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Abstract

The Virtual Personalities Model is a motive-based neural network model that provides both a
psychological model and a computational implementation that explicates the dynamics and
often large within-person variability in behavior that arises over time. At the same time the
same model can produce—across many virtual personalities—between-subject variability in
behavior that when factor analyzed yields familiar personality structure (e.g., the Big Five).
First, we describe our personality model and its implementation as a neural network model.
Second, we focus on detailing the neurobiological underpinnings of this model. Third, we
examine the learning mechanisms, and their biological substrates, as ways that the model gets
“wired up,” discussing Pavlovian and Instrumental conditioning, Pavlovian to Instrumental
transfer, and habits. Finally, we describe the dynamics of how initial differences in propensities
(e.g., dopamine functioning), wiring differences due to experience, and other factors could
operate together to develop and change personality over time, and how this might be
empirically examined. Thus, our goal is to contribute to the rising chorus of voices seeking a
more precise neurobiologically based science of the complex dynamics underlying personality.

1. The virtual personalities neural network model

1.1. Neurobiological underpinnings

The science of human personality has many enigmas. How can we understand the dynamics
of persons and situations and how they operate together over time to produce emergent
behavior? How could the same underlying system that results in between-subject stability in
differences in behavior over time and reliable personality structure across individuals (e.g., the
Big Five), plausibly explain broad within-person variability in behavior across situations? How
do underlying biological mechanisms and different learning histories produce enduring
individual differences in response to situational cues? Earlier, we (Read, Droutman, & Miller,
2017; Read et al., 2010; Read, Smith, Droutman, & Miller, 2017) argued that a computational
model (here implemented as a neural network model) is needed that allows us to begin to
construct plausible models of such dynamics that could begin to address these questions.
In the current work, after an introduction that describes our personality model and its
implementation as a neural network model, we focus on what is known about the underlying
neurobiological and learning mechanisms underpinning the Virtual Personalities Model.
We then discuss the implications of these processes for understanding individual differences.

The Virtual Personalities Model (Read, Droutman, & Miller, 2017; Read et al., 2010; Read
et al., 2017) is a motive-based neural network model of personality that is both a psychological
model and a computational neural network implementation of that model. At a psychological
level, the Virtual Personalities Model (Read & Miller, 2002; Read et al., 2010), grew out of a
focus on the dynamics of motivational and cognitive structures (Miller & Read, 1991; Read,
Jones, & Miller, 1990; Read & Miller, 1989). Thirty years ago, we argued that traits could be
viewed as goal-based structures, where the goals of the individual were the central part of a
structure consisting of goals, plans, resources, and beliefs (Miller & Read, 1987). Thus, a major
basis of individual differences was differences between people in the chronic activation of their
goals. The Virtual Personalities Model drew upon that earlier work to examine in more detail
how personality could be understood in terms of the behavior of structured motivational
systems. It draws on diverse literatures, summarized elsewhere (e.g., Read, Brown, Wang, &
Miller, in press; Read et al., 2010), including those involving the factor structure of personality
measures (e.g., Eysenck, 1983, 1994; Lee & Ashton, 2004; McCrae & Costa, 1999; Tellegen, &
Waller, 2008; Wiggins & Trapnell, 1996; Zuckerman, 2005), the lexical analysis of trait
language (e.g., Digman, 1997; Goldberg, 1981), temperament and neurobiological bases of
personality (e.g., Clark & Watson, 2008; Gray, 1987a, 1987b; Gray & McNaughton, 2000;
Pickering & Gray, 1999; Rothbart & Bates, 1998; Zuckerman, 2005), an evolutionary analysis
of social tasks (e.g., Bugental, 2000; Fiske, 1992; Kenrick & Trost, 1997), taxonomies of human
motives (Chulef, Read, & Walsh, 2001; Talevich, Read, Walsh, Iyer, & Chopra, 2017), and our
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earlier work (e.g., Miller & Read, 1987, 1991; Read, Jones &
Miller, 1990; Read & Miller, 1989) on traits as goal-based
structures.

Central to the Virtual Personalities psychological model are
two broad motivational systems: a Behavioral Approach System
(BAS) and an avoidance system, the latter originally referred to as
the Behavioral Inhibition System (BIS) by Gray (e.g., Gray, 1987a,
1991; see also Tellegen, Watson, & Clark, 1999). Although there is
very good agreement among researchers regarding the BAS, Gray
and others reconceptualized the BIS. They now refer to various
fear responses (e.g., flight, fight, freeze) as the Fight Flight Freeze
System, or FFFS (not the BIS), and now refer to a separate system
—one associated more with anxiety and goal conflict—as the BIS
(see Gray & McNaughton, 2000; Smillie, Pickering, & Jackson,
2006). To avoid confusion, we do not use the BAS/BIS specifi-
cation here, and instead refer to the Approach and Avoidance
systems associated with reward (opportunity) and punishment
(threat).

These two broad motivational systems have been argued to
map most closely to Extraversion (Approach system) and
Neuroticism (Avoidance system) and they also are related to the
two broad metatraits, Plasticity and Stability (DeYoung, 2015;
Digman, 1997) that are found when one investigates higher order
factors of the Big Five. Plasticity consists of Extraversion and
Openness to Experience/Intellect, whereas Stability consists of
Neuroticism, Agreeableness, and Conscientiousness.

