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Diabetes-related diseases (DRDs), especially cancers pose a big threat to public
health. Although people have explored pathological pathways of a few common
DRDs, there is a lack of systematic studies on important biological processes
(BPs) connecting diabetes and its related diseases/cancers. We have proposed and
compared 10 protein–protein interaction (PPI)-based computational methods to study
the connections between diabetes and 254 diseases, among which a method called
DIconnectivity_eDMN performs the best in the sense that it infers a disease rank
(according to its relation with diabetes) most consistent with that by literature mining.
DIconnectivity_eDMN takes diabetes-related genes, other disease-related genes, a PPI
network, and genes in BPs as input. It first maps genes in a BP into the PPI network to
construct a BP-related subnetwork, which is expanded (in the whole PPI network) by a
random walk with restart (RWR) process to generate a so-called expanded modularized
network (eMN). Since the numbers of known disease genes are not high, an RWR
process is also performed to generate an expanded disease-related gene list. For each
eMN and disease, the expanded diabetes-related genes and disease-related genes are
mapped onto the eMN. The association between diabetes and the disease is measured
by the reachability of their genes on all eMNs, in which the reachability is estimated by
a method similar to the Kolmogorov–Smirnov (KS) test. DIconnectivity_eDMN achieves
an area under receiver operating characteristic curve (AUC) of 0.71 for predicting both
Type 1 DRDs and Type 2 DRDs. In addition, DIconnectivity_eDMN reveals important BPs
connecting diabetes and DRDs. For example, “respiratory system development” and
“regulation of mRNA metabolic process” are critical in associating Type 1 diabetes (T1D)
and many Type 1 DRDs. It is also found that the average proportion of diabetes-related
genes interacting with DRDs is higher than that of non-DRDs.
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INTRODUCTION

With the increasing of human life-span, the incidence of
diabetes is rapidly increasing, which presents a big threat
to public health all over the world (Naslafkih and Sestier,
2003). According to a statistics from the International Diabetes
Federation, approximately 415 million people worldwide suffered
from diabetes in 2015, and the incidence is still increasing
at a terrifying rate. By 2040, this number is estimated to
exceed 640 million (International Diabetes Federation, 2015).
Diabetes is a metabolic disease characterized by chronic
hyperglycemia, which includes two forms, namely, Type 1
diabetes (T1D) and Type 2 diabetes (T2D). T2D accounts
for about 85% of the diabetes incidences. Besides genetic
factors, insulin resistance is a major risk factor for both
T1D and T2D (Fourlanos et al., 2004). T1D and T2D also
have a few common complications including damage to
the kidneys, nerves, and cardiovascular systems, which may
result in diabetes-related diseases (DRDs) like renal diseases
(Papatheodorou et al., 2016, 2018). In general, DRDs can be
divided into three categories: (1) microvascular disease, (2)
macrovascular disease, and (3) miscellaneous complications.
Microvascular disease mainly includes eye disease, kidney
disease, and neuropathy; macrovascular disease mainly contains
cardiovascular diseases; while miscellaneous complications
include depression (Nouwen et al., 2011), dementia (Cukierman
et al., 2005), and so on.

At present, people have explored the pathogenesis
and pathological pathways of many DRDs. For example,
inflammation, extracellular matrix expansion, oxidative stress,
DNA damage, and vascular and nerve dysfunction are common
pathways for the development of diabetic nephropathy (Wada
and Makino, 2013; Jenkins et al., 2015; Zhang et al., 2018a);
endothelial dysfunction and inflammation are involved in the
development of diabetic vascular disease (Paneni et al., 2013);
inflammation, endothelial dysfunction, and hypercoagulability
are related to each other and play an important role in the
occurrence of diabetic vascular disease (Domingueti et al.,
2016). Though it is clear that certain biomarkers and biological
pathways are involved in many DRDs, there is no systematic
study summarizing DRD-associated common pathways,
and pathways specific to the interaction between diabetes
and specific DRDs.

With the development of high-throughput sequencing
techniques, there are a lot of studies on genes and networks
associated with diabetes and other diseases. For example, Ding
et al. (2019) identified the core genes of T2D based on biological
information, such as protein–protein interaction (PPI) network
and microarray data. Zhang et al. (2018b) identified genes related
to proliferative diabetic retinopathy based on PPI network
and the random walk with restart (RWR) algorithm. Jiang
et al. identified key genes and biological pathways related to
diabetic nephropathy based on PPI network and microarray
data (Jiang et al., 2015; Liu and Li, 2019; Song et al., 2019). The
more and more accessible disease-related genes together with
other important biological information, such as PPI data, gene
expression data, and gene ontology (GO) data, provide us a

unique opportunity for studying the interaction between diabetes
and DRDs at the network level.

In this paper, we have proposed and compared 10 network-
based computational methods to study the connections between
diabetes and 254 diseases&vitamin D, which can generally be
grouped into four categories, namely (1) DIcd based on the
closest distance; (2) DIoverlap based on gene set overlap; (3)
DINet based on random walk and gene set enrichment; (4)
DIconnectivity based on cut edges between gene sets. Using these
methods, we aim to predict DRDs, and perform a comprehensive
analysis on important biological pathways associated with DRDs.

RESULTS

We have proposed four categories of algorithms to study the
connections between diabetes and other diseases&vitamin D,
namely, DIoverlap, DIcd, DINet, and DIconnectivity, all of which
are based on PPI network/subnet. Since the diabetes-disease
related genes might be enriched in a few biological processes
(BPs) (Nigro et al., 2014), we also studied the connections based
on BP modularized networks (MNs). The MN is constructed by
mapping genes in each GO BP to the reference PPI network.
In addition, we further expand each MN by an RWR procedure
to construct the expanded MN (eMN). In our study, we set the
expansion fold N to 3.

