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1  |  INTRODUC TION

Disentangling the determinants shaping species’ distributions and 
genetic diversity is key to understand and conserve biodiversity and 
ultimately predict responses to ongoing global change. The iden-
tification of the spatial distribution of genetic variation can eluci-
date the mechanisms of evolution and speciation, shed light on the 
processes maintaining geographical ranges, improve climate change 

forecasting, anticipate the spread of invasive species, and pinpoint 
conservation-priority populations (Guo, 2014; Hampe & Petit, 2005; 
Howes & Lougheed, 2008). Phylogeographic analyses can be em-
ployed to study the role of ecological factors and mechanistic pro-
cesses, such as past climatic shifts and demographic fluctuations, on 
the genetic structure of populations. Yet, despite a large body of re-
search on the population genetics of individual species, few studies 
have looked at general patterns of genetic structure and variation 
across multiple species’ ranges at large spatial scales (Gaston, 2009).
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Abstract
Understanding the impact of historical and demographic processes on genetic varia-
tion is essential for devising conservation strategies and predicting responses to cli-
mate change. Recolonization after Pleistocene glaciations is expected to leave distinct 
genetic signatures, characterised by lower genetic diversity in previously glaciated 
regions. Populations’ positions within species ranges also shape genetic variation, fol-
lowing the central-marginal paradigm dictating that peripheral populations are depau-
perate, sparse and isolated. However, the general applicability of these patterns and 
relative importance of historical and demographic factors remains unknown. Here, we 
analysed the distribution of genetic variation in 91 native species of North American 
plants by coupling microsatellite data and species distribution modelling. We tested 
the contributions of historical climatic shifts and the central-marginal hypothesis on 
genetic diversity and structure on the whole data set and across subsets based on 
taxonomic groups and growth forms. Decreased diversity was found with increased 
distance from potential glacial refugia, coinciding with the expected make-up of post-
glacially colonised localities. At the range periphery, lower genetic diversity, higher 
inbreeding levels and genetic differentiation were reported, following the assump-
tions of the central-marginal hypothesis. History and demography were found to have 
approximately equal importance in shaping genetic variation.
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Historical climate-driven changes in species range limits are well 
known to still affect present-day genetic diversity (Durka, 1999; 
Hampe & Petit, 2005; Hewitt, 2000). The Pleistocene ice ages led 
to southwards range contractions, brought by the extinction of 
northern populations when temperatures plummeted, with multiple 
areas across continents serving as glacial refugia for species during 
the ice ages (Beatty & Provan, 2011; Hewitt, 2000). The end of the 
Pleistocene led to a subsequent northward expansion of many spe-
cies in the wake of deglaciation (Hewitt, 1996). The historical climate 
changes over the past 20,000 years have led to shifting, fragmen-
tation, and reconnection of species’ ranges, which have resulted in 
a legacy of genetic consequences for contemporary populations 
(Alvarez et al., 2009; Comes & Kadereit, 1998; Taberlet et al., 1998). 
One major consequence is that previously glaciated areas are ex-
pected to show reduced genetic diversity as a result of sequential 
founder effects during the post-glacial recolonisation from refugia 
(Comes & Kadereit, 1998; Schonswetter et al., 2005; Taberlet et al., 
1998). The effect of the ice ages was especially strong in temperate 
areas. In particular, the northern part of North America was covered 
with two immense ice sheets (Cordilleran and Laurentide; Beatty 
& Provan, 2010; Taberlet et al., 1998) at the Last Glacial Maximum 
(LGM). The changing conditions following the melting of the glacial 
ice make North America an ideal natural laboratory to study patterns 
of post-glacial colonisation and geographic variation (Hewitt, 2000; 
Pulgarín-R & Burg, 2012).

The distribution of genetic variation within a species is ex-
pected to also be shaped by demographic and evolutionary pro-
cesses at range margins. Declining environmental suitability towards 
the periphery is predicted to result in decreasing population den-
sity (Kirkpatrick & Barton, 1997), thus reducing population size, 
gene flow and connectivity. Consequently, marginal populations 
tend to exhibit low genetic diversity and high genetic differentia-
tion (Brussard, 1984; Pfeifer et al., 2009; Sagarin & Gaines, 2002). 
However, the broad applicability of this biogeographic paradigm – 
the central-marginal hypothesis– is debated since patterns of popu-
lation genetic variation across large spatial scales are highly variable 
and usually species-specific (Sagarin & Gaines, 2002; Yakimowski 
& Eckert, 2007). For example, Eckert et al. (2008) criticised studies 
for not including a proper quantitative measure of centrality/periph-
erality or estimates of population sizes. Additionally, the central-
marginal hypothesis assumes concordance between the geographic 
and environmental spaces, but this assumption might not always 
hold, since ecological marginality does not always imply spatial pe-
ripherality, and vice versa (Pironon et al., 2015; Soule, 1973).