Separate specific motives are nested in the Approach (e.g.,
dominance, social affiliation, mating) and Avoidance (e.g., avoid
physical harm, avoid social rejection) systems and are part of the
basis of more specific traits. Individuals differ in the baseline
sensitivities of the two broad systems, as well as in the baseline
activation of the specific goals that are “nested” within the broader
motivational systems. Goals in the Approach and Avoidance
systems are jointly activated by cues from the Environment that
identify the goal affordances of the situation, and by internal cues
that indicate the current Interoceptive state of a variety of bodily
systems (see Figure 1). General activation of the Approach and
Avoidance systems combined with activation of the specific
motives then results in the transmission of activity to motor
systems that guide behavior to satisfy the active motives. These
behaviors result in changes in Interoceptive bodily state (Satiation)
and alter the organism’s Environment (Consummation).

Figure 1 highlights this basic model, without the details of the
specific neural network implementation of our Approach and
Avoidance motivational systems—but elsewhere see our Virtual
Personalities Model (Read et al., in press; Read, Droutman, &
Miller, 2017; Read et al., 2010; Read et al., 2017), as well as a
detailed tutorial regarding the implementation process for a
neural network model in general, and the Virtual Personalities
Model, in particular (Read et al., 2017).

We will shortly describe how these systems are implemented
in neurobiological systems.

2. Neural networks: Brief introduction

Our theory of personality ties together the psychological
assumptions of our model with what is increasingly known about
the neurobiology of Motivation and decision making. We
implement our theory as a neural network model. Implementing
the theory as a computational model has the benefit of allowing
us to actually simulate and run the model to test the implications
of the various assumptions we make in the theory. Moreover, it
has the added advantage that it makes it easier to map between
the features of the model and the underlying neurobiology of the
brain in which personality is embodied.

Neural network models are biologically inspired models. They
are designed to capture what we know of the abstract properties
of how real brains process information. This approach to mod-
eling can capture central aspects of cognitive processing, such
as image recognition and language comprehension (O’Reilly,
Munakata, Frank, Hazy, & Contributors, 2012).

Neural network models are constructed of nodes and the
weighted links between them. Nodes sum activation they receive
over the weighted links from other nodes. Links between nodes can
be either excitatory (positive) or inhibitory (negative). The input to
a node is the sum of the activations of the different nodes sending a
link to the target node, times the weight on the links to the nodes.
The strength of the activation that a receiving node then sends is a
function of this summed input. The output function can be linear,
but is usually nonlinear, typically binary or sigmoidal (S-shaped).
Neural networks with nonlinear activation functions have more
powerful learning and processing capabilities.

In the architecture we use, nodes are typically arranged in
layers and there is competition among the nodes within a layer.
The degree of competition within a layer can be tuned to control
the average activation of the layer and the number of nodes that
become active in the layer.

Processing in a neural network model proceeds by sending
activation through a hierarchy of nodes. One central feature of
neural networks is what are called Hidden layers. Hidden layers
provide powerful learning and representational abilities to neural
network models, as they enable such models to learn a hierarchy
of increasingly abstracted features (O’Reilly et al., 2012). (One
way to think of this is that they enable the system to learn
representations for interactions among input features.) For
example, in the visual system they allow humans and other
animals to start with “points” of light on the retina and build up
increasingly abstract representations so that they are ultimately
able to recognize that the object in front of them is a friend, or a
cat sitting on a desk.

Our neural network models are constructed in a specific
neural network architecture called Leabra (Aisa, Mingus, &
O’Reilly, 2008; O’Reilly et al., 2012), which is a biologically
inspired architecture. Several important aspects of Leabra, for our

Figure 1. Basic Virtual Personalities Model: Abstract systems that make up the model
and the flow of activation between them.
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purposes, are the following. First, competition between nodes in a
layer is an inherent feature of the architecture, and can be easily
tuned, which makes it easy to capture competitive dynamics
within a layer. Second, the activation function for nodes is
biologically inspired, modeling the independent contributions of
excitatory and inhibitory conductances (corresponding to the
number of synaptic channels) into the node. These can be tuned
as desired. Third, the architecture integrates Hebbian learning
(correlational) and error-correcting learning into a single learning
rule. The error-correcting component of the rule is functionally
similar to the back-propagation rule widely used in error-
correcting learning, but it implements such learning in a more
biologically plausible way. Fourth, the architecture assumes that
neurobiological systems are massively bidirectionally connected,
consistent with what we know of the architecture of real brains.

Building a neural network model of our psychological theory
has several advantages. First, because it is “runnable” we can
explicitly vary different aspects of the model, such as the sensi-
tivity of the Approach and Avoidance systems, the baseline
importance of different goals, and learning history for associa-
tions between different cues and goals. Second, we can use the
model to demonstrate things such as how structured motivational
systems can result in something like the Big Five. In other work,
we have shown how this neural network model can capture a
number of different aspects of personality. Read, Droutman, and
Miller (2017) have shown how such a neural network model,
composed of structured motivational systems, can capture the
between individual structure of personality (e.g., the Big Five).
Read et al. (2017) have shown how the same kind of model can
also capture the high level of within subject variability in
trait-related behavior over time and across situations. Third,
because the architecture is biologically inspired it allows us to
more easily identify conceptual links to possible neural substrates
for the different processes and representations we propose in our
theory. For example, nodes or artificial neurons in Leabra have
parameters for the number of excitatory and inhibitory
conductances, which would allow one to do things like vary
individual differences in the sensitivity of dopamine receptors
in the nucleus accumbens.

However, we want to make it clear that simply because
Leabra has some biological inspiration, we are not claiming that
use of the Leabra architecture automatically allows us to say
something about the detailed neurobiological organization of the
different systems we are discussing. In order to have something
to say about that we would have to do the detailed work of
creating systems in which the neural organization was explicitly
represented. Our current model building focuses more on mod-
eling the functions of different systems and their functional
organization.

