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Stxmrrl .ary 

In experimental murine cutaneous leishmaniasis caused by Leishmania major (Lm), the cellular 
determinants governing development of protective or exacerbative T cells are not well under- 
stood. We, therefore, attempted to determine the influence of T cell and non-T cell compart- 
ments on disease outcome. To this end, T cell chimeric mice were constructed using adult thymec- 
tomized lethally irradiated, bone marrow-reconstituted (ATXBM) animals of genetically resistant, 
C57BL/6, or susceptible, BALB/c, backgrounds. These hosts were engrafted with naive T cell 
populations from H-2-congenic susceptible, BALB.B6-H-2 b, or resistant, C57BL/6.C-H-2 d, 
animals, respectively. Chimeric mice were then infected with Lm, and disease outcome was moni- 
tored. BALB/c T cell chimeric mice, BALB/c ATXBM hosts given naive C57BL/6.C-H-2 d T 
cells, resolved their infections as indicated by reductions in both lesion size and parasite numbers. 
Furthermore, the mice developed typical Thl (interferon[IFN]-3,hlinterleukin[IL]-4 l~ cytokine 
patterns. In contrast, both sham chimeric, BALB/c ATXBM hosts given naive BALB/c T cells, 
and control irradiated euthymic mice succumbed to infection, producing Th2 profiles (IFN-yl~ 
4hqL-10hi). C57BL/6 T cell chimeras, C57BL/6 ATXBM hosts given naive BALB.B6-H-2 b T 
cells, resolved their infections as did C57BL/6 sham chimeras and euthymic controls. Interest- 
ingly, whereas C57BL/6 control animaIs produced Thl cytokines, chimeric animals progressed 
from Th0 (IFN-3/hiIL-4hiIL-10 hi) to Th2 (IFN-~l~ h~) cytokine profiles as cure ensued. 
Both reconstitution and chimeric status of all mice were confirmed by flow cytometry. In addi- 
tion, T cell receptor V3 usage of Lm-specific blasts was determined. In all cases, V~ use was 
multiclonal, involving primarily V32, 4, 6, 8.1, 8.2, 8.3, 10, and 14, with relative V3 frequen- 
cies differing between H-2 b and H-2 a animals. Most importantly, however, these differences did 
not segregate between cure and noncure outcomes. These findings indicate that: (a) genetic traits 
determining cure in Lm infection can direct disease outcome from both T cell and non-T cell 
compartments; (b) the presence of the curing genotype in only one compartment is sufficient 
to confer cure; (c) curing genotype T cells autonomously assume a Thl cytokine profile-medi- 
ating cure; (d) noncuring genotype T cells can mediate cure in a curing environment, despite 
the onset of Th2 cytokine production; and lastly, (e) antigen specificity of responding T cells, 
as assessed by V3 T cell receptor diversity, is not a critical determinant of disease outcome. 

I 'n experimental murine cutaneous leishmaniasis caused 
by Leishmania major (Lm) 1, disease outcome in genetically 

resistant and susceptible mice is modulated by preferential 
expansion of either protective or exacerbative T cells, respec- 
tively (1, 2). However, it remains unclear which cell popula- 
tions govern the preferential activation of exacerbative or pro- 
tective T cell subsets. It is known that T cell differentiation 

1 Abbreviations used in this paper: ATXBM, adult thymectomized lethally 
irradiated, bone marrow-reconstituted; GvHR, graft-versus-host reactions; 
Lm, Leishmania major; LNC, lymph node cells; Mq~, macrophage; miHA, 
minor histocompatibility antigens. 

and function can be influenced by the qualities of both T 
cells themselves and APC (3, 4). Several studies of murine 
leishmaniasis have, indeed, demonstrated that, in addition to 
T cells, differences in the function of APC, such as macro- 
phages (M~) (5-8) and B cells (9, 10), may influence disease 
outcome. Thus, it is conceivable that the fate of infection 
may be determined by either T cells, non-T cells such as APC, 
or a combination of the two. Identification of the cellular 
compartments influencing disease outcome would be useful 
since such knowledge could facilitate a rational approach to- 
ward immunotherapy and vaccination. 

Therefore, we conducted studies examining the contribu- 
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tion of T cell and non-T cell factors to the development of 
immunity in genetically resistant, C57BL/6,  and susceptible, 
BALB/c, mice. This was accomplished by constructing two 
groups of reciprocal T cell chimeric animals through recom- 
bination of T cell-deficient adult thymectomized lethally ir- 
radiated, bone marrow-reconsti tuted (ATXBM) hosts of 
C57BL/6 or BALB/c background with naive H-2-congenic 
T cells of BALB/c or C57BL/6 background, respectively. Mice 
were then infected with Lm, and disease progression was moni- 
tored through lesion size, parasite numbers, cytokine produc- 
tion, and T C R  VB usage of Lm-specific T cells. 