There are relatively few studies that have tested both the 
central-marginal hypothesis and historical influences in a phylogeo-
graphical framework, or have attempted to distinguish historical 
effects on genetic diversity from patterns caused by contemporary 
geographical variation in population demography and dispersion 
(Eckert et al., 2008; Gaston, 2009). This is problematic since the 
patterns in genetic diversity resulting from these two processes can 
resemble each other. If populations at the northern margin show re-
duced genetic diversity, is this due to founder effects of postglacial 

recolonization or due to demographic effects related to the central-
marginal hypothesis? Moreover, almost all evidence regarding these 
fields comes from studies on single species, which makes it difficult 
to draw any general conclusions.

Here, we use a novel phylogeographic framework to test the con-
tributions of both historical climatic shifts and the central-marginal 
hypothesis on population genetic diversity across the ranges of 91 
vascular plant species. We do this by coupling genetic data sourced 
from the literature and species distribution modelling to analyse 
the spatial structuring of population genetic variation across the 
North American continent (Figure 1). Species distribution models 
were hereby employed as macroecological tools, used to estimate 
population suitability, act as surrogates of abundance, and develop 
proxies for colonisation history and population demography. We 
perform a continental-scale analysis to identify concordant patterns 
of population genetic diversity on a large number of unrelated taxa, 
empirically overcoming the drawbacks commonly associated with 
demographic and colonisation history studies.

2  |  MATERIAL S AND METHODS

2.1  |  Genetic data

We compiled a genetic database consisting of microsatellite data for 
91 native diploid species of North American angiosperms and gym-
nosperms, with each taxon containing at least three sampling sites 
including a minimum of five individuals per location. We searched 
the literature for studies employing microsatellite markers on na-
tive vascular plants from North America, which resulted in genetic 
data published in 67 peer-reviewed studies (see Table S1). Two spe-
cies were represented by two studies. We also obtained four un-
published data sets by direct communication with the authors. We 
were unable to find microsatellite data sets of Arctic species, which 
are expected to display the strongest genetic consequences from 
Pleistocene climate shifts given the longer postglacial colonisation 
routes (Hewitt, 2000). For all studies we tried to obtain the raw al-
lelic data by downloading them from data repositories or by contact-
ing the authors. In total, we obtained the raw data for 52 species. 
The included species display a wide range of ecological character-
istics, abundances, range sizes and life history traits, thus aiming to 
serve as a representative sample of the continent's vascular flora. 
The varying range areas included aims to reduce potential biases in 
the emerging patterns (Supporting Information 1). The sampling and 
genotyping protocols vary across species, being detailed in the cor-
responding publications.

2.2  |  Genetic summary statistics

We used the microsatellite data to calculate a set of four summary 
statistics per population, indicative of population genetic diversity 
and differentiation: the expected and observed heterozygosity (HS 
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and HO, respectively), the population inbreeding coefficient (FIS), and β 
(Nei, 1987; Weir & Cockerham, 1984). The expected within-population 
diversity HS is calculated only based on the allele frequencies within 
a population, whereas HO considers the observed frequency of het-
erozygotes in the population. FIS can be defined by comparing the 
above-mentioned heterozygosity measures: (HS–HO)/HS, with high 
levels indicating an excess of homozygous genotypes compared to 
Hardy-Weinberg expectations. β is a population-specific estimator of 
the genetic differentiation statistic FST (Nei, 1987; Weir & Cockerham, 
1984). The summary statistics calculations were performed using the 
function basic.stats() from the hierfstat R package (Goudet, 2005), with 
every sampling location being treated as a separate population. Clone 
correction was performed for species with apomictic or vegetative 
reproduction, by removing all duplicated genotypes to ensure each 
genotype is represented by a single individual (one ramet per genet) 
per population. For the species for which the allelic data was not avail-
able, we used the published estimates of the summary statistics from 
the original studies, which were mostly limited to HS, HO and FIS.