An Overview of DIoverlap, DIcd, DINet,
and DIconnectivity
DIoverlap is the Jaccard coefficient between diabetes and disease
gene set. We applied this algorithm to three types of networks
including the whole network, MN, and eMN, corresponding
to DIoverlap-Whole network, DIoverlap-MN, and DIoverlap-
eMN, respectively. We define the mean of Jaccard coefficients
across the MNs/eMNs as the evaluation standard for DIoverlap-
MN/DIoverlap-eMN. An overview of other three algorithms
DIcd, DINet, and DIconnectivity is presented in Figure 1. For
each algorithm, the disease-related genes were mapped to the
network first. DIcd is the closest distance from diabetes genes to
disease genes on PPI network (see Figure 1A). The major steps
of DINet are shown in Figure 1B, which is similar to GeroNet
algorithm (Yang et al., 2016). For DINet algorithm, the diabetes
and disease genes were mapped to each eMN and the connection
between the two mapped gene sets was estimated using RWR
and gene set enrichment analysis (GSEA); the significance of the
connection was evaluated by a permutation analysis, in which
the diabetes genes are randomly permuted, and the significance
p-value is adjusted for multiple testing; the connection between
diabetes and disease/vitamin D is evaluated by the minimum
adjusted p-value. The details of each step are presented in Section
“Materials and Methods.”

DIconnectivity (Figure 1C) calculates the number of
interactions between diabetes and disease gene set. We applied
this algorithm to three types of networks including the whole
network, MN, and eMN, corresponding to DIconnectivity-
Whole network, DIconnectivity-MN, and DIconnectivity-eMN,
respectively. We define the mean of interaction numbers across
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FIGURE 1 | An overview of DIcd, DINet, and DIconnectivity. (A) The green dots and blue dots represent the genes of diabetes and disease, respectively, and the red
dots represent their overlap. a1, a2, ..., a7 represent diabetes genes, and the closest distances from ai(i = 1, 2, ..., 7) to disease genes are 1, 2, 1, 0, 0, 0, 0, then
DIcd = (1+ 2+ 1+ 0+ 0+ 0+ 0)/7 = 4/7. (B) An overview of GeroNet. RWR, random walk with restart; MN, modularized network; eMN, expanded modularized
network; GSEA, gene set enrichment analysis. (C) The diabetes-disease pair is the same as (A). Four kinds of interactions between the two gene sets were denoted
by H1, H2, H3, H4. We assign the weight of the interactions between the overlap genes (H4) to 2, and the other types (H1, H2, H3) to 1. If the number of
Hi(i = 1, 2, 3, 4) is hi , then DIconnectivity = h1 + h2 + h3 + 2h4.

the MNs/eMNs as the evaluation standard for DIconnectivity-
MN/DIconnectivity-eMN. In addition, DIconnectivity-eDMN
calculates the interaction number between the expand diabetes
and disease gene set on eMNs, and the gene sets are expanded
by RWR and GSEA.

Collection of Diabetes and
Disease&vitamin D Genes, Reference
PPI Network, GO BPs, and DRD
Classification
We used diabetes/diseases genes collected from Enrichr as our
input genes, and the genes of T1D/T2D/254 diseases were
obtained by merging genes with the same human terms. Owing
to some of the T1D/T2D/254 diseases also contain mouse or rat
genes, we constructed two datasets: one of which only considers
the human genes, called the H_Dataset, and the other one
considers the genes of these three species, called HMR_Dataset.
The vitamin D genes are obtained from GO terms which are
related to vitamin D (i.e., the GO terms contain the word
“vitamin D”) and the number of this gene set is 57. The
number of disease genes in H_Dataset ranges from 298 to
3875 and a full list of disease&vitamin D genes is provided in

Supplementary Dataset S1, while the number in HMR_Dataset
ranges from 298 to 4134 and the gene list is provided in
Supplementary Dataset S2. Besides, the number of T1D/T2D
genes in H_Dataset is 355/2109, and the number is 2288/3521
in HMR_Dataset.

We used the PPI network compiled by Menche et al.
as the reference network, and considered 3367 GO BPs
to define MNs (see section “Materials and Methods”). We
annotated the diseases&vitamin D as being either diabetes-
related or non-diabetes related based on literature mining. 41
diseases&vitamin D were annotated as DRD1s (Supplementary
Table S1) and 29 diseases&vitamin D were annotated as DRD2s
(Supplementary Table S2).

Comparison of DIoverlap, DIcd, DINet,
and DIconnectivity
We used 10 methods to study the diabetes-disease&vitamin
D connections based on PPI network/subnet, which are
DIoverlap-Whole network, DIoverlap-MN, DIoverlap-eMN,
DIoverlap-eDMN, DIcd, DINet, DIconnectivity-Whole network,
DIconnectivity-MN, DIconnectivity-eMN, and DIconnectivity-
eDMN. For DIoverlap-MN and DIconnectivity-MN, we
only considered the MNs with the numbers of diabetes and
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disease/vitamin D mapping genes greater than 5, while for
DIoverlap-eMN, DIconnectivity-eMN, DIoverlap-eDMN, and
DIconnectivity-eDMN, we only considered the eMNs, which
are expanded by these MNs. In addition, for DIoverlap-eDMN
and DIconnectivity-eDMN, we also performed permutation
training of eMNs (see Supplementary Material). For DINet,
we considered the eMNs with the numbers of diabetes and
disease/vitamin D mapping genes greater than 5. We compared
the methods according to the accuracy of predicting the
DRD1s/DRD2s. To quantify the performance, we calculated
the area under the receiver operating characteristic curve
(AUROC or simply AUC) for each method, a commonly
used statistics to characterize the overall performance of
a predictive model. For DINet, we tested nine values for
parameter (i.e., 0.1, 0.2, . . ., 0.9) to get the best prediction
result; for DIoverlap-eDMN/DIconnectivity-eDMN, we tested
10 values for expansion fold N (i.e., 1, 2, . . ., 10) on diabetes
and diseases&vitamin D genes, and denoted the corresponding
methods as DIoverlap-eDMN_EN/DIconnectivity-eDMN_EN.
For T1D/T2D, DIconnectivity-eDMN_E3/DIconnectivity-
eDMN_E4 performed the best with AUC of 0.71/0.71 on
HMR_Dataset (Figure 2). In Figure 2, we only plotted the AUC
result of each method under the optimal parameter (if parameter
is included), and the parameter training results of different
methods are listed in Supplementary Table S3.