3. Virtual Personalities Model: A neural network
implementation

Figure 1 outlines the general structure of the neural network
model. Features in the Environment activate nodes in the
Environment layer, and information about bodily state activate
nodes in the Interoceptive state layer. Weighted links from these
nodes then transmit activation to the relevant nodes in the
Approach and Avoidance layers where the resulting degree of
activation is calculated independently for each type of reward.
To be clear, the Approach and Avoidance layers function as
two separate processing systems.

Following work by Berridge (Berridge, 2012; Zhang, Berridge,
Tindell, Smith, & Aldridge, 2009) we characterize the degree of
activation of a goal/reward in these two motivational systems as
representing the degree to which the individual desires or
WANTS that goal. According to Berridge (Berridge, 2007, 2012;
Zhang et al., 2009) the degree of WANTING is a multiplicative
function of the relevant Environment cues and Interoceptive cues.
In an impressive body of work, Berridge and his colleagues
(e.g., Berridge, 2007; Berridge & O’Doherty, 2013; Berridge &
Robinson, 1998) have made a strong case for the distinction
between Wanting a reward and Liking it. He has provided
evidence that these are phenomenologically distinct and they arise
in different neural circuits. WANTING is the strength of the need
or desire for a reward, whereas LIKING is the pleasure received
from consuming the reward (or sometimes from imagining its
consumption).

As the process is multiplicative, the Environment and Inter-
oceptive features can serve a gating influence for each other. That
is, if Environmental cue strength is high, but Interoceptive state
is low there will be little resultant activation (or WANTING).
Moreover, the reverse would also be true. Nodes representing the
different motives compete for activation within each layer or
motivational system (Approach, Avoidance). The Approach and
Avoidance layers process the two types of motives independently;
they do not compete with each other. An Executive Function
system can provide top-down biasing on the strength of
activation of different motives by maintaining an active goal
representation and sending excitatory activation to the corre-
sponding representation in either the Approach or Avoidance
systems. Motives that win the competition within each layer
then send activation to the Behavior layer, where the different
potential behaviors that are activated by the strength of Wanting
from different motives compete with each other for activation.
The enacted behavior can then change the Environment
(Consummation) and/or it can change the Interoceptive state
(Satiation), which then changes the inputs on the next step in the
behavioral sequence.

4. Neurobiological underpinnings

Here we describe the mapping from our neural network model
to its neurobiological underpinnings (see Figure 2).

4.1. Environment layer: Sensory/Cortical systems

The Environment layer represents inputs from sensory and
cortical systems about cues to different objects or events in the
Environment. Some of the cues may be unconditioned stimuli or
primary rewards, such as food, water, other people, whereas other
cues will be conditioned stimuli (CSs), which are learned cues, such
as visual features of the Environment that are associated with and
can activate the representation of a particular reward, such as food.

Through what is alternatively called Classical or Pavlovian
Conditioning the organism learns that certain CSs (such as an
arbitrary visual or auditory cue) predict the occurrence of rewards
in the Environment. This occurs through a process of associative
learning; when a CS and a reward are presented closely in time,
the CS and reward become associated, so that presentation of the
CS activates a representation of the reward. This process of
associative learning is thought to occur in the amygdala (Hazy,
Frank, & O’Reilly, 2010). In the neural network model, when the
CS and reward are concurrently activated, the weight of the link
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between the CS and reward representations are strengthened,
eventually allowing the CS to activate Motivations.

One way to think about this process is that it represents how
individuals learn what features of the Environment come to
predict the presence of goal affordances in the Environment.
Through experience, individuals learn what cues in the
Environment predict the goal relevant aspects of the Environ-
ment. This learning process can capture one aspect of individual
differences. As a result of different learning histories or experi-
ences, different individuals will develop different cue-affordance
associations. For example, some people may learn that social
situations are likely to be rewarding, whereas others may learn
that social situations are an opportunity for social rejection.

4.2. Interoceptive state: Posterior insula

In our current model, we focus on the role of the posterior insula
in representing information about the current Interoceptive state
of the organism. For example, are they hungry, thirsty, lonely,
horny, fatigued? However, the insula is a relatively large neural
region that is involved in a number of different aspects of
processing. Recent reviews of the insula (Droutman, Bechara, &
Read, 2015; Droutman, Read, & Bechara, 2015) suggest that
subregions of the insular cortex play significant roles in four
phases of the decision-making process. The first phase involves
Salience processing and refocusing attention (dorsal anterior
insula cortex [dAIC]). The second phase involves evaluation that
involves all three subregions of the anterior insula cortex
including: (1) the ventral anterior insula cortex (vAIC) that
appears to track arousal variance, skew, and risk-prediction error,
(2) the posterior insula cortex that is involved in urge processing
and the signaling of homeostatic imbalance, and (3) the dAIC that
plays a role in tracking arousal, and the magnitude of that arousal
and its variance and associated risk and urge generation. The
third phase of the insular cortex’s role in decision making
involves action. The dAIC plays a role in the “what,” “when,”
“whether to act” aspects of action while the vAIC plays a role in
action inhibition. In the final phase of decision making the IC is
involved in outcome processing, with the vAIC and dAIC both
playing a role in error awareness and social outcomes and the

dAIC also playing a role in posterror correction and harm
prevention. An additional review of work on the insula and
fatigue (Dantzer, Heijnen, Kavelaars, Laye, & Capuron, 2014)
suggests that peripheral inflammation may also register in the
anterior insula, affecting a subjective experience of fatigue or
uncertainty about an action’s usefulness (suggesting that the latter
phases of decision processes in the insula may be impacted).
Interestingly insula activation may also activate the fronto-striatal
network resulting in diminished switching capacity from goal-
directed to habit-like behavior and/or decreased Incentive Moti-
vation (Dantzer et al., 2014).