2.3  |  Species distribution modelling

Species distribution models were built for all 91 species to evaluate 
habitat suitability and develop proxies for colonisation history and 

population demography. The georeferenced occurrences from the 
sites included in the genetic data set were complemented by down-
loading species records from the Global Biodiversity Information 
Facility (GBIF) data portal (GBIF dois in Table S1). Occurrences were 
restricted to North America, and duplicate locations were removed 
to avoid pseudoreplication. The records were manually cleaned by 
removing any suspicious data points in uninhabitable locations for 
each species. All species were represented by at least 10 unique 
presence records, which is the recommended minimum number re-
quired to calibrate a species distribution model (SDM; Proosdij et al., 
2016). Species occurrences totalled 97,074 unique records, ranging 
from 10 to 9594 occurrences per species.

To model the species distributions, the 19 bioclimatic predic-
tors of the WorldClim v.1.4 data set (http://www.world​clim.org/) 
were obtained for past and present scenarios at a 2.5 arc-minute 
spatial resolution (Hijmans & Elith, 2012). The used paleoclimate 
data resulted from simulations from a global climate model (GCM) 
for the LGM (approximately 22,000 years ago), as estimated by the 
MIROC-ESM climate model (Watanabe et al., 2011). Current condi-
tions represent interpolations of observed climatic data from 1960–
1990. The GTOPO30, a global 30 arc-second digital elevation model 
(DEM) was retrieved from the USGS EROS archive (https://www.
usgs.gov/cente​rs/eros). The GTOPO30 was aggregated by a cell 
factor of five to achieve a 2.5 arc-minute resolution, resulting in a 

F I G U R E  1  Overview of the methodological approach, which couples genetic data and species distribution modelling to test the 
contributions of historical climatic shifts and the central-marginal hypothesis on the spatial distribution of genetic variation. The distribution 
data shown and modelling output are for Tsuga canadensis (see Tables S1 and S2)

http://www.worldclim.org/
https://www.usgs.gov/centers/eros
https://www.usgs.gov/centers/eros
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DEM for the present scenario. In order to obtain a DEM for the LGM, 
when the sea level was 120–135 m lower than at present (Clark & 
Mix, 2002), the GEBCO_2019 Grid, a global 15 arc-second bathym-
etry DEM (GEBCO, 2019) was downloaded. The GEBCO_2019 Grid 
was rasterised and aggregated by a cell factor of 10 to achieve a 2.5 
arc-minute resolution, followed by clipping it using an LGM biocli-
matic layer as a mask. Employing altitude as a variable for modelling 
is advised against when the SDM aims to project to past climatic 
conditions (Raes & Aguirre-Gutiérrez, 2018). Thus, slope and as-
pect (the direction of the slope) were derived from the DEMs and 
included as variables instead. All bioclimatic and topographic vari-
ables were clipped to the extent of the North American continent, 
from the southernmost point of Panama to the northernmost point 
of Canada, excluding Greenland. Data layer manipulations were per-
formed with ArcGIS (ESRI).

To avoid collinearity amongst environmental predictors, which 
can result in overfitting (Graham, 2003; Peterson et al., 2007), the 
number of predictor variables was reduced by removing highly cor-
related parameters, as given by a Spearman's rank correlation test (rs 
> 0.7). When deciding which of two correlated variables to retain, 
we aimed to closely capture the key determinants of physiological 
processes limiting distributions of plants, considering the ample 
range in ecological preferences displayed by the species included. 
The retained variables for modelling were mean diurnal temperature 
range (Bio2), temperature annual range (Bio7), mean temperature 
of wettest quarter (Bio8), annual precipitation (Bio12), precipitation 
seasonality (Bio15), aspect, and slope.