Diabetes Related Diseases Predicted by
DIconnectivity-eDMN
We used the best performing method DIconnectivity_eDMN to
predict the connections between diabetes and diseases&vitamin
D, and the predicted ranking list of all 254 diseases&vitamin
D related to T1D/T2D is provided in Supplementary
Datasets S3, S4. It should be noted that we only considered the
eMNs whose numbers of interactions between gene sets were
greater than 0 for each diabetes-disease pair. In order to find
significant related diseases, we converted the DIconnectivity into
z-score statistics and calculated the p-values and then the diseases
with p-values less than 0.05 were significant DRDs (Table 1).
Finally, we found 22 significant related diseases of T1D/T2D.
Among these DRDs, bacterial infection, acute myocardial
infarction, atherosclerosis, osteoarthritis, and obesity are well-
known DRDs. For bacterial infections, the mechanism of the
susceptibility is the influence of glycemia on polymorphonuclear
cell functions, such as urinary tract infection, “diabetic foot,” or
“infectious cellulitis” (Schubert and Heesemann, 1995). Besides,
certain infections (i.e., respiratory and foot infections) are
overrepresented in the diabetic population and are associated
with a higher risk of infection-related mortality (Pearson-
Stuttard et al., 2016). On the one hand, diabetes increases
the risk of acute myocardial infarction; on the other hand,
acute myocardial infarction is the major cause of morbidity
and mortality in diabetic patients (Echouffo-Tcheugui et al.,
2018). The statistics from US centers for disease control and
prevention (CDC1) also note that heart disease is the leading
cause of death among people with diabetes. Diabetes is also

1https://www.cdc.gov/diabetes/managing/problems.html

associated with elevated odds of having osteoarthritis, which is
the most frequent disease in individuals with diabetes (Rehling
et al., 2019). The relationship between diabetes and obesity is
more obvious (Weyer et al., 2001; Okada-Iwabu et al., 2013).
According to the latest statistics from CDC, 89% of diabetes
patients in the United States are overweight or obese (body mass
index > 25 kg/m2). In Brazilian, 75% of the T2D patients are
overweight, and 30% of them are obese (Gomes et al., 2006).

It should be noted that for both T1D and T2D, systemic
lupus erythematosus ranked first, which is associated with an
increased risk of development of diabetes (Chung et al., 2007;
Jiang et al., 2018). A cohort study in Toronto documented
that women with SLE had a significantly higher prevalence of
diabetes than the age-matched healthy controls (5 versus 1%)
(Bruce et al., 2003). Therefore, we can conclude that SLE patients
may develop diabetes. Followed in the list are breast cancer
and asthma. According to Cancer Research UK2, women with
diabetes have an increased risk of breast cancer. In addition,
some studies have shown that diabetes not only increases the
risk of breast cancer (Liao et al., 2011), but also increases
the risk of breast cancer death (Luo et al., 2014; Bronsveld
et al., 2015). The published data on disease occurrence showed
that there was a strong positive association between T1D and
asthma in Europe and elsewhere (Stene and Nafstad, 2001).
Similarly, T2D has attracted attention as a risk factor for
asthma (Murakami et al., 2019). Followed in the list are various
types of psychiatric disorders, neurodegenerative diseases, and
cancers. According to CDC, the complications of diabetes
include heart disease, nerve damage, and mental health. On
the other hand, some studies have shown that bipolar disorder
(McIntyre et al., 2005), schizophrenia (Hoffman, 2017), and
autism spectrum disorder (Alhowikan et al., 2019) also increase
the prevalence of diabetes. In addition, high blood sugar can
cause neuropathy (nerve damage) throughout your body, and
some studies also suggested that there was an association between
diabetes and the neurodegenerative diseases multiple sclerosis
and amyotrophic lateral sclerosis (Mariosa et al., 2015; Tettey
et al., 2015). Additionally, Cancer Research UK notes that people
with diabetes have an increased risk of pancreatic cancer3. What
is more, several studies show a higher risk of womb cancer in
women with diabetes4. We should also note that diabetes is one
of the common comorbidities of ulcerative colitis (Maconi et al.,
2014) and cystic fibrosis (Prentice et al., 2016; Hart et al., 2018).

DIconnectivity-eDMN can effectively rank some recognized
DRDs at the top of the list, but there are still some obvious
related diseases that are relatively backward, such as diabetic
nephropathy of T1D (48th), insulin resistance of T2D (68th),
and even put some diabetes related diseases at the bottom of the
list, such as vitamin D (255th) and morbid obesity (240th) of
T1D/T2D. Such a ranking error may be due to incomplete genes
in our network or diseases&vitamin D. In addition, some DRDs
were not defined as DRDs, but we did find evidence to support

2https://www.cancerresearchuk.org/about-cancer/breast-cancer/risks-causes/
risk-factors
3https://www.cancerresearchuk.org/about-cancer/pancreatic-cancer/risks-causes
4https://www.cancerresearchuk.org/about-cancer/womb-cancer/risks-causes
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FIGURE 2 | Comparison of different methods based on AUC of ROC in T1D (A) and T2D (B). DIcd is based on whole PPI network; DINet is based on expanded
modularized network (eMN); DIconnectivity_whole network represents DIconnectivity based on whole PPI network; DIconnectivity_MN represents DIconnectivity
based on modularized network (MN); DIconnectivity_eMN represents DIconnectivity based on expanded modularized network (eMN); DIoverlap is defined similarly.

TABLE 1 | The significant diabetes-related diseases inferred by DIconnectivity-eDMN.