Materials and Methods 

Animals. All mice were purchased as specific pathogen-free 
young adults and maintained in accordance with National Insti- 
tutes of Health guidelines. BALB/c and C57BL/6 thymectomized 
animals were prepared by adult thymectomy of 3-wk-old animals 
by Taconic Farms (Germantown, NY) and were provided with age- 
matched euthymic control mice. Animals used as bone marrow and 
thymocyte donors were from either Taconic Farms, the National 
Cancer Institute (Rockville, MD), the Jackson Laboratory (Bar 
Harbor, ME) for B6.C-H-2a/aBy mice, or Harlan Olac Ltd. (Bi- B220 RA3-3A1 
cester, United Kingdom) for C.B6-H-2 b mice. CD4 GK1.5 

Parasites and Antibodies. Lm was a done of LV39 and was main- 
tained as previously described (11). The mAbs used in this study CD8 H35-17.2 
are listed in Table 1 and were used as commercialls, supplied re- [-AbdI-Edk M5/114 
agents or cell culture supernatants as indicated below. IFN-y R4-6A2 

Preparation of T Cell Chimeric and Control Mice. The composi- IFN-'y XMG 1.2 
tion and nomenclature of T cell chimeric mice and control animals 

IL-4 11Bll is detailed in Table 2. Control and thymectomized mice were main- 
tained on acidified water, pH 2.5-3.5, for at least 6 wk before it- IL-4 BZD6-24G2 
radiation and throughout the experiment. BALB/c and C57BL/6 IL-10 JES5-2A5 
mice were lethally X-irradiated with 850 and 900 rads, respectively, IL-10 SXC-1 
at a dose rate of 25 rads/min. 6 h later they were reconstituted Ly-6A.2 3E7.1 
by intravenous injection of 5 x 106 syngeneic bone marrow cells 
which were Thy-l.2-depleted with mAh NEI-001 and Low Tox Ly-6E.1 SK70.94 
Rabbit complement (Accurate Chemical and Science Corp., West- Mac-1 M1/70 
bury, NY). Mice were thereafter injected daily for 2 wk with 1.5-2.0 T C R c ~  H57-597 
ml of an antibiotic cocktail containing 200 U penicillin, 200/zg Thy-l.2 NEI-001 
streptomycin, and 18/~g gentamycin/ml, prepared in physiological 
saline with 0.15 M glucose. 2-3 wk after irradiation and bone Thy-1 M5/49.4 
marrow reconstitution, the animals were engrafted intravenously V32 B20.6 
with 100-150 x 106 thymocytes prepared from 3-6-wk-old VB3 KJ-25 
normal mice of the appropriate strain, as indicated in Table 2. V~4 KT4.10 
Thymocyte injections were given every 2 wk thereafter to mimic V~5.1, 5.2 MtL9-4 
natural T cell hematopoiesis. At 7-8 wk after irradiation and recon- 
stitution, mice were infected with Lm. All subsequent assays per- V~/6 RR4-7 
formed with lymphoid tissue were conducted 2 wk after the VB7 TR310 
preceding thymocyte infusion. All thymectomized mice killed VB8.1, 8.2 MtL5-2 
during and at the termination of experiments were examined for VB8.1, 8.2, 8.3 F23.1 
the presence of a thymic remnant. None was found. 

Infection and Lesion Progression. Mice were infected in the rear V~8.2 F23.2 
footpad with 106 stationary phase promastigotes (37). Lesion VB9 MRIO-2 
progression was followed by measurement of footpad swelling with VB10 KT10b-2 
a vernier caliper using the uninfected contralateral footpad as a con- V~I 1 RR3-15 
trol. Parasite numbers in footpads, spleens, or draining (popliteal, 
inguinal, and para-aortic) lymph nodes of infected mice were de- VB13 MR12-4 
termined with duplicate mice at the indicated time points using V/~14 14-2 
a limiting dilution assay (38). 

Analysis of Reconstitution Status and Chimerism. To examine recon- 
stitution status, duplicate mice were killed and the draining lymph 
nodes or spleens were prepared as a single cell suspension. Lym- 
phocytes were stained for expression of Thy-1, CD4, CDS, B220, 
and Mac-l, and analyzed by flow cytometry using a FACScan | 
(Becton Dickinson & Co., Mountain View, CA), as previously de- 
scribed (39). Gating was adjusted to include lymphocytes and mono- 
cytes, while excluding cells with high side scatter, such as granulo- 
cytes. All analyses were performed on 5,000 gated events. 