Species distribution models were built for each species under 
present conditions and then projected onto the LGM conditions, 
employing the sdm R library (Naimi & Araújo, 2016). Three model-
ling methods were implemented: Domain (Carpenter et al., 1993), 
Generalised Linear Model (GLM; McCullagh & Nelder, 1989), and 
Maximum Entropy (MaxEnt; Phillips et al., 2006), each belonging to 
one of the three main types of modelling algorithms, being “profile”, 
“regression”, and “machine learning”, respectively. Cross-validation 
was performed to validate each model, with 70% of the data being 
employed for calibration and 30% for evaluation, with 10 bootstrap 
replications being run per method. SDM accuracy was evaluated 
using the area under the curve (AUC) of the receiver operating 
characteristic (ROC) plot (Hanley & McNeil, 1982), a threshold-
independent measure that is relatively insensitive to prevalence 
(McPherson et al., 2004). AUC values range from zero to one; val-
ues close to one indicate maximum fit, whereas values under 0.5 
(half of the area under the ROC curve) indicate the model predic-
tion is no better than a random prediction. All models performed 
better than random expectation, with the lowest AUC value being 
0.6. Ensembles of model forecasts were then fitted by combining 
the three modelling techniques. By employing a consensus, errors 
(sensitivity to data, lack of absence data, errors in environmental 
variables) tend to cancel each other out in ensembles, thus produc-
ing a more robust and conservative solution (Araújo & New, 2007; 
Diniz-Filho et al., 2009). The ensembles were built using weighted 
averaging based on the AUC statistic to cope with model variability 

and to improve the reliability of model predictions. The R script used 
for the species distribution modelling is available in the supplement.

2.4  |  Ecological data

We used the output of the SDM to calculate for every population in 
each species four measures that quantify ecological suitability, colo-
nisation history, and population demography: (1) habitat suitability 
under the current conditions, (2) habitat suitability during the LGM, 
(3) distance to range edge under current conditions, and (4) distance 
to potential glacial refugium. The habitat suitability was taken di-
rectly from the ensemble forecasting produced as output of the dif-
ferent SDMs (Anderson & Martıńez-Meyer, 2004; Diniz-Filho et al., 
2009). Thus, the ecological suitability S of each population under 
the two modelled time frames was defined as the average value of 
occurrence provided by each model in the ensemble. For estimating 
population centrality/peripherality, an innovative quantitative meas-
ure was developed. For this, the suitability data was transformed 
into presence/absence data by setting a threshold, using the Max 
SSS approach of Liu et al. (2005), which maximises the sum of model 
sensitivity and specificity. Out of 13 threshold selection methods, 
Max SSS was found to perform best when only presence data is 
available (Liu et al., 2013). The distance D to the species’ range edge 
under present bioclimatic conditions was then computed by calcu-
lating the closest distance between each population and the con-
tour of the generated binary presence map. Distances to range edge 
had negative values if populations were found outside the predicted 
species range. Finally, distance from a potential glacial refugium was 
calculated as the closest distance from each population to a suitable 
area under LGM after creating a binary presence map based on the 
ensemble prediction for the LGM. The development of this proxy 
enables the identification of previously unknown glacial refugia, par-
ticularly relevant for species with northern refugia that a latitudinal 
proxy would not account for. Distance to range edge computations 
were performed in ArcGIS version 10.2 (ESRI) and distance to suit-
able areas under different scenarios were calculated using the geo-
sphere R package (Hijmans et al., 2019), both employing a geodesic 
method.

2.5  |  Hypothesis testing

Linear mixed effect models were used to test the relative contribu-
tion of distance to edge range, distance to a suitable area under the 
LGM, and present and LGM suitability in shaping the four population 
genetic parameters. Additional linear mixed effects models were 
used to investigate the relationship between the distance to edge 
range and distance to a suitable area under the LGM with present 
and LGM suitability. The species name was used as a nested random 
effect in the analyses to account for phylogenetic nonindependence. 
In addition to analysing the data set as a whole, we also performed 
the analysis on subsets of the data, based on either the two main 
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taxonomic groups (Gymnosperms and Angiosperms) or the growth 
forms of the species (trees, shrubs, and herbs).

The linear mixed effects models were performed using the lme4 
package (Bates et al., 2013) in R version 3.5. Model selection was 
performed in terms of parsimony (based on AIC) and variance ex-
plained. The variance explained was calculated using the methods 
proposed by Nakagawa and Schielzeth (2013) as implemented in 
the MuMIn package, which provides the total variance explained by 
fixed and random effects and allows the calculation of variance ex-
plained by each fixed effect (Barton, 2011). p-values were calculated 
using the Satterthwaite (1946) approximations, using the lmerTest R 
package (Kuznetsova et al.,2017), standard Bonferroni correction 
was then applied (Bonferroni, 1936). In addition, linear models were 
run in order to add regression lines to the plots, which aid the visual 
interpretation of the results of the linear mixed effect models.