Disease p-value DRD1 Disease p-value DRD1

Type 1 diabetes

Systemic lupus erythematosus 1.24 E-04 1 Endometrial cancer 1.06 E-02 0

Breast cancer 4.45 E-04 0 Acute myocardial infarction 1.13 E-02 1

Bacterial infection 1.07 E-03 1 Endometriosis 1.58 E-02 0

Asthma 1.08 E-03 1 Cystic fibrosis 1.62 E-02 1

Ulcerative colitis 1.64 E-03 1 Huntington’s disease 2.29 E-02 0

Bipolar disorder 2.16 E-03 0 Multiple sclerosis 3.26E-02 1

Crown’s disease 2.49 E-03 1 Pancreatic cancer 3.58 E-02 1

Polycystic ovary syndrome 2.67 E-03 1 Osteoarthritis 4.14 E-02 0

Hypoxia 2.96 E-03 1 Obesity 4.31 E-02 1

Schizophrenia 3.77 E-03 0 Amyotrophic lateral sclerosis 4.36 E-02 0

Autism spectrum disorder 6.54E-03 0 Prostate cancer 4.84 E-02 0

Disease p-value DRD2 Disease p-value DRD2

Type 2 diabetes

Systemic lupus erythematosus 6.52 E-04 0 Schizophrenia 1.10 E-02 0

Bacterial infection 7.74 E-04 1 Endometriosis 1.16 E-02 0

Asthma 1.72 E-03 0 Autism spectrum disorder 1.70 E-02 0

Breast cancer 1.73 E-03 1 Cystic fibrosis 1.76 E-02 0

Crown’s disease 2.13 E-03 1 Pancreatic cancer 2.66 E-02 1

Hypoxia 4.08E-03 1 Osteoarthritis 2.90 E-02 0

Bipolar disorder 5.09 E-03 0 Multiple sclerosis 3.07 E-02 0

Ulcerative colitis 5.64 E-03 0 Alzheimer’s disease 3.28 E-02 0

Polycystic ovary syndrome 6.99 E-03 1 Obesity 3.35E-02 1

Endometrial cancer 7.33 E-03 0 Huntington’s disease 4.76 E-02 0

Acute myocardial infarction 1.01 E-02 1 Atherosclerosis 4.95 E-02 1
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their connections, such as bipolar disorder, endometrial cancer,
and osteoarthritis.

Functional Subnets Connecting Diabetes
and Diseases&vitamin D
For each diabetes-disease/vitamin D connection, we consider
eMNs satisfying the following two conditions: (1) the eMNs
are under the optimal permutation result; (2) the interaction
numbers between diabetes and disease/vitamin D mapping
genes in the eMNs are greater than 0. In the 255 T1D/T2D-
disease&vitamin D connections, the number of eMNs ranges
from 295/298 to 3123/3291, total 427,349/431,778 eMNs.
Generally speaking, not all subnets play an important role in
the diabetes-disease&vitamin D connections, so we identify the
significant eMNs for each diabetes-disease/vitamin D connection
with permutation analysis method, and the specific steps are
as follows: (1) permute diabetes genes in each eMN for
100 times to calculate the null distribution of DIconnectivity
with DIconnectivity-eDMN_E3 for T1D and DIconnectivity-
eDMN_E4 for T2D and (2) convert the DIconnectivity to
a z-score statistic based on this null distribution, then a
p-value is estimated and adjusted for multiple testing. We
consider the eMNs with FDR ≤ 0.05 are significant, and the
number of significant eMNs for T1D/T2D-disease&vitamin D
connections ranges from 46/0 to 1908/1284, a total of 214,545
(∼50.2%)/84,165 (∼19.5%) significant eMNs.

Functional Subnets Connecting T1D and
Diseases&vitamin D
It is worth noting that different eMNs have different frequencies
to connect diabetes and diseases&vitamin D, that is, some
eMNs are involved in multiple diabetes-disease&vitamin D
connections, and some only affect a few or specific ones. In
order to study eMN frequency in the T1D-disease&vitamin D
connections, we calculated the frequencies of all significant eMNs
for each connection, and the average frequency (AF) was used
as its eMN frequency. Among 255 T1D-disease&vitamin D (42
DRD1s and 213 non-DRD1s) connections (AF∈[102, 201]), there
are 92 connections with AF less than 150, of which 23 are
DRD1s involved and 69 are non-DRD1s involved. This shows
that 55% of T1D-DRD1 connections have an eMN frequency
of less than 150, while for non-DRD1s, this proportion is only
32%. Obviously, the smaller the eMN frequency, the higher
the specificity, and then we can conclude that DRD1s have
higher eMN specificity to connect T1D compared to non-DRD1s.
The AFs of 42 connections (DRD1s involved) are plotted in
Figure 3A, and from the figure, we can see that some well-
known DRD1s have low frequencies (e.g., morbid obesity and
diabetic nephropathy). The higher frequent diseases include
heart diseases (e.g., cardiomyopathy and atherosclerosis) and
inflammatory diseases (e.g., colitis and eczema), which suggests
that the connections between T1D and DRD1s may be mediated
by eMNs with very different frequencies.

In order to further search for specific eMNs and non-specific
eMNs of T1D-DRD1 connections, we defined the specific index
SP (SP = KF/AF, 0 < KF≤42, 0 < AF≤255, 0 < SP≤1),

FIGURE 3 | The numbers of significant eMNs in T1D-DRD1 connections (A)
and T2D-DRD2 connections (B).

where KF is the frequency of significant eMN in the range of
T1D-DRD1 connections. It is easy to know that when AF is
closer to KF and KF is closer to 42, the eMN specificity is
higher. Therefore, we set the SP threshold to 0.3 (Supplementary
Table S4), i.e., the eMN with SP greater than 0.3 is defined
as specific eMN, otherwise non-specific eMN. We sorted the
specific eMNs according to KF from large to small, and list the
top 20 non-specific eMNs and specific eMNs in Table 2. Non-
specific eMNs include BPs such as “GO:0060070_canonical Wnt
signaling pathway” and “GO:0060828_regulation of canonical
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TABLE 2 | Top 20 non-specific and specific eMNs (KF from large to small) of
T1D-DRD1connections.

