway divergence, already evident from the PC1-2 distribution
of experimental conformers, contains information about the
sequence of movements in a multi-step complex landscape;
unbiased MD from unbound forms (Supplementary Fig. 6c)
also hints to differences in the preferred forward/reverse
paths as suggested for some proteins1. However, when
asymmetry is low, comparison with the FELs from MD rather
suggests the equivalence of forward/reverse routes: in the three
cases examined, they appear to delimit not different linear
paths, but rather an area in the conformational landscape that
overlaps with the lowest energy passage connecting the end-state
basins. Notably, the crystallographically trapped intermediates in
all cases tend to distribute along the edges of these
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regions, pointing that they correspond to meta-stable states but
not to energy minima in solution. Apparently, transitions from
open (enthalpy-driven) and closed (entropy-driven) forms
provide two alternative but energetically feasible solutions for a
path, indicating the usefulness of non-linear methods to explore
lowest energy channels in the protein landscape.

With the rise of cryo-electron microscopy (cryo-EM)64 and
time-resolved X-ray techniques65 capable of trapping structures
in several conformations at once, the proteins solved in three
states or more will no longer be anecdotic but rather standard.
Overall, the methodology here outlined offers a powerful
approach to rationally categorize as well as extract dynamic
information from experimental ensembles, expand them by
computation of feasible intermediate states and suggest the
lowest-energy passages connecting them, thus paving the way for
an intelligent exploration of the conformational space.

Methods
Model ensembles and intermediate definition. We selected proteins that
undergo large conformational changes (Supplementary Table 1), and for which
ensembles containing at least three clearly distinct conformations are available,
allowing the computation of robust PCs to neatly cluster onto functional states; all
these examples but GLIC were previously studied by Weiss and Levitt4. We
consider those ensembles as ‘structurally rich’ in terms of sampling, regardless of
the number of structures present. This selection criterion is different from all
previous studies, focused on the quantity of structures available for a protein rather
than the actual sampling covered by them. In practice, it means that each ensemble:
(i) has at least three different well-defined functional clusters in the PC1-2 subspace
and (ii) the first PCs have a significant weight describing distinctive large-scale
motions that cover 470% of the structural variance. We demonstrate here that
such ensembles provide extremely robust PCA, being possible to reproduce 470%
of the complete ensemble motions and variance distribution with just three
structures sampling the transition path that is, one for each end-state and one
intermediate (Supplementary Table 2 and Supplementary Fig. 1); robustness is
higher as larger is the scale of the conformational change and the variance
accumulated in the first PCs.

In order to retain the maximal structural information and perform full-length
PCA, we selected near complete structures sharing 95% sequence identity. Structures
with less than five missing residues and not targeting hinge regions were repaired and
this residue limit was extended only when reconstruction did not perturb the PCA
results (that is, modelled structures fell into already populated clusters); this condition
excluded myosin from the original Weiss benchmark. The systems selected range
from a middle sized protein such as RBP (271 residues) to the large GLIC pentameric
assembly (1540 residues), and their conformational changes involve very different
types of rearrangements, from subtle cooperative motions in GLIC (rMSD¼ 2.6 Å) to
large-scale complex rigid-body rotations and translations for RNaseIII (rMSD¼ 18 Å)
or hinge domain bending and twisting in RBP (rMSD¼ 6 Å).

For each protein, the starting structure (state 1), used as reference for ensemble
alignment, was defined as that in the inactive, resting or not-stimulated state
(that is, not bound to ligand, substrate, signal and so on) as opposed to a target or
active conformation (state 2; Supplementary Table 1) in order to facilitate the
interpretation of projections as deformations with respect to a real structure instead
of a geometric average. Once the ensembles and the end-structures were defined,
we computed transition pathways with eBDIMS and seven other path-sampling
methods and performed PCA to evaluate them (see below).