3  |  RESULTS

The database we compiled includes 1406 populations across 91 vas-
cular plant species, spanning the whole North American continent, 
except for the arctic regions. These included 885 angiosperms and 
521 gymnosperm populations; with respect to life history, the popu-
lations could be classified into 512 herbs, 78 shrubs and 816 trees. 
For 829 populations, the genetic summary statistics were computed 
using the raw allelic microsatellite data, whereas for the remaining 
populations the available published estimates were taken (Table S2). 
Overall minimum and maximum estimates were 0.00 and 0.92 for 
the expected heterozygosity (HS), 0.00 and 1.00 for the observed 

heterozygosity (HO), −1.00 and 1.00 for the inbreeding coefficient 
(FIS), and −0.27 and 1.00 for the population differentiation statistic β.

The species distribution modelling performed on all 91 species 
had high predictive power for the relationship between the spe-
cies’ distribution and the bioclimatic variables (Table S1). Of the 
2730 species distribution models (three SDMs × 10 bootstrap rep-
lications × 91 species), 88% had AUC values above 0.85. AUC val-
ues of the MaxEnt models were generally higher than those of GLM 
models, which in turn were higher than those of Domain, pointing 
towards a higher predictive power of MaxEnt over GLM and Domain 
for most species.

The analyses combining the genetic summary statistics for all 
species with the output of the SDM revealed a legacy of past glacia-
tion in the genetic data. The genetic diversity –as measured with HS– 
significantly decreased with increasing distance to suitable areas 
during the LGM (Figure 2). Furthermore, there was a significant pos-
itive relationship between the suitability of populations under LGM 
conditions and both HS and HO (Figure 3). No significant patterns 
were found for FIS and β, (Figures 2 and 3) even though FIS showed a 
slight decrease with increasing distance to suitable areas under the 
LGM. Additionally, populations displayed significantly lower ecologi-
cal suitability when further away from suitable areas under the LGM 
(Figure S1).

When the full data set was analysed, it also showed clear sup-
port for the central-marginal hypothesis. Marginal populations 
indeed had a lower ecological suitability as evidenced by a sig-
nificant positive relationship between distance to range edge and 
suitability under the current climatic conditions (Figure S2). This 
was accompanied by a significant increase in genetic diversity (HS) 

F I G U R E  2  Relationship between the distance from populations to a suitable area under LGM conditions and the four genetic parameters. 
Significance was tested using linear mixed effects models (Table 1). Regression lines of were added to the figures to aid visual inspection, 
with the linear model of He and FIS showing p < .001
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as distance to the range edge incremented (Figure 4). Furthermore, 
the value of HS showed a significant negative correlation with the 
present suitability of the populations (Figure 5). No significant 
patterns were observed for HO, β and FIS (Figure 5). While 13 spe-
cies displayed negative distance values, these did not bias the 

observed patterns as the tests remained significant when negative 
values were removed.

The standardised variance explained in the global models of the 
genetic parameters totalled 22.1% by the distance to suitable area 
under the LGM, 27.5% by LGM suitability, 22.6% by the distance to 

F I G U R E  3  Relationship between the suitability of populations under LGM conditions and the four genetic parameters. Significance was 
tested using linear mixed effects models (Table 1). Regression lines were added to the figures to aid visual inspection, with the linear model 
of He showing p < .001

F I G U R E  4  Relationship between the distance from populations to the range edge and the four genetic parameters. Significance was 
tested using linear mixed effects models (Table 1). Regression lines were added to the figures to aid visual inspection, with the linear models 
of Hs and He showing p < .001
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edge range, and 19.1% by present suitability (Table 1). For the ex-
pected heterozygosity, the minimal model included both effects 
of the ice ages and effects of the central-marginal hypothesis; this 
minimal model was composed of the distance to edge range, the 
distance to a suitable area under the LGM, and the present suit-
ability, with fixed and random effects explaining a total variance of 
79.4%. The observed heterozygosity's minimal model was given by 
the present suitability, accounting for 88.2% of the data variation. 
Model selection was not performed for the inbreeding coefficient, 
as no variables were deemed significant. Finally, the minimal model 
for genetic differentiation was given by present suitability, explain-
ing 63.4% of the variance. For all models, the reported values for the 
percentage of variance explained also includes the nested random 
effect of species name, showing that there are strong differences 
between species in genetic diversity and differentiation.