Non-specific eMNs KF AF SP

GO:0060070_canonical Wnt signaling pathway 41 237 0.172995781

GO:0060828_regulation of canonical Wnt
signaling pathway

41 226 0.181415929

GO:2000027_regulation of animal organ
morphogenesis

41 224 0.183035714

GO:0000226_microtubule cytoskeleton
organization

40 244 0.163934426

GO:0022604_regulation of cell morphogenesis 40 240 0.166666667

GO:0051090_regulation of DNA-binding
transcription factor activity

40 243 0.164609053

GO:0050769_positive regulation of neurogenesis 40 243 0.164609053

GO:0051047_positive regulation of secretion 40 243 0.164609053

GO:0042391_regulation of membrane potential 40 249 0.16064257

GO:0002793_positive regulation of peptide
secretion

40 233 0.17167382

GO:0016055_Wnt signaling pathway 39 241 0.161825726

GO:0198738_cell-cell signaling by wnt 39 240 0.1625

GO:0030111_regulation of Wnt signaling pathway 39 226 0.172566372

GO:0016050_vesicle organization 39 224 0.174107143

GO:0022412_cellular process involved in
reproduction in multicellular organism

39 229 0.170305677

GO:0050804_modulation of chemical synaptic
transmission

39 240 0.1625

GO:0051091_positive regulation of DNA-binding
transcription factor activity

39 235 0.165957447

GO:0072001_renal system development 39 243 0.160493827

GO:0001822_kidney development 39 234 0.166666667

GO:0001655_urogenital system development 39 222 0.175675676

Specific eMNs

GO:0060541_respiratory system development 28 91 0.307692308

GO:1903311_regulation of mRNA metabolic
process

23 75 0.306666667

GO:1902105_regulation of leukocyte
differentiation

20 59 0.338983051

GO:0052548_regulation of endopeptidase activity 20 66 0.303030303

GO:0007517_muscle organ development 18 53 0.339622642

GO:0071383_cellular response to steroid
hormone stimulus

18 47 0.382978723

GO:0031100_animal organ regeneration 18 56 0.321428571

GO:0060537_muscle tissue development 17 49 0.346938776

GO:0009267_cellular response to starvation 17 48 0.354166667

GO:0003007_heart morphogenesis 17 51 0.333333333

GO:0021782_glial cell development 16 52 0.307692308

GO:0048545_response to steroid hormone 16 53 0.301886792

GO:0002521_leukocyte differentiation 16 42 0.380952381

GO:0071901_negative regulation of protein
serine/threonine kinase activity

16 42 0.380952381

GO:0048771_tissue remodeling 16 46 0.347826087

GO:0042110_T cell activation 16 52 0.307692308

GO:0048732_gland development 16 51 0.31372549

GO:0043434_response to peptide hormone 15 46 0.326086957

GO:0051169_nuclear transport 15 42 0.357142857

GO:0036473_cell death in response to oxidative
stress

15 44 0.340909091

Wnt signaling pathway.” According to Table 2, there are 41
DRD1s (42 in total) and 196 non-DRD1s (213 in total) that
are significantly related to the eMN “GO:0060070_canonical
Wnt signaling pathway,” and there are 41 (98%) DRD1s
and 185 (87%) non-DRD1s that are significantly related to
the eMN “GO:0060828_regulation of canonical Wnt signaling
pathway.” The Wnt signaling pathway has been reported to
be associated with glucose and lipid metabolism (Qin et al.,
2018). Besides, many studies have shown that the Wnt signaling
pathway is related to the pathogenesis of diabetic nephropathy
(Kavanagh et al., 2011) and diabetic retinopathy (Chen and Ma,
2017). In the non-specific eMNs, except for multiple pathways
related to Wnt signaling (GO:0016055_Wnt signaling pathway,
GO:0198738_cell-cell signaling by wnt, GO:0030111_regulation
of Wnt signaling pathway), there are also eMNs related to kidney
development, such as GO:0072001_renal system development,
GO:0001822_kidney development, and GO:0001655_urogenital
system development.

Specific eMNs include BPs such as “respiratory system
development” and “regulation of mRNA metabolic process.”
There are 28 (68%) DRD1s and 63 (30%) non-DRD1s that
are significantly related to “respiratory system development,”
and there are 23 (55%) DRD1s and 52 (24%) non-DRD1s that
are significantly related to “regulation of mRNA metabolic
process.” Related studies have shown that respiratory control
imbalance is common in T1D patients (Bianchi et al., 2017).
The available evidence shows that diabetes usually changes
metabolites such as glucose, fructose, amino acids, and
lipids through metabolic pathways (Arneth et al., 2019).
In addition, the well-known specific eMNs of diabetes,
insulin related BPs (GO:0032868_response to insulin,
GO:0032869_cellular response to insulin stimulus) are also
in the list (Brezar et al., 2011).

Functional Subnets Connecting T2D and
Diseases&vitamin D
We conducted a similar analysis for T2D. Among 255
T2D-diseases&vitamin D (30 DRD2s and 225 non-DRD2s)
connections (AF∈[10, 209]), there are 94 connections with
AF less than 100, of which 16 are DRD2s involved and 78
are non-DRD2s involved. This shows that 53% of T2D-DRD2
connections have an eMN frequency of less than 100, while
for non-DRD2s, this proportion is only 35%. The AFs of
30 connections (DRD2s involved) are plotted in Figure 3B,
and from the figure, we can see that high frequent diseases
include obesity and some heart diseases (cardiomyopathy, acute
myocardial infarction, and atherosclerosis).

We set the SP threshold to 0.2 (Supplementary Table S5) to
define specific eMNs and non-specific eMNs, and list the top 20
of them in Table 3. The non-specific eMN with the largest KF is
“GO:0000226_microtubule cytoskeleton organization,” and there
are 22 DRD2s (30 in total) and 178 non-DRD2s (225 in total) that
are significantly related to it. Studies have found that microtubule
polymerization may play an important role in glucose transport
(Taneja and Priyadarshini, 2018). It is worth noting that pathways
related to Wnt signaling are also significantly related to T2D, such

Frontiers in Genetics | www.frontiersin.org 7 December 2020 | Volume 11 | Article 617136

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617136 December 8, 2020 Time: 18:39 # 8

Zhu et al. Interactions Between Diabetes and Diseases

TABLE 3 | Top 20 non-specific and specific eMNs (KF from large to small) of
T2D-DRD2 connections.