Intermediate states were defined primarily a priori on the basis of the literature
for each system or a posteriori after examination of ensemble and pathway
projections. Thus, we distinguish two types of pathway intermediates
(Supplementary Table 1): (i) knowledge-based (that is, heuristic) intermediates,
which are already characterized as such and have been trapped by specifically
designed mutations and so on; (ii) topology-based intermediates, which appear as
natural conformers along the routes connecting end-states in the PC1-2 subspace,
and correspond to structures bound to inhibitors or harbouring mutations that
have accidentally trapped a transient conformation.

Essential dynamics-based ENM (ED-ENM) driven Brownian DIMS (eBDIMS).
The eBDIMS approach implements the MD-derived nearest neighbours ED-ENM
potential10 in a Brownian dynamics simulation66 to trace physically feasible
trajectories from a starting state, R0, to a target state, Rt (Supplementary Fig. 10).
The protein is considered as a network of Ca particles connected by springs,
moving randomly in a stochastic bath. The equation of motion for each particle
follows the Langevin equation:

mi€r1 ¼ Fi � g_r1 þ xi tð Þ; ð1Þ

Where each residue i is represented by the coordinates of its a-carbon (ri) and
has a mass of 100 Da (average aminoacid mass). The second term is a dispersive

force, accounting for the viscous resistance that the particle feels on going through
the fluid (given by friction coefficient g) whereas ni(t) is a white noise vector that
accounts for fluctuations due to the thermal motion of the solvent. The random
force given by the stochastic process ni (t) satisfies two conditions: first, is Gaussian
with zero mean, and second, its autocorrelation function has the form (see further
details in refs 29,66):

xl tð Þ:xn t0ð Þh i ¼ 2mkBTgdlnd t� t0ð Þ ð2Þ
Where kB is the Boltzmann constant, T is the temperature of the stochastic bath

(300K), and the d-Dirac functions ensure the independence of the components of
the noise vector. Besides of representing the solvent, the friction and noise terms
create a natural thermostat where random energy shots are balanced by the
dissipative forces, keeping constant temperature and energy.

The stochastic equation of motion in (1) is integrated numerically with the
Verlet algorithm, which gives for the velocities and positions after timestep Dt
(1 fs). On the above equation, the force acting on each residue i, Fi, is computed
assuming hookean elastic potentials for its interactions with the rest of residues j:

Ui ¼
1
2

XN

j¼1
Kij rij � r0

ij

� �2
; ð3Þ

Where N is the number of protein residues, rij and rij
0 are the instantaneous and

equilibrium distances between pair residues i and j, and Kij is their spring constant
defined by the ED-ENM force-field which sets fixed MD-calibrated values for the
first three C-alpha neighbours in the peptide chain to keep backbone
stereochemistry, and a exponential function for long-range non-sequential
interactions (details in ref. 10).

All the parameters in the ENM potential10 and the BD simulation engine66 were
carefully optimized to reproduce the sampling by standard force-fields using as
reference the MoDEL (molecular dynamics extended library)67 database of
state-of-the art atomistic simulations with explicit solvent, as well as experimental
data from X-ray crystallography and NMR. At the default temperature of 300K, the
friction force is balanced to act as a thermostat according to the fluctuation-
dissipation relation (see above). Note that the random forces acting on each particle
(set by the random seed) render minimally different paths each time
(Supplementary Fig. 11a).

Biasing of the trajectory in the direction of the transition is achieved by dynamic
importance sampling (DIMS) based on an informational criterion68,69 where a
Maxwell demon is introduced to enrich the trajectory in movements that approach
the structure towards the target. Accordingly, for every certain number (k) of
unbiased cycles, a progress variable, Ci, for the instantaneous structure, Ri, is
recomputed and compared with the target one, and used as criteria to accept or
reject the random moves (see also ref. 42). Here we define the progress variable in
terms of the difference in pairwise distances of the starting and target structures:

Gi ¼
XN

i;j¼1
dij � d0

ij

� �
; ð4Þ

Which is compared every k steps to that of previous step, Ci� 1, so that the
current conformation is accepted if decreases its value, or rejected otherwise.