When the data was divided into subsets based on taxonomic 
groups or life forms, the results were more complex but still showed 
support for both the influence of the ice ages and central-marginal 
processes (Table S3). When the gymnosperms were analysed sepa-
rately, both HS and HO decreased with increasing distance to suitable 
area during the LGM, and increased with habitat suitability during 
the LGM, indicating influence of the ice ages. The present range edge 
and suitability were not included in the minimum model according to 
AIC, though the distance to the present range edge did show a sig-
nificant P-value. For angiosperms, HS was similarly correlated with 
distance to suitable area and habitat suitability during the LGM, but 
HO was influenced more by the distance to the present range edge 
and the present suitability, showing the influence of central-marginal 
processes. For the growth forms, trees mostly showed correlations 

with the present range edge (HS and β), while herbs showed correla-
tions only with the present suitability (HS, HO, and β). Shrubs did not 
show any significant correlations, probably due to the very small 
number of shrub species in the data set.

4  |  DISCUSSION

Here, we used a phylogeographical framework combining species 
distribution modelling and population genetics to assess the influ-
ences of Pleistocene climate shifts and central-marginal processes 
on contemporary genetic patterns. Our analysis of genetic data of 91 
vascular plant species clearly shows the effects of both Pleistocene 
climatic events and central-marginal processes in spatially struc-
turing genetic variation in North America. Of the more than 1400 
included populations, those located at species’ range margins and 
most distant from glacial refugia were found to have significantly re-
duced genetic diversity. Our multispecies approach grants increased 
statistical power compared to studies exploring these processes at 
the single-species level, allowing us to draw general conclusions at a 
large geographical scale.

The effects of the Pleistocene ice ages are evident in the de-
crease in genetic diversity, as measured using HS, with increased 
distance from suitable areas under the LGM, i.e. glacial refugia. This 
reduction in diversity is similar to what is observed in simulation 
models on the genetic make-up of postglacially colonised regions 
(Hewitt, 1999, 2000; Pironon et al., 2015). The observed genetic 
patterns are most likely due to the larger population sizes and more 
stable population dynamics at refugial localities, as well as repeated 

F I G U R E  5  Relationship between population present ecological suitability and the four genetic parameters. Significance was tested using 
linear mixed effects models (Table 1). Regression lines were added to the figures to aid visual inspection, with the linear models of Hs, He and 
β showing p < .01
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bottlenecks at the advancing (generally northern) range edge during 
postglacial colonisation (Comes & Kadereit, 1998; Hewitt, 1996). 
Our results therefore indicate that the shifting and fragmentation 
of species’ geographical ranges in the past 20,000 years has played 
an important role in moulding genetic variation across large tax-
onomic and spatial scales (King & Ferris, 1998; Parks et al., 1994; 
Sewell et al., 1996; Soltis et al., 1997). Nonetheless, we must be cau-
tious when interpreting diversity patterns, as patterns do not solely 
emerge from simple models of postglacial colonisation (Petit et al., 
2003), and the relationship with the LGM variables was no longer 
significant when the data was divided by growth form.

The effects of central-marginal dynamics are evident in the neg-
ative correlation of genetic diversity with both the distance from 
the range edge and ecological suitability. These effects were visible 
both in the full data set and for the angiosperms, but interestingly 
not for the gymnosperms. The central-marginal hypothesis predicts 
range limits arise because peripheral populations occur in marginal 
habitats and cannot adapt to conditions beyond the range edges 
(Haag & Ebert, 2004; Kawecki, 2008). This demographic instability 
can induce low effective population sizes and frequent bottlenecks, 
leading to reduced genetic diversity in margins, such as observed in 
our data (Micheletti & Storfer, 2015; Sagarin & Gaines, 2002; Sexton 
et al., 2009). Although we do not have population size estimates, we 
assessed the ecological suitability of populations within their ranges. 
Diniz-Filho et al. (2009) propose employing this variable as a macro-
ecological surrogate of abundance, which ensures the logical appli-
cation of the central-marginal model to complex spatial abundance 

patterns as it considers species’ ecological, and not geographical, 
ranges. The applicability of this approach in our data was supported 
by a clear central-peripheral pattern that was observed in the eco-
logical suitability for the analysed populations as this was negatively 
correlated with the distance to the range margins.