Non-specific eMNs KF AF SP

GO:0000226_microtubule cytoskeleton
organization

22 200 0.11

GO:0051052_regulation of DNA metabolic
process

22 206 0.106796117

GO:0016570_histone modification 22 184 0.119565217

GO:0198738_cell-cell signaling by wnt 22 182 0.120879121

GO:0016055_Wnt signaling pathway 22 178 0.123595506

GO:0090068_positive regulation of cell cycle
process

22 191 0.115183246

GO:0048285_organelle fission 22 209 0.105263158

GO:0045787_positive regulation of cell cycle 22 195 0.112820513

GO:0045930_negative regulation of mitotic cell
cycle

22 187 0.117647059

GO:0034660_ncRNA metabolic process 21 176 0.119318182

GO:0051260_protein homooligomerization 21 165 0.127272727

GO:0000082_G1/S transition of mitotic cell
cycle

21 180 0.116666667

GO:0072331_signal transduction by p53 class
mediator

21 176 0.119318182

GO:1901987_regulation of cell cycle phase
transition

21 196 0.107142857

GO:0031396_regulation of protein
ubiquitination

21 167 0.125748503

GO:1901990_regulation of mitotic cell cycle
phase transition

21 189 0.111111111

GO:0060249_anatomical structure
homeostasis

20 202 0.099009901

GO:0016569_covalent chromatin modification 20 144 0.138888889

GO:0060070_canonical Wnt signaling pathway 20 172 0.11627907

GO:0044843_cell cycle G1/S phase transition 20 166 0.120481928

Specific eMNs

GO:0061138_morphogenesis of a branching
epithelium

14 67 0.208955224

GO:0007626_locomotory behavior 13 60 0.216666667

GO:0001890_placenta development 13 65 0.2

GO:0007162_negative regulation of cell
adhesion

12 55 0.218181818

GO:0001894_tissue homeostasis 12 50 0.24

GO:0060562_epithelial tube morphogenesis 12 43 0.279069767

GO:0034101_erythrocyte homeostasis 12 55 0.218181818

GO:0048469_cell maturation 12 52 0.230769231

GO:0009267_cellular response to starvation 11 45 0.244444444

GO:0007179_transforming growth factor beta
receptor signaling pathway

11 44 0.25

GO:0042594_response to starvation 11 43 0.255813953

GO:0048762_mesenchymal cell differentiation 11 42 0.261904762

GO:0051100_negative regulation of binding 11 53 0.20754717

GO:0051047_positive regulation of secretion 11 39 0.282051282

GO:0030098_lymphocyte differentiation 11 50 0.22

GO:0001558_regulation of cell growth 11 46 0.239130435

GO:0006732_coenzyme metabolic process 11 42 0.261904762

GO:0032259_methylation 10 41 0.243902439

GO:0090287_regulation of cellular response to
growth factor stimulus

10 46 0.217391304

GO:0019359_nicotinamide nucleotide
biosynthetic process

10 41 0.243902439

as GO:0198738_cell-cell signaling by wnt, GO:0016055_Wnt
signaling pathway, GO:0030111_regulation of Wnt signaling
pathway, and GO:0060828_regulation of canonical Wnt signaling
pathway, and there are evidences that the Wnt signaling pathway
is a key pathway for the occurrence of T2D (Lee et al.,
2008; Liu et al., 2018). Therefore, we can conclude that both
T1D and T2D are significantly related to the Wnt signaling
pathway. On the other hand, the Wnt signaling pathway is
also related to the development of some DRD2s, for example,
miR-128-3p aggravates cardiovascular calcification and insulin
resistance in T2D rats by downregulating ISL1 through the
activation of the Wnt pathway (Wang et al., 2019). The
specific eMN with the largest KF is “GO:0061138_morphogenesis
of a branching epithelium,” and studies have found that
branching morphogenesis is a critical step in the development
of many epithelial organs, for example, lung (Carter et al.,
2014; Goodwin et al., 2019), kidney (Basson et al., 2006),
and breast, besides, breast epithelial branch morphogenesis
may be related to breast cancer (Kessenbrock et al., 2017).
In addition, the similar BPs of morphogenesis of a branching
epithelium (GO:0060562_epithelial tube morphogenesis ranked
6, GO:0001763_morphogenesis of a branching structure ranked
22 and GO:0048754_branching morphogenesis of an epithelial
tube ranked 25) are also in the specific eMN list, which further
indicates that the BP of morphogenesis of a branching epithelium
structure is important for T2D-DRD2 connections.

Key Connectors Mediating
Diabetes-Disease Connections in
Significant Subnets
We performed key connector analysis (KCA) to infer key
genes that connect diabetes and DRDs in selected eMNs. The
detailed information of KCA is provided in Section “Materials
and Methods.” We selected two common diabetes-disease
connections including T1D-bacterial infection and T2D-obesity
as case studies to illustrate the key connectors (Figure 4). In
Figure 4, we only show the subnet consisting of key connectors
and their neighboring genes for a better view.

The T1D-bacterial infection connection is most significant
in the eMN corresponding to “GO:0016055_Wnt signaling
pathway.” In this eMN, there are 111 T1D genes and 58
bacterial infection genes, and the number of overlap between
them is 30. We analyzed these 30 common genes with key
driver analysis (KDA), and the key connector gene HSPA8 was
obtained (Figure 4A). Studies have shown that HSPA8 binds
bacterial lipopolysaccharide (LPS) and mediates LPS-induced
inflammatory response (Yahata et al., 2000; Triantafilou et al.,
2001). Similarly, T2D-obesity connection is the most significant
in the eMN corresponding to “GO:0035107_appendage
morphogenesis.” In this eMN, there are 84 T2D genes and 30
obesity genes, and the number of overlap between them is 23.
We analyzed these 23 common genes, and got the key connector
genes TCF4, CTNNB1 and CEBPB (Figure 4B). TCF4 (TCF7L2)
is the strongest T2D candidate gene discovered to date, and it
also plays a key role in the development and function of adipose
tissue (Chen et al., 2018). CTNNB1 (β-catenin) is a key regulator
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FIGURE 4 | Key connectors of (A) T1D-bacterial infection in Wnt signaling pathway and (B) T2D-obesity in appendage morphogenesis. We use node shape to
denote key connectors: (1) square represents the key connectors; (2) circle represents diabetes and disease genes. We use fill color to denote diabetes and disease
information: (1) red represents diabetes gene; (2) blue represents disease gene; and (3) yellow represents the overlapping diabetes and disease gene.

of fat expansion and human obesity (Chen et al., 2020). Besides,
studies have shown that co-administration of insulin and leptin
to pancreatic islet-derived mesenchymal stem cell (PID-MSC)
leads to the co-development of insulin and leptin resistance, and
the differentiation signaling is mainly mediated by CTNNB1 and
Tub (Ercin et al., 2018). In addition, the repressed expression
of CEBPB has been found in obesity and T2D in adipose tissue
(Li et al., 2016).