To confirm that the responding T cells in chimeric animals were 
of donor origin, Lm-spedfic T cell bhsts from draining lymph nodes 
were obtained through one cycle of stimulation, rest, and restimu- 
lation, as previously described (40, 41), using live Lm and fresh 
irradiated spleen ceils of host genotype. T cell blasts were assayed 
for chimeric status after the first or second restimulation in vitro. 
Cells were stained with anti-CD4 or normal rat Ig, followed by 
PE-goat anti-rat IgG preabsorbed with mouse Ig (Southern Bio- 

Table 1. Monoclonal Antibodies Used in this Study 

Specificity Antibody Reference 

12 
13 
14 
15 
16 
16 
17 

PharMingen 
PharMingen 

18 
19 
2O 
21 
22 

NEN | Research 
15 
23 
24 

25 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 
36 
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Table 2. Composition and Nomenclature of T Cell Chimeric and Control Mice 

Irradiated host Thymocyte donor 

Strain Status H-2 Marrow donor Strain Background H-2 Nomenclature 

BALB/c Normal d BALB/c - - - CT § 
BALB/c Thymectomized d BALB/c - - - CT- 

BALB/c Thymectomized d BALB/c BALB/c BALB/c d CT- + C 

BALB/c Thymectomized d BALB/c B6.C-H-2d/aBy C57BL/6 d CT- + B6 

C57BL/6 Normal b C57BL/6 - - - B6T § 
C57BL/6 Thymectomized b C57BL/6 - - - B6T- 
C57BL/6 Thymectomized b C57BL/6 C57BL/6 C57BL/6 b B6v- + B6 

C57BL/6 Thymectomized b C57BL/6 C.B6-H-2 b BALB/c b B6T- + C 

BALB/c and C57BL/6 mice were lethally X-irradiated with 850 and 900 rads, respectively. 6 h later, mice were reconstituted intravenously with 
5 x 106 Thy 1.2-depleted syngeneic bone marrow cells. As described in Materials and Methods, 2-3 wk after irradiation and bone marrow recon- 
stitution, the appropriate groups received 100-150 x 106 H-2 congenic thymocytes intravenously. Thymocyte injections were given every 2 wk 
thereafter to mimic natural T cell hematopoiesis. Mice were infected with Lm 7-8 wk after irradiation and reconstitution. 

technology Associates, Birmingham, AL) and either FITC-anti- 
Ly-6E.1, or FITC-Ly-6A.2 prepared from supernatants with Pro- 
tein G-Sepharose 4 Fast Flow | (Sigma Immunochemicals, St. Louis, 
MO), and FITC-conjugated following standard procedures (42). 
Flow cytometry was performed as described above. 

Cytokine Production of Lm-specific T Cells. Lm-specific T cell 
blasts were obtained as described above. After rest, quiescent T 
cells were isolated by passage over Ficoll gradients. 106 cells/ml 
were restimulated with 5 x 106 irradiated host genotype spleen 
cells and 106 live Lm/ml at 1 ml/well in 24-well tissue culture 
plates (Costar Corp., Cambridge, MA). In some experiments, 5 
• 106 fresh lymphocytes from draining lymph nodes were stimu- 
lated with 2 x 106 live Lm in 0.5 ml/well on 48-well tissue cul- 
ture plates (Costar). In all cases, supernatants were harvested after 
24 h, which was previously determined to be a point at which reli- 
able and representative results could be observed in this system (40). 

IL-4 and IFN-3, activity in supernatants was detected by either 
bioassay, using the 11.6 and WEHI cell lines as previously described 
(39, 40), or by sandwich ELISA performed on Maxisorp | F96 plates 
(Nunc, Roskilde, Denmark) with capture mAbs 11Bll, R4-6A2, 
and secondary biotinylated mAbs BZD6-24G2 and XMG1.2 (Phar- 
Mingen, San Diego, CA), respectively. Binding of the secondary 
mAb was detected using a streptavidin-horseradish peroxidase con- 
jugate (Sigma). II.-10 was also detected by sandwich ELISA using 
the capture mAb JES5-2A5 in conjunction with rat IgM mAb 
SXC-1. Binding of the secondary mAb was detected using horse- 
radish peroxidase-conjugated goat anti-rat IgM (Pierce Chemical 
Co., Rockford, IL). ELISA's were developed with 3, Y, 5, 5' -tetra- 
methybenzidine peroxidase substrate (Kirkegaard & Perry Labora- 
tories, Inc., Gaithersburg, MD). In all cases, cytokine concentra- 
tions were reported as units per milliliter and were calculated from 
a standard curve for each assay obtained with known concentra- 
tions of recombinant cytokines (Genzyme Corp., Cambridge, MA). 