Though we found strong patterns in genetic diversity (HS and to 
some extent HO) related to the proxies, no significant associations 
were found for the inbreeding coefficient FIS; the minimum model 
in our linear mixed model analysis of FIS did not include any of the 
explanatory variables. Theoretical models have suggested that self-
fertilisation may be favoured at the range margins, especially at 
postglacially expanding range fronts, given the possible advantages 
of reproductive assurance or local adaptation (Arnaud-Haond et al., 
2006; Hargreaves & Eckert, 2014). Indeed, several studies on single 
species have shown selfing to be more frequent in marginal popula-
tions, due to low population sizes and environmental stress at range 
margins, leading to elevated inbreeding levels (Aldrich & Hamrick, 
1998; Barrett, 2002; Schoen et al., 1996). Our results across a tax-
onomically wide range of species suggests that this may not be a 
general phenomenon.

Similar to FIS, no significant relationships were found in the anal-
ysis of the full data set for the genetic differentiation (β, a single 
population estimate of FST) of populations with the rest of the meta-
population, though the minimum model according to AIC did include 
the present suitability as an explanatory variable. This lack of a sig-
nificant relationship contrasts with numerous theoretical models 
and empirical studies reporting a decrease in genetic differentiation 

TA B L E  1  Output of linear mixed model analysis: degrees of freedom (d.f.), percentages of variance explained (variance) and p-values are 
given for the global models of each genetic summary statistic including the distance to suitable area under the LGM, the suitability under the 
LGM, the distance to range edge, and present suitability. The genetic statistics are the expected and observed heterozygosity (HS and HO, 
respectively), the population inbreeding coefficient (FIS), and beta (β). The total variance explained by the global and minimal models of each 
genetic summary statistic are reported in the bottom rows. The total variance explained by the historical and demographic proxies is given 
in the rightmost column, calculated as the sum of the standardised variances explained for the four genetic summary statistics. For each 
summary statistic, the variables included in the minimum model, according to AIC, are given in bold; variables excluded from the minimum 
model are given in black

HS HO FIS β
Total variance of 
parameters (%)

Distance to suitable area 
under LGM

d.f. 1310 1198 1110 822 22.1

Variance (%) 18 1 1.1 2

p-value 0.0026 0.3690 1.0000 1.0000

Suitability under LGM d.f. 1287 1185 1090 817 27.5

Variance (%) 10.8 2.2 0 14.5

p-value 0.0030 0.0464 0.8088 0.3846

Distance to range edge d.f. 1323 1217 1126 814 22.6

Variance (%) 14.8 2.1 1.9 3.8

p-value 0.0007 1.0000 1.0000 1.0000

Present suitability d.f. 1327 1209 1114 819 19.1

Variance (%) 1.3 4.5 3.6 9.7

p-value 0.0149 0.3472 1.0000 0.1691

Total variance of global model (%) 79.4 88.2 85.3 62.2

Total variance of minimal model (%) 79.4 88.2 – 63.4
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along postglacial expansion routes (Austerlitz et al., 1997; Excoffier 
et al., 2009). On the other hand, marginal populations are expected 
to be more isolated from the central ones, so it is possible that the 
effects of central-marginal processes and the Pleistocene recolo-
nisation are counteracting each other. It is also possible that major 
population structure lies elsewhere, such as among different genetic 
clusters associated with recolonisation from multiple isolated refu-
gia (Ursenbacher et al., 2015).

The influence of the ice ages and the central-marginal effects 
varied depending on the life history and taxonomy of the species, 
as shown by the analyses of the data subsets. Long-lived peren-
nials such as trees are known to generally show higher diversity 
and weaker population structure than short-lived perennials and 
annuals (Hamrick & Godt, 1996; Nybom, 2004), generally indicat-
ing larger population sizes and higher connectivity. This is consis-
tent with our results, as a significant relationship between β and 
the present suitability was found for herbs, but not for shrubs or 
trees. Additionally, this can also explain why this same correlation 
was not significant for gymnosperms –which are mainly trees– 
but did show significance for angiosperms –which also include 
herbs. Similarly, the lack of support for central-marginal dynamics 
in gymnosperms may be an effect of the higher population con-
nectivity of trees, which may quickly erode any effects of smaller 
population sizes at the distribution margins. However, it is also 
important to realise that the subsetting of the data has led to a 
decrease in statistical power, which may have affected the infer-
ences, especially for the shrubs.