DISCUSSION

The Effect of the Number of Disease
Genes on the Result
In the predicted diabetes-related diseases&vitamin D list, some
well-known diseases are not ranked at the top (e.g., diabetic
nephropathy, insulin resistance) and we speculate that it may be
caused by the difference in the number of known disease genes.
We sorted the numbers of diseases&vitamin D genes from large

to small, and found that diabetic nephropathy ranked 118 and
vitamin D ranked 255. In order to prove our conjecture, we
expanded (limited) the genes of each disease to 500 and predicted
DRDs with DIconnectivity_eDMN method on HMR_Dataset
(Supplementary Table S6). We found that the predicted top five
related diseases of T1D and T2D are the same, all of which are
“essential thrombocytemia,” “bacterial infection,” “osteoporosis,”
“diabetic nephropathy,” “insulin resistance.” This result shows
that the number of known disease genes indeed affects the
ranking of related diseases to a certain extent. Additionally,
vitamin D has the least number of genes and is predicted at the
bottom of the list, which further proves our conjecture.

Diabetes Genes Play an Important Role
in the Diabetes-Disease Connections
We calculated the proportion of T1D genes involved in the
DIconnectivity (DIconnectivity-Whole network) for each T1D-
DRD1 connection, and found that the average proportion was
0.64, while in T1D-non-DRD1 connections, the proportion was
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only 0.54. Similarly, in T2D-DRD2 connections and T2D-non-
DRD2 connections, the average proportions were 0.59 and 0.51,
respectively. In addition, we also calculated the proportion of
disease genes involved in the corresponding DIconnectivity, and
found that the average proportions of DRD1s and non-DRD1s
were 0.80 and the average proportions of DRD2s and non-DRD2s
were 0.88 and 0.87, respectively. The average proportion of
disease genes is higher than that of diabetes, but the proportions
is the same for DRDs and non-DRDs, which shows that diabetes
plays a key role in diabetes-disease connections.

For the shortest path method, we considered three distance
measures (Guney et al., 2016): (1) the shortest distance ds(A, S),
ds(A, S) = 1

||S||
∑

a∈A
1
||A||

∑
s∈S d(a, s), where A is diabetes gene

set, S is disease gene set, and d(a, s) is the shortest path length
between nodes a and s in PPI network; (2) the closest distance
dc(S,A), dc(S,A)= 1

||S||
∑

s∈S mina∈A d(s, a), d(s, a)=d(a, s); (3)
the closest distance dc(A, S), dc(A, S)= 1

||A||
∑

a∈A mins∈S d(a, s).
We found that dc(A, S) has the best results (Supplementary
Table S7). Among these three methods, ds(A, S) considers all
genes of diabetes and disease, dc(S,A) only considers all genes
of disease, and dc(A, S) only considers all genes of diabetes.
Therefore, we can conclude that diabetes plays a more important
role in diabetes-disease connections.

The Important Genes and Distances in
the Diabetes-Disease Connections
DIoverlap method takes the intersection between diabetes and
disease gene sets as a criterion for measuring their connection.
In essence, it only considers the genes with distances of 0;
DIconnectivity method considers the genes with distances of
0 and 1; DIcd method considers all diabetes genes regardless
of distance. Among the three methods, DIconnectivity_eDMN
performs best, which shows that the genes with distances of 0 and
1 play an important role in the diabetes-disease connections.

The Impact of BP Redundancy
In order to evaluate the impact of BP redundancy on prediction
results, we calculated the semantic similarity among 3367
BP terms using R software package GOSemSim, of which
1141/359/59 terms have semantic similarity less than 0.8/0.7/0.6.
Too high similarity and few terms are not our selection criteria,
so we adopted the optimal method DIconnectivity-eDMN to
predict DRDs again based on eMNs with similarity less than 0.7.
Through the training of DIconnectivity-eDMN_EN (N = 1, 2,. . .,
10), we found that DIconnectivity-eDMN_E3/DIconnectivity-
eDMN_E4 has the best prediction for DRD1s/DRD2s with AUC
of 0.70/0.71. Therefore, we can conclude that removing a few
highly similar terms has very little impact on the prediction effect.

MATERIALS AND METHODS

Database
We downloaded the upregulated and downregulated gene files
of diabetes/diseases Disease_Perturbations_ from_GEO_up.txt
(Supplementary Dataset S5) and Disease_ Perturbations_

from_GEO_down.txt (Supplementary Dataset S6) from
Enrichr5. Enrichr is a comprehensive resource for curated gene
sets, currently containing 180,184 annotated gene sets from 102
gene set libraries (Kuleshov et al., 2016). Terms of these two
files are the same, but the corresponding genes are different,
so we first merge the upregulated and downregulated genes of
each term, and get a total of 839 terms of human, mouse, and
rat. In addition, since some diabetes/diseases terms are the same
but only the case of the first letter is different, so we merged the
same human terms of diabetes/diseases. Finally, we obtained
a list of genes for 254 diseases and T1D/T2D (Supplementary
Dataset S1). Besides, we also extracted vitamin D genes from GO
terms which were related to vitamin D. In addition, we found
that diabetes and some of 254 diseases not only contain human
term genes, but also mouse or rat term genes, so we constructed
another dataset by adding them to the corresponding disease
gene set (Supplementary Dataset S2).

We used the human PPI network compiled by Menche et al.
as the reference PPI network (Guney et al., 2016), and conducted
research based on its largest connected subnet, which consists of
13,329 proteins and 141,150 protein interactions.

Gene ontology terms were obtained based on R software
package GO.db. We consider GO BPs containing 30–500 genes,
and ignore either very small or overly large functional gene
sets. Finally, we obtained 3367 GO BPs to generate various
network modules.

Diabetes–Disease/Vitamin D Connection
Annotation
We adopted literature mining approach to annotate whether
a disease/vitamin D is diabetes-related. Specifically, we ranked
diseases&vitamin D based on their Jaccard indices between their
names and the term “type 1 diabetes” (“type 2 diabetes”) in
PubMed abstracts published from 2008 to 2019. The PubMed
abstracts containing the term “type 1 diabetes” (“type 2 diabetes”)
from 2008 to 2019 were retrieved using Entrez Programming
Utilities6. The term “type 1 diabetes” corresponds to “type 1
diabetes” [MeSH Terms] OR “type 1 diabetes” [All Fields] in
PubMed, which is a superset of the term “type 1 diabetes.”
The co-occurrence of disease and diabetes was evaluated by the
following equation:

Jaccard(disease, diabetes)=
|PubMedIDdisease ∩ PubMedIDdiabetes|

|PubMedIDdisease ∪ PubMedIDdiabetes|

Where PubMedIDdisease and PubMedIDdiabetes were the
PubMed IDs containing the disease name and the term
“diabetes,” respectively.