In the current model, the insula tracks different bodily states
(e.g., related to hunger, sexual excitement, loneliness, etc.), which
are typically thought to be represented in posterior insula.
That information about Interoceptive state is multiplicatively
combined with outcome predictions from the Sensory/Cortical
systems to produce the WANTING (or Incentive Salience)
for a reward.

4.3. Motivation system: Amygdala/nucleus accumbens (NAcc)

In Figure 2 we specify the underlying neural underpinnings for
the Approach and Avoid systems. Central to the model is a
Motivation system that represents the degree to which a parti-
cular motive is wanted. Both Approach and Avoidance type
motives are represented within the Motivation system, although
the two types of motives are processed independently, represented
by two separate layers in our neural network model. Following
Berridge and colleagues (Mahler & Berridge, 2009, 2012; Peciña &
Berridge, 2013) this Motivation system is composed of a circuit
involving the amygdala and the NAcc. (The NAcc is also referred
to as the ventral striatum.). Different regions of neurons in NAcc
(Reynolds & Berridge, 2008) represent different types of rewards.
This system multiplicatively combines input information about
the strength of cues to reward from the Sensory/Cortical systems
with Interoceptive information from the insula about the
organism’s current Interoceptive or bodily state. The result is the
current level of WANTING for the relevant motive. The impact
of conditioned cues on WANTING, as represented in the
Amygdala/NAcc circuit, has been termed by Berridge (Berridge,
2012; Zhang et al., 2009) as cue-triggered Wanting.

Because of the multiplicative relationship, each of the two
types of cues essentially plays a gating role on the influence of the
other cue. For example, if there is a strong cue to a reward, such
as food or attractive people, but there is no need, then the
Motivation system will not be activated. And if there is a strong
need, but no cues to rewards then there will not be an activation
of the Motivation system. However, to capture cases where there
is strong need but no cues to the reward, we have implemented a
direct connection from the Interoceptive state to possible seeking
behaviors. For example, if an individual is very hungry or very
lonely, but their current Environment does not contain the
relevant affordances, the individual would be motivated to seek an
Environment that does have those affordances.

As discussed earlier, Berridge and others (Berridge, 2012;
Dayan & Berridge, 2014; Zhang et al., 2009) have made a
convincing case that Wanting something and Liking something
are different both psychologically and neurobiologically.
Neurobiologically, Wanting seems to strongly depend on the
neurotransmitter dopamine and the dopaminergic circuitry in the
brain, whereas Liking depends on brain opioids. Wanting is
implemented in our current model, but Liking is not.

Figure 2. Basic model with neurobiological Approach/Avoidance system neurobio-
logical underpinnings. DLPFC= dorsolateral prefrontal cortex; NAcc= nucleus
accumbens; VTA= ventral tegmental area; SNc= substantia nigra pars compacta.
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4.4. Dopamine levels: Ventral tegmental area/substantia
nigra pars compacta

The NAcc is strongly innervated by dopaminergic neurons from the
ventral tegmental area (Collins & Frank, 2014). Higher dopamine
inputs increase the sensitivity of the Approach system to the
Environmental and Interoceptive inputs (through D1 receptors)
(Collins & Frank, 2014), whereas they decrease the sensitivity of
the Avoidance system to threats (through D2 receptors) (Collins &
Frank, 2014). Thus, individual differences in Tonic levels of
dopamine will influence the strength of Approach Motivations.
Higher levels lead to greater Approach (and reduced Avoidance).
Considerable evidence (e.g., Depue & Collins, 1999; DeYoung &
Allen, in press) suggests that individual differences in Tonic
dopamine level is one major factor that underlies Extraversion,
as well as Openness to Experience/Intellect.

There is a key distinction between Tonic levels of dopamine
and Phasic levels(Schultz, 2015). Tonic levels of dopamine are the
consistent baseline level and have a chronic influence on the
strength of Wanting (Berridge & O’Doherty, 2013; Berridge &
Robinson, 1998; Collins & Frank, 2014). Phasic changes in dopa-
mine level are momentary shifts in dopamine firing and are typi-
cally a response to reward prediction errors, and play an important
role in learning a cue-reward association (Collins & Frank, 2014;
Schultz, 2015). We have modeled the impact of Tonic dopamine
levels, but have not explicitly included Phasic dopamine changes.

4.5. Behavior: Motor systems

Activation from the Motivation system, as well as direct activation
from the Environment system that conveys information about
the availability of various resources, are fed into a Hidden layer,
where they may be combined in a conjunctive representation, and
go from there to the behavioral system. In the behavioral system,
different possible actions compete for activation and the most
strongly activated will be enacted by the Motor system.

4.6. Satiation and Consummation

An organism’s behavior has consequences for the next step in the
behavioral sequence. Behaviors can change the nature of the
Environment to which the organism is responding (reduce
amount of food, leave a situation with people). Changes in the
Environment can then influence the strength of the cues that feed
into the Motivation system as the organism is considering
subsequent behaviors. Behaviors can also lead to Satiation of
internal needs: eating reduces hunger, hanging out with friends
reduces loneliness. These changes in bodily states are then input
into the network on the next time step. Thus, the behavior of the
organism and its impact on internal and external Environment
are major contributors to variability in trait-related behavior over
time and situations. For example, an extraverted individual might
end up seeking privacy after hours of partying.