The iteration proceeds until convergence into the target basin is achieved, that
is, the sampled structures reach an rMSD with the target in the range of thermal
oscillations (within 1–3 Å depending on system size and amplitude of the
conformational change). Trajectories tend to converge even when started from
different points along a pathway, for example, from different structures belonging
to the same cluster (Supplementary Fig. 11b). Although all parameters are
optimized to work with default values for any protein system, a wider or fastest
sampling of the conformational space can be achieved by modulation of: (1) the
number of unbiased steps k, (2) the cutoff for ED-ENM force-field long-range
interactions, respectively; Specifically, increasing k provides slower but wider
sampling (useful for example, to fit experimental data) while decreasing it
accelerates calculations but renders paths closer to a Cartesian interpolation
(Supplementary Fig. 11c). The eBDIMS code can also run without a bias to
populate the conformational space as described in refs 66,70.

Thanks to the ED-ENM potential, eBDIMS method can work with limited
information from the target structure that is, a very small set of distance restraints.
Since the ED-ENM algorithm sequentially assigns the force constants to the three
nearest neighbours along the peptide chain, the algorithm works even when the
target structure has large missing regions, given that a complete starting reference
is provided (see example for SERCA in Supplementary Fig. 7a).

Transition analysis by PCs projection. PCA6 is a statistical technique to reveal
dominant patterns in noisy data. The diagonalization of the covariance matrix of
the system allows for obtaining the major axes of statistical variance or PCs. In this
way, complex multidimensional data is mapped to a reduced set of coordinates,
which contain the dominant trends explaining their variation. PCA has been
widely applied in structural biology to analyse structural ensembles. Protein
structures are aligned to a reference in order to compute the covariance matrix,
which describes the mean-square deviations in atomic coordinates from their mean
position (diagonal elements) and the correlations between their pairwise
fluctuations (off-diagonal elements). Diagonalization then yields a set of
eigenvectors and eigenvalues representing the motions that explain the variation in
the atomic coordinates. In the structurally rich ensembles analysed here, the first
two components contain at least 70% of structural variation of the ensemble and
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are very robust even when considering a minimal number of structures (three) as
discussed above (see Supplementary Table 2). Within this framework, any structure
i is characterized by its projections onto the conformational space defined by the
two major components, PCk:

PCk ¼ Ti� 0j j: cos PCk ^ Ti� 0ð Þ; ð5Þ
Where Ti� 0 is the difference between the coordinates of i structure and the

chosen reference, and PCk is one of the major axis. Since we selected ensembles
with structures sampling not only end states but also known intermediates, these
major PCs actually describe the pathway for conformational change, and projection
onto the new coordinates reveals the ordering of structures as a transition proceeds.
The comparison between distances in rMSD and in the PC1-2 subspace to
intermediates and target structures for the methods tested reveals subtle but
relevant differences between the two measures (Supplementary Table 5). The
Euclidean distance in terms of the PC coordinates provides an alternative metric,
which weights the differences between any two given structures according to the
relevant motions thus filtering out local fluctuations that contribute to the rMSD.
Note the clear detection of intermediates in Figs 2–5 and 7, panel d, which is more
pronounced than in the equivalent rMSD profiles.

Comparison to standard path-sampling algorithms. The eBDIMS trajectories
are compared with other ENM-based methods of different complexity: NOMAD-
Ref44, which uses ENMs to interpolate interresidue distances with the algorithm of
Kim et al.39; MinActPath45, which solves analytically the Langevin equation for
harmonic potentials at each side of the transition and finds numerically the
crossing points of the solutions; finally, the iENM46 is based on solving the saddle
points of a double-well potential by linearly interpolating between the end-states
ENM potential functions while iMODS20 interpolates in the dihedral angle space.
We also compare with the non-linear atomistic algorithms NMSIM47, which uses a
complex three-steps procedure, and Climber, based on the molecular mechanics
ENCAD potential4. All the methods were run with their default parameters
(See Supplementary Table 4 and Supplementary Methods).