According to previous study, some diseases are indeed
associated with diabetes, such as diabetic nephropathy, obesity,
and bacterial infection (Forbes and Cooper, 2013). We used
the minimum Jaccard coefficient of these diseases as the
threshold, and selected the diseases&vitamin D with Jaccard
coefficient larger than threshold as DRDs. Finally, we obtained

5https://maayanlab.cloud/Enrichr/
6http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db~=~pubmed&term~
=~[type1diabetes]+AND+2008:2019[pdat]&retmax~=~999999
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41 diseases&vitamin D that are defined as DRD1s and 29
diseases&vitamin D that are defined as DRD2s.

Four Categories of Algorithms
We used four algorithms to identify the connections between
diabetes and diseases&vitamin D, namely DIoverlap rank the
diseases&vitamin D by calculating the Jaccard coefficient,
DIcd performed by using the closest distance. DINet
based on a procedure similar to gene set enrichment
analysis and an RWR procedure, and DIconnectivity
based on the number of interactions between diabetes and
diseases&vitamin D genes.

DIcd
DIcd is a closest distance method: let A and S denote diabetes and
disease gene set, respectively, and dc(A, S) is the closest distance
from A to S. Given two nodes a ∈ A and s ∈ S, the shortest path
length between a and s in the network is represented by d(a, s),
then we define dc(A, S) as follows:

dc(A, S) =
1
||A||

∑
a∈A

min
s∈S

d(a, s)

It should be noted that the smaller the value of DIcd, the higher
the connection between diabetes and disease.

DIoverlap
DIoverlap is the Jaccard coefficient between diabetes and
disease gene set, and the larger the value, the higher the
connection between them.

DINet
DINet is similar to the GeroNet (Yang et al., 2016, 2017) and it
consists of three steps: (1) Generate expanded network modules
(eMN), (2) Calculate the enrichment scores on eMNs follow a
method similar to GSEA, and (3) Calculate the significance of
enrichment score based on permutation test.

Step 1: To generate expanded network modules (eMN), we
map each GO BP to the reference PPI network to generate the
corresponding MN, which is further expanded by an RWR (see
Supplementary Material) until it reaches N times the original
gene size and the maximum does not exceed 500 genes.

Step 2: To calculate the diabetes-disease enrichment score on
an eMN, we first map the two gene sets to the eMN and perform
two RWR expansions by setting the two mapped gene sets as
seeds, which will rank all genes in the eMN, respectively. We go
through the sorted gene list of eMN based on disease (diabetes)
gene seed, if we encounter a gene that is not a diabetes (disease)

gene, −
√

G
N−G is added to the score, where N is the number of

genes for the network, and G is the number of diabetes (disease)

genes; otherwise,
√

N−G
G is added. This generates a curve and the

peak value is defined as ES1(ES2). The enrichment score is defined
as the weighted sum of scores

ESβ = βES1 + (1− β)ES2, 0 < β < 1.

Step 3: To calculate the significance of enrichment score, we
permute diabetes genes in the eMN for 100 times to calculate the

null distribution of enrichment scores and convert the ESβ to a
z-score statistic based on this null distribution, then a p-value is
estimated and adjusted for multiple testing. For each diabetes-
disease connection, the significance is defined as the minimum
adjusted p-value of eMN. The diseases are then ranked based on
their significances, and the more significant the disease, the more
diabetes-related.

DIconnectivity
DIconnectivity is the weighted sum of interaction numbers
between diabetes and disease gene set, which is based on the
idea of cut edge. We can divide the interactions between the
two gene sets into four categories: (1)H1: one gene involved
in the interaction is disease/VD gene and the other gene is
diabetes gene; (2)H2: one gene is disease/VD gene, and the
other is an overlap gene (both a disease gene and a diabetes
gene); (3)H3: One gene is a diabetes gene, and the other is an
overlap gene; (4) H4: the two genes are both overlap genes. We
give the weight of the number of Hi(i = 1, 2, 3) as 1, and the
weight of H4 as 2 (see Figure 1C). In addition, we also proposed
DIconnectivity-eDMN method, which calculates the weighted
sum of interaction numbers between the expand diabetes and
disease gene set. The gene sets are expanded based on RWR
and GSEA: (1) In Step 2 of DINet, we can obtain the score of
each diabetes/disease gene; (2) Sort the diabetes/disease genes in
descending order according to their scores; (3) The top n genes
are defined as expanded diabetes/disease genes (Hu et al., 2018),
and n is N times the original gene size and the maximum does
not exceed the number of eMN genes. For each diabetes-disease
pair, its DIconnectivity is defined as the mean of interaction
numbers across eMNs. The larger the value is, the higher the
connection between them.

Key Connector Analysis
We adopted the KDA software package (Zhang and Zhu,
2013) to identify key connectors in PPI network. KDA was
originally designed to identify “key regulators” in a directed
regulatory network. When applied to undirected networks like
PPI networks, we consider the key nodes as “key connectors”
since they do not necessarily contain the directional information
(Zhang and Zhu, 2013). Such key connectors function more like
a “hub” gene, instead of being considered as “master regulators.”
Specifically, KDA takes a set of genes G and an undirected gene
network N as inputs. It has two searching strategies, namely,
dynamic neighborhood search (DNS) and static neighborhood
search (SNS) for identifying key connectors. We adopted DNS in
this study: (1) It first generates a subnet NG consisting of all nodes
in N with no more than L(L = 2 in this study) steps away from
the nodes in G. (2) For each gene g in NG, DNS then searches
for genes with distances no more than h = 1, 2, ...,H(H = 2 in
this study) in NG. The set of genes (not including g) is denoted by
NG(HLNg,h). The hypergeometric test is then used to calculate
the enrichment between NG(HLNg,h) and G with the genes in
NG as background for each h. The final enrichment p-value of
each gene g is calculated as the minimum p-value across h layers.
(3) The Bonferroni correction is performed to adjust for multiple
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testing and the genes with significant Bonferroni p-values (≤0.05)
are outputted as key connectors.
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