VflAnalysis. Lm-specific blasts were isolated and stained with 
supernatants of hybridomas secreting the appropriate anti-VB mAb, 
and analyzed by flow cytometry as described above. Negative con- 
trols consisted of the appropriate species and isotype matched mAb 
or normal Ig. The secondary antibodies were FITC-labeled goat 

anti-IgG(-IgM) for either mouse (Cappel-Organon Teknika, 
Durham, NC), rat (Tago, Inc., Burlingame, CA), or hamster (Caltag 
Laboratories, San Francisco, CA). 

Absence of Graft-versus-Host Reactions (GvHR). The absence of 
GvHR was confirmed through monitoring chimeric and control 
animals for external signs of GvHR, such as mortality, weight loss, 
alopecia, and dermatitis. All sacrificed mice were inspected for gross 
internal GvHR pathologies, such as enteritis and hypersplenomegaly. 
Finally, fresh lymph node cells (LNC) from chimeric and control 
animals were stimulated in vitro with allogeneic spleen cells, and 
cytokine production and proliferation were assessed. For cytokine 
production, 2.5 x 106 LNC and 2.5 x 106 irradiated spleen cells 
of host genotype were cultured in 0.5 ml of medium for 24 h, 
as previously described (39). Culture supematants were then ex- 
amined for the presence of IFN-3, and IL-4 by ELISA, as detailed 
above. For proliferation, cells were stimulated in vitro by incubating 
5 x 10 s LNC with 5 x 105 irradiated spleen cells as described 
elsewhere (39). 

Results 

Disease Outcome in T Cell Chimeric and Control Mice. Dis- 
ease outcome with respect to lesion size is shown in Fig. 1, A 
and/~ In the BALB/c set (Fig. 1 A), we observed, as expected, 
that both euthymic CT + and sham chimeric CT- + C mice 
succumbed to infection and required euthanasia by day 55, 
due to severe ulcerated and necrotic lesions. In striking con- 
trast, chimeric CT- +B6 animals, reconstituted with naive 
thymocytes from resistant B6.C-H-2 d mice, resolved their 
infections. Lesion progression in the C57BL/6 set (Fig. 1 
B) showed the expected cure of control groups B6T + and 
B6T- +B6. Interestingly, chimeric B6T- + C  mice, given thy- 
mocytes from susceptible C.B6-H-2 b animals, also cured 
with similar kinetics. 

We next determined parasite burdens in lesions of infected 
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Figure 1. Lesion progression and 
parasite burden in T cell chimera and 
control mice. (Tbp) Mice were in- 
fected in the rear footpad with 106 
stationary phase Lm promastigotes, 
and lesion progression was moni- 
tored as described in Materials and 
Methods. (A) CT + (O), CT- +C 
(A), CT- +B6 (ll); one represen- 
tative experiment of three is shown. 
(/3) B6T + (e) ,  B6T-+B6 (A), 
B6T- +C ([~); one representative 
experiment of four. Ulcerated or 
necrotic lesions are indicated by *. 
(Bottom) Parasite numbers in foot- 
pads were determined as indicated 
in Materials and Methods. (C and 
D) symbols are as for A and B, 
respectively. Each time point is the 
mean of three independent experi- 
ments. Visceralization of Lm to 
lymph nodes (popliteal, inguinal, 
and para-aortic) or spleen is indi- 
cated by *. 

mice. Uncontrol led replication of  Lm occurred in CT § and 
CT- + C animals, resulting in metastasis to lymph nodes and 
spleen by day 30 (Fig. 1 C) .  However, in agreement wi th  
lesion development, chimeric C T - + B 6  animals reduced 
their parasite burdens 1,000-fold by day 80 and showed no 
signs of parasite dissemination. For the C57BL/6 set, again 
in agreement wi th  lesion size, all three groups reduced their 
parasite burdens (Fig. 1 D). 

Finally, as an additional control, we examined the outcome 
of Lm infection in CT- and B6T- mice which received no 

T cells. These animals experienced dissemination of the parasite 
to the spleen and lymph nodes by day 30. More importantly,  
parasite growth  was unrestrained such that by day 80 more 
than 80 x 106 and 95 x 106 Lm/footpad were observed in 
CT- and B6T- mice, respectively. 