For the non-linear eBDIMS and Climber, trajectories were computed in both
forward and backwards directions; and their asymmetry score (ranging from 0
to 1), evaluated as the eccentricity of the resulting ellipsoids in the PC1-2 subspace;
the rMSD contour plots between the forward/reverse trajectories were also
computed (see Supplementary Methods and Supplementary Fig. 5). Note that, in
the PC1-2 subspace, a Cartesian interpolation such as that provided by the
MolMov server (Morph)19 projects as a straight line between the end-states
regardless of the energy minimization of the structures (see summary of methods
in Supplementary Table 4). To gain further insight into how motions are imprinted
in the structures, we also created ensembles along the lowest frequency NMs10 with
a simple Monte Carlo routine.

MD simulations. Crystal structures of RBP (1BA2, 2DRI, 1URP), RNAseIII
(1YYW, 1YYO, 1YZ9), 5-NTase (1OID, 1OI8, 1HPU) and GLIC (4NPQ) were
used for MD simulations. Each system was solvated with TIP3P waters, energy
minimized and equilibrated, and production runs were carried out with no
restraints under isothermal-isobaric (NPT) ensemble. Steered MD and AWH
simulations of RBP were run under the same conditions as the production runs,
with the same reaction coordinate (interdomain distance between center-of-mas-
ses). See detailed protocols in Supplementary Methods. Dr Seth Robia and Dr Marc
Baaden generously provided trajectories for SERCA (1SU4) and GLIC (4HFI),
respectively. The SERCA simulations were performed in explicit water under NPT
conditions (T¼ 300K) as described in detail in Smolin and Robia58. GLIC
simulations were also performed in explicit water under NPT conditions as
described in Nury et al.59. A list of all simulations and their overlap with eBDIMS is
provided in Supplementary Table 8.

Calculation of heuristic system-defined structural variables. The heuristic
system-defined variables for each protein were computed according to the specific
literature using in-house tools combined with Visual Molecular Dynamics (VMD)
scripts (see details in Supplementary Methods).

Data availability. The original FORTRAN code for eBDIMS and source data for
all figures and tables is available upon request to the authors.
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47. Krüger, D. M., Ahmed, A. & Gohlke, H. NMSim web server: integrated
approach for normal mode-based geometric simulations of biologically relevant
conformational transitions in proteins. Nucleic Acids Res. 40, 310–316 (2012).

48. Björkman, J. & Mowbray, S. L. Multiple open forms of ribose-binding protein
trace the path of its conformational change. J. Mol. Biol. 279, 651–664 (1998).

49. Gan, J. et al. Intermediate states of ribonuclease III in complex with double-
stranded RNA. Structure 13, 1435–1442 (2005).

50. Hilf, R. J. & Dutzler, R. A prokaryotic perspective on pentameric ligand-gated
ion channel structure. Curr. Opin. Struct. Biol. 19, 418–424 (2009).

51. Sauguet, L. et al. Crystal structures of a pentameric ligand-gated ion channel
provide a mechanism for activation. Proc. Natl Acad. Sci. USA 111, 966–971
(2014).

52. Prevost, M. S. et al. A locally closed conformation of a bacterial pentameric
proton-gated ion channel. Nat. Struct. Mol. Biol. 19, 642–649 (2012).

53. Sauguet, L. et al. Structural basis for ion permeation mechanism in pentameric
ligand-gated ion channels. EMBO J. 32, 728–741 (2013).

54. Hilf, R. J. C. et al. Structural basis of open channel block in a prokaryotic
pentameric ligand-gated ion channel. Nat. Struct. Mol. Biol. 17, 1330–1336
(2010).

55. Calimet, N. et al. A gating mechanism of pentameric ligand-gated ion channels.
Proc. Natl Acad. Sci. USA 110, E3987–E3996 (2013).

56. Gonzalez-Gutierrez, G., Cuello, L. G., Nair, S. K. & Grosman, C. Gating of the
proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by
X-ray crystallography. Proc. Natl Acad. Sci. USA 110, 18716–18721 (2013).