4.7. Executive Function, self-regulation: Dorsolateral
prefrontal cortex (DLPFC) and related systems

Our model captures the top-down influence of Executive Function
on Wanting by sending activation from a sustained goal repre-
sentation, in a layer that represents the function of DLPFC, to its
corresponding representation in the Motivation system. This
top-down influence (activation) helps maintain the activation of
certain Motives in the face of competition from alternative Motives

that might be activated, thus providing a degree of consistent goal
focus. The implementation of Executive Function in our model
is consistent with recent work in this area (Wiecki & Frank, 2013).

Individual differences in self-regulation or Executive Function
can be modeled in terms of differences in the ability to maintain a
goal representation when faced with competing influences, and in
terms of differences in the strength of top-down influence on the
Motivation system. This would capture some of the more
controlled aspects of Conscientiousness.

More automatic aspects of inhibitory control could be modeled
in terms of general levels of inhibition within early processing
layers, as discussed by Read et al. (2010). In that paper, we showed
that greater inhibition in the Motivation layer led to fewer switches
to different goals, indicating that this can capture some aspects
of automatic inhibitory control (Clark & Watson, 1999, 2008;
Rothbart & Bates, 1998).

5. Model instantiates classic learning phenomena

This model and its underlying neurobiology allow us to capture
basic learning phenomena and show how they can be related to
personality and individual differences. In particular, the model
captures Pavlovian or Classical Conditioning, Instrumental
Conditioning, and their combination, called Pavlovian to
Instrumental Transfer (PIT) (see Figure 3). In addition, it can also
model the development and representation of habitual behavior.

5.1. Pavlovian (or Classical) Conditioning

The pathway from Environmental cues (both CS and uncondi-
tioned stimuli) to the amygdala in the Motivation system models
Pavlovian Conditioning. This part of the model can capture
individual differences in Conditioning history: the extent to which
different features in the Environment activate different reward
representations.

This pathway is also a critical part of what Berridge calls
cue-triggered Wanting. As the amygdala and NAcc are tied
together in a Motivation system, Pavlovian Conditioning is
responsible for the development of connections between CS and
WANTING for a particular reward.

5.2. Instrumental Conditioning

In Instrumental Conditioning an organism learns that a particular
instrumental behavior leads to a particular reward or avoids a
punishment. This has been shown to require involvement of
the dorsal medial striatum (also called the Caudate) (Balleine &
O’Doherty, 2010; Dolan & Dayan, 2013). Lesioning of the Cau-
date eliminates the sensitivity of behavior to the current level of
Wanting (Balleine & O’Doherty, 2010; Dolan & Dayan, 2013).
A number of researchers have argued and demonstrated that in
Instrumental Conditioning the organism learns bidirectional
connections between action and reward/punishment (Balleine &
O’Doherty, 2010), so that activation of the representation of a
reward/punishment can also activate the corresponding behavior.

Again, individual differences in experience can result in
individual differences in the strength of connections between
behaviors and potential goals. As a result, different individuals
may learn different behaviors in response to the activation of
different rewards/punishments. For example, some individuals
will learn that social interaction is rewarding and will actively seek
it out, whereas others will learn that it is often punishing and will
learn to avoid it.
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5.3. Pavlovian to Instrumental Transfer (PIT)

A central part of the Virtual Personalities Model can be viewed as
an instantiation of a well-known phenomenon in reward learning
called PIT (Corbit & Balleine, 2011; Talmi, Seymour, Dayan, &
Dolan, 2008). In PIT, an organism learns an association between a
CS and a reward/punishment, so that presentation of the CS leads
to activation of a representation of the reward/punishment (Talmi
et al., 2008). (Although PIT applies to both reward and punish-
ment, the preponderance of work has focused on reward.)
Separately, the organism learns the association between an
Instrumental response (e.g., lever pressing) and the attainment of
the same outcome (Talmi et al., 2008). This association between
Instrumental response and outcome has been shown to be bidir-
ectional, such that activation of the reward or punishment repre-
sentation can trigger the Instrumental response (Holland, 2004).
Once both of these sets of associations have been learned, if the CS
is presented concurrently with the opportunity to perform the
instrumental behavior, the presence of the CS increases the vigor of
responding with the instrumental behavior (Talmi et al., 2008).

We propose that this PIT process underlies a tremendous
amount of human behavior. As we have proposed for a long time
in our personality model (Miller & Read, 1987, 1991; Read &
Miller, 1989), we can think of situations as containing sets of cues
that predict the availability of affordances for the pursuit of
various goals. Features of a classroom give cues to the affordances
for academic achievement in that context. Features of a dance
party give cues to the affordances for pursuing affiliation and
mating. (Although for some a dance party affords opportunities
for social rejection and potential humiliation.) Affordances can
then specify behavior (e.g., completing classwork, approaching
other partygoers, staying home and reading) to be implemented
in pursuit of these motives, completing the link from cues to goal
activation to behavior.

In our current neural network model of personality, learned
and unlearned cues to reward activate Wanting for those rewards,

which then bias choice of actions that can achieve those rewards.
This process is essentially PIT. Consistent with our model, we
suspect that PIT may help explain how personality traits emerge
from an individual’s learning history. The chronic manifestation
of a trait may result when a large portion of an individual’s
chronic Environments cue the same set of goals. On the other
hand, the trait will not be observed when individuals encounter
stimuli that have not been conditioned with those goals,
accounting for within-individual variability.