Verification of Reconstitution and Chimeric Status. To inter- 
pret these results, it was necessary to verify that reconstitu- 
tion of the lymphoid  system had occurred and that T cells 
mediat ing disease outcome in chimeric mice were of  donor 
origin. Flow cytometric analysis of  lymphocytes from the 

Table 3. Reconstitution Status of T Cell Chimeric and Control Mice 

T cells B cells M~ 

Group Thy 1 CD4 CD8 B220 Mac-1 

CT § 59 +- 3.0 44 _+ 3.0 15 -+ 1.3 37 + 4.3 4 _+ 0.8 

C T - + C  40 -+ 3.2 25 -+ 3.7 15 + 3.0 54 +_ 7.0 6 -+ 3.6 

CT-+B6 37 _+ 3.5 22 _+ 2.4 15 -+ 3.0 56 -+ 4.5 7 + 2.1 

B6T § 35 _+ 4.2 21 -+ 3.8 14 _+ 3.1 61 _+ 6.6 4 -+ 2.0 

B6T +B6 22 _+ 3.9 12 _+ 3.8 10 -+ 3.5 74 _+ 8.3 4 + 2.1 

B6T + C  24 _+ 3.8 14 -+ 3.8 10 _+ 3.2 73 _+ 6.8 3 -+ 1.1 

Draining LNC were analyzed by flow cytometry for the indicated markers as decribed in Materials and Methods. Numbers shown are normalized 
with respect to total T cells, B cells, and M~, and are averages _+ SEM of duplicate mice killed at three time points of infection. Representative 
results of five experiments are shown. 
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Figure 2. The origin of responding T calls in BALB/c and 
C57BL/6 T cell chimeras. Two-color flow cytometry was used 
to examine CD4+ Lm-specific blast cells from CT- +B6 and 
B6T- + C chimeras for expression of the strain-specific allelic 
markers Ly-6E.1 (BALB/c) or Ly-6A.2 (C57BL/6). The 
numbers in quadrants denote percentage of cells with the in- 
dicated staining pattern. Chimerism was confirmed on dupli- 
cate mice at the time points indicated in Fig. 1; representative 
data are shown. 

draining lymph nodes revealed that reconstitution was achieved 
for T cells, B cells, and MOs (Table 3). Similar cell composi- 
tions were observed in the spleen, suggesting that lymphoid 
reconstitution was systemic and not limited to immunologi- 
cally active areas. Moreover, total cell counts were similar in 
each group of thymectomized control and chimeric animals. 
The fact that animals with virtually identical lymph node 
composition, Cx -+C and CT-+B6, exhibited divergent 
disease outcomes (Fig. 1, A and C) demonstrates that ample 
cell numbers were present to support the full spectrum of 
disease. 

To determine whether T cells mediating disease outcome 
were of donor origin, Lm-specific T cell blasts were gener- 

ated from chimeric animals and analyzed for expression of 
allelic markers Ly-6E.1 or Ly-6A.2, expressed by either the 
BALB/c or C57BL/6 genotype, respectively (43). Results (Fig. 
2) indicate that all responding T cells were of donor origin 
in both groups of T cell chimeric mice. 

Cytokine Production ofT Cell Chimeric and Control Mic~ We 
next determined the cytokine secretion profile of T cells from 
chimeric and control mice. Control CT + and CT- +C mice, 
which succumbed to infection, exhibited the classical Th2 
cytokine pattern (IFN-3,1~ hi) characteristic of normal 
BALB/c mice (Fig. 3, top; reference 40). In contrast, curing 
CT- + B6 chimeric animals produced the Thl cytokine pro- 
file (IFN-q, hilL-41~ ~ often associated with healing. Simi- 
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Figure 3. Cytokine profiles of control and chi- 
meric animals. Lm-spedfic blasts were restimulated 
for cytokine on host genotype spleen cells as de- 
scribed in Materials and Methods; IL-4(O), IFN- 
3'(J),  IL-10(A). IL-4 and IFN-q' were measured 
by bioassay and/or ELISA, and IL-10 was measured 
by ELISA. For BALB/c and C57BL/6 groups, the 
geometric means _+ SEM of two and four inde- 
pendent experiments, respectively, are shown. 



larly, the resistant C57BL/6 control B6T § and B6T- +B6 
animals developed the expected Thl-type profile of normal 
C57BL/6 mice (Fig. 3, bottom; reference 40). Cytokine produc- 
tion in chimeric B6T-+ C animals, however, displayed a 
novel pattern. IFN-3, levels increased until the middle phase 
of infection and, subsequently, declined to lower levels by 
day 80. This was accompanied by high IL-4 production 
throughout infection, and IL-10 levels which declined until 
the middle phase and then rebounded by day 80. Thus, 
chimeric B6T- +C mice exhibited a Th0 cytokine pattern 
(IFN-3'hill.r4hilL-10 hi) which progressively approached a Th2 
profile as cure ensued. Although most cytokine analyses were 
performed on Lm-spedfic T cell populations expanded in vitro, 
similar results were found when draining LNC were stimu- 
lated with Lm. 

Finally, it was important to verify that B6.C-H-2 d and 
C.B6-H-2 b mice were analogous to their well-characterized 
C57BL/6 and BALB/c counterparts with respect to Lm in- 
fection. Indeed, we confirmed that cytokine production of 
Lm-infected B6.C-H-2 d and C.B6-H-2 b mice was the ex- 
pected Thl and Th2 cytokine pattern accompanied by cure 
and noncure responses, respectively. 