57. Ravindranathan, K. P., Gallicchio, E. & Levy, R. M. Conformational equilibria
and free energy profiles for the allosteric transition of the ribose-binding
protein. J. Mol. Biol. 353, 196–210 (2005).

58. Smolin, N. & Robia, S. L. A structural mechanism for calcium transporter
headpiece closure. J. Phys. Chem. B 119, 1407–1415 (2015).

59. Nury, H. et al. One-microsecond molecular dynamics simulation of channel
gating in a nicotinic receptor homologue. Proc. Natl Acad. Sci. USA 107,
6275–6280 (2010).

60. Espinoza-Fonseca, L. M. & Thomas, D. D. Atomic-level characterization of the
activation mechanism of SERCA by calcium. PLoS ONE 6, e26936 (2011).

61. Winther, A.-M. L. et al. The sarcolipin-bound calcium pump stabilizes calcium
sites exposed to the cytoplasm. Nature 495, 265–269 (2013).

62. Toyoshima, C. et al. Crystal structures of the calcium pump and sarcolipin in
the Mg2þ -bound E1 state. Nature 495, 260–264 (2013).

63. Bahar, I., Chennubhotla, C. & Tobi, D. Intrinsic enzyme dynamics in the
unbound state and relation to allosteric regulation. Curr. Opin. Struct. Biol. 17,
633–640 (2007).

64. Binshtein, E. & Ohi, M. D. Cryo-electron microscopy and the amazing race to
atomic resolution. Biochemistry 54, 3133–3141 (2015).

65. Levantino, M., Yorke, B. A., Monteiro, D. C., Cammarata, M. & Pearson, A. R.
Using synchrotrons and XFELs for time-resolved X-ray crystallography and
solution scattering experiments on biomolecules. Curr. Opin. Struct. Biol. 35,
41–48 (2015).

66. Emperador, A., Carrillo, O., Rueda, M. & Orozco, M. Exploring the suitability
of coarse-grained techniques for the representation of protein dynamics.
Biophys. J. 95, 2127–2138 (2008).

67. Rueda, M. et al. A consensus view of protein dynamics. Proc. Natl Acad. Sci.
USA 104, 796–801 (2007).

68. Zuckerman, D. M. & Woolf, T. B. Dynamic reaction paths and rates through
importance-sampled stochastic dynamics. J. Chem. Phys. 111, 9475 (1999).

69. Perilla, J. R., Beckstein, O., Denning, E. J. & Woolf, T. B. Computing ensembles
of transitions from stable states: dynamic importance sampling. J. Comput.
Chem. 32, 196–209 (2011).

70. Camps, J. et al. FlexServ: an integrated tool for the analysis of protein flexibility.
Bioinformatics 25, 1709–1710 (2009).

Acknowledgements
This work was funded by IRB (M.O., O.C., L.O.), the Swedish Research Council
(2013-5901) and the Swedish e-Science Research Center (E.L, L.O., O.Y.). The authors
acknowledge the use of computational resources by the Swedish National Infrastructure
for Computing (2015/16-45). L.O. was supported by a postdoctoral scholarship from
SeRC/Vetenskapsrådet. L.O. thanks Dr Johan Gustavsson for helpful discussions and
suggestions, thorough reading of the manuscript and help with the preparation of figures
and interactive plots. Thanks to Spanish Ministry of Science (MINECO) grant Bio2015
64802-R, Catalan AGAUR, European H2020 Program (Bio Excel CoE) and European
Research Council (ERC Advanced Grant SimDNA). M.O. is an ICREA Academia Fellow.
We thank Dr Seth Robia and Dr Marc Baaden for generously providing SERCA and
GLIC MD trajectories.