Interestingly, Pavlovian cues can also invigorate responses
associated with a different reward, in a process known as general
PIT (Corbit & Balleine, 2011). When trained to associate a
keyboard button with popcorn, human subjects increase a button
response not only when a Pavlovian cue for popcorn is present,
but also when a cue for cashew nuts is present (Watson, Wiers,
Hommel, & de Wit, 2014). This suggests that a given Pavlovian
cue can motivate responses generally, invigorating response for
unrelated rewards. One possible way this might work is that the
general Pavlovian cue could activate the dopamine system in the
Motivational system, which would then potentiate Approach to
all rewards.

Although research on this effect is limited, we suspect that
general PIT may account for positive correlations between
Approach-related traits (Elliot & Thrash, 2002) If a given cue can
increase instrumental behavior in a variety of domains, then we
would expect that a cue for positive social experiences (i.e.,
Extraversion cue) can increase Motivation for novelty (Openness
to Experience), resulting in a correlation between Extraversion
and Openness to Experience. While we have not explicitly
included this effect in our Virtual Personalities Model, we are
currently developing a model to incorporate general PIT.

5.4. Habitual Behavior

Habitual behavior is directly triggered by a cue and typically
develops after extensive practice with an Instrumental response

Figure 3. Neural underpinnings of learning. Broken red lines indicate which systems are involved in Pavlovian learning, Instrumental learning, and Pavlovian to Instrumental
Transfer; they are not pathways. The gray line from Environment to the Hidden layer represents the Habit system (instantiated in the Putamen or dorsal lateral striatum that
develops with high levels of learning of the associations for S to R. DLPFC= dorsolateral prefrontal cortex; NAcc= nucleus accumbens; VTA= ventral tegmental area;
SNc= substantia nigra pars compacta.
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(Balleine & O’Doherty, 2010). Once a behavior becomes habitual
its enactment is insensitive to the current goal state of the
organism (Balleine & O’Doherty, 2010). For example, once lever
pressing for food pellets has become Habitual, a rat fed to satiety
may continue to press the lever, even though they are no longer
hungry. The learning and performance of habitual behavior
depends on the Putamen (dorsolateral striatum) (Balleine &
O’Doherty, 2010) and lesioning of the Putamen eliminates
Habitual responding and reinstates goal-based responding
(Balleine & O’Doherty, 2010). These lesion findings strongly
argue that habitual behavior does not depend on the Motivation
system, but instead depends on a separate circuit involving the
Putamen. In line with this, in the Virtual Personalities Model,
there is a link between the Environmental input and the behavior
layer that bypasses the Motivation system. Individual differences
in experience can lead to individual differences in whether a
particular cue-behavior link becomes Habitual or remains sensi-
tive to current goals.

6. How Individual differences can be captured in this
model

6.1. Neurobiology

This model allows us to examine how underlying mechanisms
and their interactions with one another may produce various
individual differences. First, the model allows us to capture
various aspects of the neurobiology of individual differences. One
major factor, which has been identified by a number of theorists,
is the role of the Approach or reward system and the role of
dopamine in Approach behavior. Depue and others (Depue &
Collins, 1999; DeYoung, 2015) have argued and provided
evidence that Tonic dopamine levels are central to Extraversion,
as well as to Openness to Experience/Intellect, with higher levels
of Tonic dopamine resulting in stronger Approach-related
behaviors (Extraversion). Tonic dopamine levels are explicitly
modeled in our network and can be manipulated to examine the
impact of this parameter on different behaviors.

More speculatively, individual differences in Avoidance
behaviors may be related to Tonic levels of serotonin (Corr,
DeYoung, & McNaughton, 2013) and the role that they play in
the Avoidance system. Somewhat controversially, higher levels of
serotonin are argued to lead to greater activity of the Avoidance
system and thus to increased Avoidance behaviors (Neuroticism).
There is some indication that this might occur through down-
regulation of dopaminergic receptors (Corr, DeYoung, &
McNaughton, 2013), so that the organism would be less sensitive
to Tonic levels of dopamine.

We can also simulate the impact of individual differences in
the importance of different kinds of rewards by manipulating
their baseline activations in the Approach and Avoidance
systems. Research by Berridge and others (Reynolds & Berridge,
2008) suggests that there are specific groups of neurons in NAcc
that represent different kinds of rewards. The sensitivities of these
systems to their inputs may vary.

Individual differences in some aspects of Conscientiousness
can be captured by individual differences in Executive Function,
as captured by the DLPFC. As we noted earlier, DLPFC can
maintain a representation of desired goals and through top-down
connections can influence the degree of activation of WANTs in
the amygdala–NAcc circuit.

As all of the parameters in the model can be systematically
varied simultaneously, we can also examine interactions among

different factors. For example, we can explicitly model some types
of impulsivity as the result of the interaction between the strength
of the Approach system and the Control system. A number of
different researchers have argued that Impulsivity is not just the
result of single cause or system, but is the result of the interaction
of several different systems, such as the reward and the
self-control system (e.g., Depue & Collins, 1999; Zuckerman,
2005). The suggestion is that impulsive people are those whose
Approach or reward systems can override self-control systems.
Our model can capture this form of impulsivity. However, we
recognize that there may be other forms of impulsivity
(Revelle, 1997).

6.2. Learning

Because learning is central to our neural network architecture
(and indeed to almost any neural network architecture), we can
examine the impact of different learning experiences on the
development of individual differences. Different individuals may
learn different sets of cue-reward/punishment contingencies
depending upon the kinds of contingencies to which they are
exposed and whether those contingencies are rewarding or
punishing. For instance, an individual who experiences consistent
patterns of rejection at home and at school may develop strong
rejection sensitivity and social anxiety, especially in those situa-
tions, because they develop a strong expectancy of being rejected
in social situations.