Analysis o fT  Cell V~ Usage of Lm-specific T Cells. One 
potential factor influencing disparate T cell development and 
function in leishmaniasis could be antigen specificity. Since 
this would be echoed in the TCR usage of Lm-specific T 
ceils, we examined the V3 repertoire of responding CD4 + 
T ceils in control and chimeric mice (Fig. 4). In the BALB/c 
set, no consistent differences in V3 usage were observed be- 
tween ceils from curing CT- +B6 and noncuring CT + and 
CT- +C mice (Fig. 4, top). Within the C57BL/6 groups, 
V3 usage was also found to be similar (Fig. 4, bottom). Since 
normally noncuring T ceils from the C.B6-H-2 b mouse med- 
iated cure in a B6 environment (Fig. 1), we reasoned that 
certain protective antigens may not be presented to T cells 
in noncuring animals. We, therefore, analyzed the V3 usage 
in C.B6-H-2 b mice and again found it to be similar to mice 

in the C57BL/6 group (Fig. 4, bottom). Thus, despite the 
fact that C.B6-H-2 b T cells were exacerbative when oper- 
ating within the susceptible host and curative in the resistant 
host, the VB repertoire remained similar. In all mice, V3 
usage was multiclonal, involving primarily V32, 4, 6, 8.1, 
8.2, 8.3, 10, and 14. The most pronounced differences found 
in this analysis were that V3 usage among H-2a-restricted 
Lm-specific T cells (Fig. 4, top) involved more V38 and fewer 
unscreened V3 segments as compared to cells from H-2 b 
mice (Fig. 4, bottom). 

GvHR Is Not Detectable in Chimeric Animals. Given that 
this experimental system involved donor T cells and recip- 
ient hosts which are congenic only at the major histocom- 
patibility loci, it is possible that GvHR against minor 
histocompatibility antigens (miHA) might occur and poten- 
tially influence our results. We, therefore, tested for presence 
of GvHR in chimeric animals (Table 4). As indicated, no 
pathology typical of GvHR, such as mortality, weight loss, 
alopecia, dermatitis, bowel inflammation, or hypersplenomegaly, 
could be detected in chimeric animals. Furthermore, cocul- 
ture of LNC from chimeric animals with miHA allogeneic 
spleen cells failed to elicit proliferation or cytokine produc- 
tion of either Ib4, or, more importantly, IFN-3', which is 
produced in GvHR against miHA (44). These results indi- 
cate that chimeric animals were free of GvHR by all parameters 
examined. 

Discussion 

The results of this study show that the BALB/c environ- 
ment clearly supported a curative outcome when supplied 
with naive B6-type T cells. Several studies have indicated that 
early IFN-3' production is necessary, though not sufficient, 
for cure (4, 45-47). Our results imply that B6-type T cells 
may produce, and/or elicit from other cells, sufficient IFN-y 
production for disease resolution. Since it has been shown 
that depletion of NK or y~5-T cells did not reverse disease 
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Figure 4. V3 analysis ofLm-specific T cells. Proportional 
representation of V3 types among Lm-specific T cells are 
shown and indicate the percentage of total TCR~3 expressing 
cells in the population. Determinations were made at mul- 
tiple time points during infection, and data are the means 
of time points taken between day 30 and day 80. Data for 
all groups were compiled from two independent experiments 
and represent pooled data from eight mice for each ex- 
perimental group, except C.B6-H-2 b, which was obtained 
from four mice. 
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Table 4. Chimeric Mice Do Not Exhibit Signs of GvHR 

Control Chimeric 
GvHR parameter mice mice 

Mortality (%)* 0 0 
Weight (g _+ SE)* 20.2 _+ 0.9 21.1 _+ 1.0 
Alopecia none none 
Dermatitis none none 
Enteritis none none 
Hypersplenomegaly absent absent 

Cytokine response to 
allogeneic spleen cells:S 

IFN-3, (U/ml _+ SE) 2.5 _+ 2.0 0.0 -+ 0.6 
IL-4 (U/ml _+ SE) 0.0 _+ 1.6 0.6 -+ 2.5 

Control (C-r-+C, B6-r-+B6) and chimeric (CT-+B6, B6"r-+C) 
animals were assessed for the various parameters indicative of GvHR as 
outlined in Materials and Methods. 
* Mortality represents cumulative deaths calculated from the time that 
thymocyte infusions began until the end of the experiment (~120 d). 
Control mice reflect mortality in only the B6T-+B6 group since 
CT- + C mice succumbed to infection. Data are reflective of all seven 
experiments conducted. 
* Control and chimeric mice reflect B6T- + B6 and B6T- + C groups, 
respectively, weighed 140 d after reconstitution. 
S Representative data obtained from popliteal and inguinal LNC from 
duplicate control (CT-+C) and chimeric (CT-+B6) mice analyzed 
10 wk after reconstitution. Chimeric LNC also failed to proliferate in 
the presence of allogeneic spleen cells, but did respond to Con A. 