Author contributions
L.O. conceived the original idea, developed the eBDIMS code, performed, analysed and
interpreted calculations and wrote the paper. O.Y. performed PCA and eBDIMS calcu-
lations, and MD simulations. O.C. wrote the initial eBDIMS code. M.O and E.L. critically
read the manuscript and helped with useful suggestions for calculations and data
interpretation.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Orellana, L. et al. Prediction and validation of protein
intermediate states from structurally rich ensembles and coarse-grained simulations.
Nat. Commun. 7:12575 doi: 10.1038/ncomms12575 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12575

14 NATURE COMMUNICATIONS | 7:12575 | DOI: 10.1038/ncomms12575 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Pathway validation by PCA of structurally-rich ensembles
	Escherichia coli ribose-binding protein (RBP)
	E. coli 5prime-nucleotidase (5prime-NTase)
	Aquifex aeolicus ribonuclease III (RNaseIII)

	Figure™1Reconstruction of the structural landscape by PCA from structurally rich ensembles and generation of transition pathways by eBDIMS.The workflow is shown for a typical example (RBP, details in Fig.™2): structures are collected from the PDB (left pa
	Figure™2Conformational transition of E. coli ribose-binding protein (RBP).(a) Crystallographic unbound (1ba2) and ribose-bound (2dri) state of RBP; the two ligand-binding domains are coloured in blue and orange. (b) Principal components of the X-—ray ense
	Oryctolagus cuniculus sarco-endoplasmic reticulum Ca2+-ATPase (SERCA)

	Figure™3Conformational transition of E. coli 5prime-nucleotidase (5primeNTase).(a) Crystallographic unbound (1oid) and nucleotide-bound (1hpu) states, showing one domain in red and the other coloured by secondary structure to visualize the ball-and-socket
	Gloeobacter violaceus ligand-gated ion channel (GLIC)

	Figure™4Conformational transition of A. aeolicus RNA endonuclease III (RNaseIII).(a) Crystallographic dimers for closed non-catalytic state (1yyo) and open pre-catalytic state (1yyw), showing the dsRNA-binding domains (RBDs) in green and the rest of the p
	Figure™5Conformational transition of O. cuniculus sarcoplasmic Ca2+-pump (SERCA).(a) Crystallographic E1-Ca2+ bound open (2c9m) and E1-Ca2+- nucleotide bound (1t5s) state, showing the headpiece domains coloured in red (A), blue (P) and green (N) and the T
	Intermediates sampling in atomistic FELs

	Figure™6Comparison between the crystallographic and the eBDIMS pathways for RNaseIII and SERCA.(a) Upper row: The complete X-—ray structures for the RNaseIII end-states and the intermediate are shown bound to the dsRNA substrate; these conformations repre
	Figure™7Conformational transition of GLIC.(a) The two crystallographic structures representing the resting state (4npq) and the open conducting state (4thinsphfi). (b) Dominant PCs of the GLIC X-—ray ensemble (46 structures) versus 4npq. (c) Projection of
	Discussion
	Figure™8Correlations between structural variables for GLIC and the PC1-2 partitions reveal two possible temperature-dependent pathways for gating.(a) Variation of major structural parameters in the PC1-2 subspace (Pearson Correlation in brackets; further 
	Figure™9Overlap of eBDIMS forward and reverse pathways with free energy landscapes obtained from atomistic simulations.(a) RBP opening with biased MD trajectories (1thinspmgrs); (b) SERCA headpiece spontaneous closing in multi-run MD simulations from the 
	Methods
	Model ensembles and intermediate definition
	Essential dynamics-based ENM (ED-ENM) driven Brownian DIMS (eBDIMS)
	Transition analysis by PCs projection
	Comparison to standard path-sampling algorithms
	MD simulations
	Calculation of heuristic system-defined structural variables
	Data availability

	SeylerS. L.BecksteinO.Sampling large conformational transitions: adenylate kinase as a testing groundMol. Simul.401232014DasA.Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network modelPLoS Comput. B
	This work was funded by IRB (M.O., O.C., L.O.), the Swedish Research Council (2013-5901) and the Swedish e-—Science Research Center (E.L, L.O., O.Y.). The authors acknowledge the use of computational resources by the Swedish National Infrastructure for Co
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