Our model encompasses three different kinds of learning that
might underlie individual differences. First, Pavlovian or Classical
Conditioning plays a central role in the development of expec-
tancies about the kinds of rewards and punishments that occur in
different contexts. For different people, similar cues may become
associated with very different kinds of rewards and punishments.
For some people, cues to social contexts lead to expectancies
of positive social outcomes, whereas for other people it leads
to expectancies of negative outcomes. Second, Instrumental
Conditioning is responsible for learning what is likely to happen
in response to different actions, or conversely what actions to take
if one desires a particular reward. Different individuals may learn
different Instrumental responses to pursue the same reward. Or
some individuals may learn the Instrumental responses needed to
attain a particular reward or avoid a particular aversive outcome,
whereas other individuals may not learn such associations or may
not learn them as well.

Finally, Habits develop when there is long-term exposure to
action-reward/punishment contingencies. After enacting the same
action to get the same reward or avoid the same punishment over
a large number of instances, the likelihood of enacting the action
is no longer sensitive to the current goal state of the organism
(Balleine & O’Doherty, 2010; Dayan & Berridge, 2014). Instead,
it is directly triggered by the cue. Obviously, with different
patterns of experience, different individuals can develop quite
different Habitual responses in the same context.

7. Dynamics of personality

Above, we have laid out a neural network model of personality
at an experiential and neurobiological level of scale. As we can
model both individual differences in experience and individual
differences in neurobiology, we can also study the interaction
between learning history and underlying neurobiological
differences. For example, as a number of researchers have pointed
out, personality characteristics may influence what kinds of
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situations individuals seek out (Ickes, Snyder, & Garcia, 1997;
Snyder, 1983), which would potentially lead to different patterns
of outcomes. For instance, Extraverts may be more likely to seek
out social situations and as a result of this increased exposure they
may be more likely to learn about cues to social reward. In
addition, other factors (e.g., chronic fatigue due to chronic
inflammation) that personality psychologists normally do not
attend to, might play surprising roles in personality expression (or
changes over time in apparent personality) because of how they
(e.g., Interoceptive signaling) affect action propensity, Incentive
Motivation, and ability to switch from more goal-directed to more
habit-like behavior over time (Dantzer et al., 2014).

Examining the dynamics of persons and situations has
historically been challenging. In the current work, we suggest that
a neural network model of personality affords tremendous pro-
mise to allow us to build increasingly more refined models of
these dynamics, leveraging emerging work on the neurobiological
underpinnings that support them. For example, initial differences
in propensities (e.g., dopamine functioning), wiring differences
due to experiential learning, and other factors could operate
together to develop and change personality over time: now, we are
beginning to have tools to examine “what if” assumptions and
the implications of those assumptions on behavioral outcomes.
We can use such models and simulations not only to explain
what we currently know (and to update them as new emerging
findings suggest state of the art “plausible links”), but to suggest
novel hypotheses—whose dynamics would have been hard to
otherwise envision—that might be empirically examined.
In this way, such models could become rich tools for the field
to build a cumulative, ever more detailed and precise, model of
personality dynamics.

8. Relationship to other neurobiological approaches to
personality

Other neurobiologically inspired personality theories like reinfor-
cement sensitivity theory (RST; Gray & McNaughton, 2000) and
Cybernetic Big Five Theory (DeYoung, 2015) also draw upon the
research described elsewhere in this article that pertains to Extra-
version or Neuroticism, respectively. However, there are several
important distinctions, especially with regard to RST’s handling of
different components of Neuroticism and to its more nuanced
speculations with regard to brain structures and processes that
others have ascribed to Extraversion or Neuroticism, but not both.

Corr, DeYoung, and McNaughton’s figure 2 (2013, p. 163;
adapted from McNaughton & Corr, 2004; see also Gray &
McNaughton, 2000, p. 276, for an earlier version of this diagram)
is particularly helpful in summarizing the manner in which RST
maps onto brain structures. To begin with the frontal lobes, Corr,
DeYoung, and McNaughton’s (2013) figure suggests that the
PFC’s ventral stream is associated with RST’s BIS, which governs
“defensive Approach” behaviors, creates anxious affect, and may
be likened to DeYoung, Quilty, and Peterson’ (2007) “With-
drawal” aspect of Neuroticism, whereas the PFC’s dorsal stream is
associated with RST’s FFFS, which governs “defensive Avoidance”
behaviors, creates fearful affect, and may be likened to DeYoung,
Quilty, and Peterson’s (2007) “Volatility” aspect of Neuroticism.
The PFC’s role in Neuroticism (and in the BIS and FFFS) may
also differ by hemisphere; greater activation in the right prefrontal
regions (as well as damage to left prefrontal regions) is positively
correlated with Withdrawal, whereas greater activation in the left
prefrontal regions is positively correlated with Volatility. Like the

dorsal and ventral PFC, respectively, the cingulate cortex may
be divided into two regions, anterior cingulate cortex (ACC)
and posterior cingulate cortex, which Corr, DeYoung, and
McNaughton (2013) claim are differentially associated with RST’s
FFFS and BIS; these authors link the ACC to obsessive–
compulsive disorder and the posterior cingulate cortex to
ruminative anxiety. Given DeYoung and Allen’s (in press)
statement that frontal structures are more likely to be related to
Neuroticism via their effect on affect regulation than on affect
generation, it is interesting to note that they also report that
Neuroticism, as well as Conscientiousness, has been negatively
related to ACC thickness.