outcome in resistant mice (48, 49), conventional T cells may 
well be the crucial source of early IFN-y. In the early phase 
of infection, IL-12 has been shown to be an important cytokine 
in determining resistance (50, 51). Thus, as for IFN-3,, B6- 
type T cells may elicit IL-12 production from other cells, such 
as NK cells or Mq's. In contrast, the potentially exacerbative 
properties of the BALB/c environment, such as B cells (9), 
production of TGF-~ (52, 53) or IL-10 (54-56), could not 
in and of themselves override the autonomous curing ability 
ofB6-type T cells. It appears, therefore, that the exacerbative 
T cell response in BALB/c mice results from a unique inter- 
action between its T cell and non-T cell compartments. It 
will be informative to determine if the Lm-susceptibility of 
mouse strains SWR/J  (57), NZW/N,  P/J, and C57L/J (7) 
is also influenced by such interactions. 

With regard to the resistant B6 environment, we observed 
that normally noncuring BALB/c-type T cells could mediate 
cure in the B6 milieu. Clearly, the B6 environment did en- 
gender substantial IFN-3, production from BALB/c-type T 
cells, which do not normally produce such high levels. Thus, 
the propensity for IFN-3, production in B6 mice appears to 
be rooted at both the T cell and non-T cell levels. Again, 
ILo12 production by the resistant environment may be a key 
factor given that early presence of IL-12 can reverse suscepti- 
bility in BALB/c mice (50, 51). Interestingly, the B6 milieu 
was unable to downregulate IL-4 production by BALB/c-type 
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T cells. The mechanism(s) whereby the B6 environment pro- 
motes development of protective T cells must, therefore, be 
refractory to the exacerbative effects of IL-4. Two other studies 
have found little effect of infusing IL-4 into resistant mice 
(58, 59). Still, in one recent study, normally resistant mice 
were rendered susceptible by an IL-4 transgene constitutively 
expressed in B cells (60). Given the controlled design of chi- 
meric mouse studies, however, the data herein represent the 
strongest indication to date that neither IL-4 production, nor 
the onset of a Th2 cytokine profile, is sufficient to promote 
disease. In fact, they can accompany a curative outcome. 

It will be interesting to determine how Th2 cells can be 
involved in resistance. Th2 cells have been shown to perform 
some Thl functions such as delayed-type hypersensitivity (61), 
isotype switching for IgG2a production (61), and destruction 
of Lm (62). It is, therefore, conceivable that a subset of Th2 
cells shares Thl functions related to control of Leishmania. 
It appears that these Th2 cells may be preferentially stimu- 
lated in B6T- +C chimeric mice. It remains a paradox that, 
despite significant correlations between Thl responses and 
cure, and Th2 responses and disease progression (63), the Th 
phenotype, itself, has not been a reliable predictor of protec- 
tive or exacerbative function (41, 62, 64-66). The results of 
this study further imply that significant overlap exists with 
regard to Thl  and Th2 cell function in experimental murine 
leishmaniasis caused by Lm. 

The uncertain division of Thl and Th2 functionality may 
be rooted in the diverse roles of IL-4, IL-IO, and IFN-y in 
cutaneous leishmaniasis (64, 67). Some studies have indicated 
a protective role for IL-4 (68), particularly late in infection 
(69), while others describe exacerbative (46, 63, 64, 67) or 
negligible effects (58-60). Hence, it is uncertain if IL-4 is, 
itself, exacerbative in BALB/c mice or simply acts as a growth 
factor for exacerbative Th2 cells. Similarly, IL-IO can poten- 
tiate both exacerbative (54-56) and protective (70) functions. 
Finally, IFN-y has been associated with protection (45, 46, 
63, 64, 67) and exacerbation (41, 65). Our results underscore 
the pleiotropic nature of cytokines, whose functions are defined 
by the overall milieu in which they act. In this context, it 
may be useful to examine the broader roles of other cytokines 
shown to be protective in leishmaniasis, such as IL-12 (50, 
51), TNF (71-74), macrophage inflammatory proteins 1 and 
2 (64), and IFN-ot (75, and Shankar, A. H., unpublished ob- 
servations). 