We employed a species distribution modelling approach to de-
velop effective proxies for colonisation history and population 
demography, and as such the followed approach does have sev-
eral limitations and makes several assumptions with regard to the 
ecology of the study species. One assumption is that the species 
distribution models only base their predictions on the included 
environmental variables. We used the same set of variables for all 
species in order to allow for better comparisons among species, but 
not all variables may be equally applicable to all species. A general 
concern around species distribution models is that they do not ac-
count for biotic interactions, potential for rapid adaptations or time 
lag (Godsoe & Harmon, 2012; Hällfors et al., 2015). It is also import-
ant to acknowledge that both the SDM and the modelled climate 
data for the LGM represent extreme extrapolations, and therefore 
can only be taken as a rough approximation of the situation during 
the ice ages. For a better overview of the locations of glacial refugia, 
SDM results should be combined with palynological data, though 
this has also been proven to be challenging due to the coarseness 
of the palynological record (Birks, 2019). In addition, the approach 
assumes that all species have reached their equilibrium distribution. 
However, it is possible that some species have not yet filled their po-
tential ranges in response to rapid postglacial warming, resulting in 
incomplete SDMs and inaccurate estimations of the distances to gla-
cial refugia. This would result in an underestimation of the emerging 
genetic patterns, which would be expected to grow stronger during 
future recolonization dynamics.

Despite the inherent assumptions in the distribution modelling, 
we believe that our approach is a major step up from many previous 
studies that have worked with the simple assumption that latitude is 
an adequate surrogate for either recolonisation history or central-
marginal processes (Eckert et al., 2008). Instead, our SDM-based 
approach allowed us to test and separate the effects of both these 
phenomena. Our results also show that the distribution models, 
which had high power for predicting the present distribution, can 
be used as a valuable tool to infer causation of extant genetic varia-
tion patterns across a large scale. Notably, the main purpose of our 
modelling was not to get an accurate prediction of actual habitats, 
but rather to get an estimate of the overall range of the species, for 
which these types of models are widely used.

Both Pleistocene historical and demographical processes ap-
pear to have equal and nonexclusive importance in shaping genetic 
variation. Most genetic summary statistics displayed the expected 
responses to these proxies; however, only a quarter of the compari-
sons were significant and the variation explained by the fixed effect 
factors was relatively low. Most variation in the summary statistics 
comes from within-species determinants, as a large proportion of 
the variance was explained by the species random effects. This was 
not unexpected given the widely different demographic histories of 
the species studied, and it highlights the role of potential additional 
variables acting at an intraspecific level. Numerous studies have em-
phasized how the genetics of populations is shaped by ecological 
factors, topography, anthropogenic factors –such as land use and 
habitat fragmentation–, biotic interactions, and life-history traits 
–including the aforementioned breeding strategy and dispersal ca-
pacities (Alvarez et al., 2009; Kuittinen et al., 1997; Meirmans et al., 
2011; Yeaman & Jarvis, 2006). Additionally, each study included in 
our meta-analysis used different genotyping and sampling strategies 
and covered varying proportions of the range, as well as employing 
different microsatellite markers, characterised by their own muta-
tion rates. All combined, these factors have introduced noise into 
our analyses and potentially blurred the overall pattern, probably re-
sulting in an underestimation of the emerging patterns. Despite the 
large influence of this random factor on our analysis, we were able to 
detect the effects of two vital processes on species ranges and their 
intraspecific genetic variation.

Bridging the effects of historical range shifts and contemporary 
demographic processes on species’ genetic constitutions over large 
scales has many implications to evolutionary biology. The potential 
for adaptation to new environments largely depends on the amount 
of genetic variation available, commonly sourced from standing 
genetic variation or arising through gene flow among populations. 
Central populations exhibit higher diversity and increased connec-
tivity that can favour gene flow and adaptive introgression, confer-
ring them an advantage towards changing conditions. Understanding 
this interplay between environmental conditions, genetic variation, 
connectivity and gene flow is crucial to address conservation needs 
in the face of ongoing global change. This study provides the founda-
tion for further phylogeographical analyses to continue integrating 
the processes dictating genetic variation across species ranges.
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