DeYoung and Allen (in press) attribute the role of affect
generation in Neuroticism primarily to medial temporal lobe
structures, especially the septo-hippocampal system and amyg-
dala (which ostensibly comprise the Withdrawal, or BIS-like,
aspect of Neuroticism) and the midbrain’s hypothalamic-pitui-
tary-adrenal axis (which controls Neuroticism’s Volatility, or
FFFS-like, aspect).

The RST literature suggests that the amygdala is involved in
both defensive Avoidance (FFFS) and defensive Approach (BIS).
Specifically, Corr, DeYoung, and McNaughton (2013) cite
Cunningham, Arbuckle, Jahn, Mowrer, and Abduljalil’s (2010)
functional magnetic resonance imaging (fMRI) study, in which
Volatility predicted amygdala activity in response to stimulus
valence (negative over positive), whereas Withdrawal predicted
amygdala activity in response to changes in distance (Approach
over Withdrawal) from stimuli, independent of valence.

Research in the RST tradition has also painted a somewhat
different picture of the relationship between the hypothalamic-
pituitary-adrenal axis and Neuroticism’s BIS- and FFFS-like
aspects. Corr, DeYoung, and McNaughton (2013) maintain that
the medial hypothalamus and the periaqueductal gray are capable
of producing either defensive Approach or defensive Avoidance
behaviors (e.g., risk assessment versus escape, defensive quies-
cence versus explosive panic); however, they admit that these
more inferior structures are more likely to be activated in
response to nearby, immediate threats than to threats that are
more spatiotemporally distant. As such, they are more likely to
create Avoidant behaviors characteristic of Volatility than
defensive Approach behaviors characteristic of Withdrawal.

With regard to the role of various neurotransmitters, there is
also much agreement between the RST literature and the basic
neuroscience literature. For instance, the central role that dopa-
mine plays in Extraversion (a positive correlate of the Behavioral
Activation/Approach system, or BAS, which governs sensitivity to
rewarding cues) is as undisputed among reinforcement sensitivity
theorists (Pickering & Gray, 1999; Pickering & Pesola, 2014) as
it is among other neurobiologically inclined personality theorists
(e.g., Depue & Collins, 1999).

Where the RST literature differs from other lines of research is
its strong emphasis on differentiating between defensive
Approach and defensive Avoidance behaviors. Corr, DeYoung,
and McNaughton (2013) suggest, for example, that higher tonic
levels of serotonin do not increase one’s Stability metatrait score
simply by decreasing general Neuroticism, but rather decreases
scores on some facets of Neuroticism (i.e., those linked to
Volatility or FFFS) while increasing others (i.e., those linked to
Withdrawal or BIS). Similarly, these authors draw a distinction
between cortisol reactivity and various types of aggression
(reactive or defensive aggression is linked to the FFFS and to
cortisol, whereas proactive or offensive aggression is not).
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9. Conclusion, limitations, and future directions

A rising chorus of voices seeks a more precise neurobiologically
based science of the complex dynamics underlying personality.
Our goal in the current work is to contribute to that rising chorus
of voices. In doing so we suggest that we can model personality at
a number of different levels of scale using our best guesses based
on the available literatures in personality and neuroscience to
address and gain insight into what have seemed like intractable
enigmas. These are exciting times. The tools available today
suggest that we can dig in and really get traction on cumulatively
understanding these complex personality dynamics. How can we
understand the complex dynamics of persons and situations and
how they operate together over time to produce emergent
behavior? How could the same underlying system that results
in between-subject Stability in behavior over time and reliable
personality structure across individuals (e.g., the Big Five),
plausibly explain broad within-person variability in behavior
across situations? How do underlying biological mechanisms and
different learning histories produce enduring individual differ-
ences in response to situational cues? To date we have provided
computational models to explore how such enigmas might
plausibly be explored. But, what we have provided thus far is
more akin to plausible computational models.

It’s apparent to us that the road ahead involves a very steep
slope. We must move beyond plausible computational solutions
to enigmas, and use computational approaches to predict emer-
ging patterns of individuals that we can measure (and then use
those to refine our computational models). There are many
challenges. First, ultimately the precision of our models of the
dynamics of personality depend, in part, upon the precision of
our measurement tools. For example, fMRI at present does not
allow us to know the precise path of the neural circuitry signaling
over time that results in various decisions, learning, and
personality-related outcomes of interest. The cause-effect infer-
ences needed for our computational models of the underlying
neurobiological pathways depend on converging evidence (e.g.,
from animal and human studies where there can be systematic
manipulation and fine-grained electrode measurements).

Second, understanding personality dynamics requires under-
standing how people respond in situations, including those
involving others over time, while concurrently acquiring neuro-
biological (e.g., fMRI) data. fMRI at present is available only in
the lab, so that studying more complex real-world situations and
concurrently examining neurobiological circuits may require
fMRI studies using more realistic gaming environments designed
to be representative of real-life challenges (using intelligent
agents, for example, who are modeled to be similar in their
response patterns to other human partners). We have developed
and used such a game in our lab, examining neural circuit
patterns for men who have sex with men who are playing a virtual
dating game that was designed to be representative of men’s
real-life scenarios involving sexual risks. That work is quite
exciting. However, the next step is a Step 1. Can we create an
iterative way to computationally model men’s behavioral choices
in the game and test those individual computational models
against actual individual differences in men’s actual game
choices and corresponding model-generated expectations
regarding their changing neural patterns while playing the game?
In any event, cumulatively better understanding the situations
in which within and between person differences in personality
dynamics over time can be more precisely assessed both

Behaviorally and neurobiologically is a major challenge. So too is
developing cumulatively more precise measures of those
dynamics, computationally and in “real” or “virtual” time.
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