The results of the V3 analysis are consistent with the 
presumption that differential V3 usage is not responsible for 
disparate disease outcomes. This conclusion is supported by 
other work in which TCR V3 analysis in Lm-infected curing 
and noncuring strains was performed (76). Nevertheless, such 
analyses must be interpreted with caution since, in the ab- 
sence of data reflective of complete T cell receptor sequences 
at the population level, one cannot determine if fine specificities 
are critical. The data presented here indicate that V~ usage 
among Lrn-specific cells is multiclonal, using predominantly 
VB2, 4, 6, 8.1, 8.2, 8.3, 10, and 14. It does appear, though, 
that the Lm-specific VB repertoires differ between H-2 d and 
H-2 b mice (Fig. 4). In contrast, results from the previous 
study singled out VB4 beating cells as predominant responders 



with H-2 b and H-2 d mice having similar repertoires. Such 
differences may be due to the different T cell populations 
studied. We examined the repertoire of enriched CD4 + Lm- 
specific T cell populations as compared to the total CD4 + 
population from draining lymph nodes of Lm-infected mice 
used in previous work (76). 

Disease outcome in murine Lm infection is determined by 
bone marrow-derived cells (77). Although B cells and mac- 
rophages (5-10) have been previously implicated as the he- 
matopoietic lineages determining disease outcome, this study 
suggests that T cells, themselves, can play a pivotal role. This 
is not unprecedented as it has been shown that resistance to 
an intracellular bacteria of macrophages, Rickettsia tsut- 
sugumashi, is determined at the level of the T cell by the ETA-1 
locus (78). Lastly, given that the difference in Lm-susceptibility 
between the BALB/c and C57BL/6 strains is most likely 
governed by a single locus (57, 79, 80), the results of our 
study imply that this locus affects more than one lineage of 
cells. 

The parsimonious interpretation of the data presented here 
is that T cell and non-T cell factors can independently direct 
a curative outcome to Lm infection. Two potential alterna- 
tive interpretations are addressed in Tables 3 and 4. First, Table 
3 indicates that insufficient reconstitution could not account 
for the results since the full spectrum of disease was displayed 
by equally reconstituted CT- +B6 and CT- +C mice. Pre- 
vious work with BALB/c SCID mice indicated that "~35 x 
106 T cells were sufficient to restore the susceptible pheno- 
type (81). The actual number, however, may be considerably 
lower since effective reconstitution would be limited by the 
lack of high endothelial venules in SCID mice (82). We ob- 
served that '~30-45 x 106 mature BALB/c thymocytes en- 
grafted into genetically normal BALB/c ATXBM recipients 
were more than sufficient to restore susceptibility. This number 
should apply to congenic thymocytes as well since it has been 

shown that T cells from BALB/c and C57BL/6 mice respond 
equally to Lm antigen presented by H-2 congenic APC of 
either genotype (40). Secondly, the data presented in Table 
4 suggest that GvHR did not influence our results. The ab- 
sence of GvHR is consistent with several other systems in 
which peripheral tolerance to minor histocompatibility an- 
tigens (miHA) was achieved postthymically (83-85). Previous 
work has demonstrated that peripheral tolerogenic mecha- 
nisms can be potentiated after irradiation and bone marrow 
reconstitution such that GvHR across miHA are suppressed 
in allogeneic chimeras (86, 87). In addition, other studies 
have suggested that emergent thymocytes, as compared to 
mature T cells, are particularly receptive to tolerogenic signals 
encountered in the periphery (88, 89). Therefore, we con- 
structed the T cell chimeras used here by infusing fresh thymo- 
cytes into irradiated hosts shortly after bone marrow recon- 
stitution, thereby maximizing the establishment of a 
tolerogenic environment to miHA. 

In conclusion, these data indicate that both T cell and non-T 
cell compartments influence cure and noncure outcomes of 
experimental murine cutaneous leishmaniasis caused by Lm. 
Secondly, cure can be effected independently from either com- 
partment. Thirdly, continuous and profuse production of IL-4 
is not sufficient to prevent healing and can even accompany 
cure. Finally, the mechanism through which resistance is con- 
ferred, by either T cell or non-T cell compartments, does 
not result in differential selection of V~ repertoires. These 
results are critical for antileishmanial vaccine development since 
they imply that variations in both the T cell and antigen pre- 
senting cell environment of the recipient must be considered. 
In a broader sense, these studies indicate that determinants 
of Thl and Th2 cell activation are distributed properties, en- 
compassing T cell-dependent factors and elements of the sur- 
rounding milieu, such as APC. 
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Note added in proofi When this work was submitted another study (Lohoff et al., Eur. J. Immunol., 1994. 
24:492) was published in which the TCR V~/repertoires of lymph nodes from infected Lm-resistent and 
susceptible mice were analyzed. It was found that VB use was multiclonal with no preference for VB4 
bearing cells. Our findings are consistent with this recent study. 
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