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ABSTRACT

MethylomeDB (http://epigenomics.columbia.edu/
methylomedb/index.html) is a new database
containing genome-wide brain DNA methylation
profiles. DNA methylation is an important epigenetic
mark in the mammalian brain. In human studies,
aberrant DNA methylation alterations have been
associated with various neurodevelopmental and
neuropsychiatric disorders such as schizophrenia,
and depression. In this database, we present methy-
lation profiles of carefully selected non-psychiatric
control, schizophrenia, and depression samples. We
also include data on one mouse forebrain sam-
ple specimen to allow for cross-species compari-
sons. In addition to our DNA methylation data
generated in-house, we have and will continue to
include published DNA methylation data from
other research groups with the focus on brain
development and function. Users can view the
methylation data at single-CpG resolution with the
option of wiggle and microarray formats. They
can also download methylation data for individ-
ual samples. MethylomeDB offers an important
resource for research into brain function and
behavior. It provides the first source of comprehen-
sive brain methylome data, encompassing whole-
genome DNA methylation profiles of human and
mouse brain specimens that facilitate cross-species
comparative epigenomic investigations, as well as
investigations of schizophrenia and depression
methylomes.

INTRODUCTION

DNA methylation is an epigenetic modification that
occurs at the 5'-position of cytosine, altering its structure,

but not its base pairing properties. In mammalian
genomes, S-methylcytosine occurs predominantly at
CpG dinucleotides within differentiated cells, and is faith-
fully propagated on the daughter strand following DNA
replication by the maintenance DNA methyltransferase 1
enzyme (DNMTI). This form of information is flexible
enough to be adapted for different somatic cell types,
yet stable enough to be retained during mitosis and/or
meiosis. DNA methylation is commonly associated with
transcriptional silencing because it can directly inhibit the
binding of transcription factors or regulators, or recruit
methyl-CpG binding proteins (MBPs) with repressive
chromatin-remodeling functions (1,2). DNA methylation
plays an important role in the protection against
intragenomic parasites (3), in genomic imprinting (4)
and in X-chromosome inactivation in females.
Methylation of CpG dinucleotides is critical in genome
defense and chromosomal structural integrity (3,5-7).
Errors in DNA methylation establishment or mainten-
ance, or environmentally mediated alterations in DNA
methylation patterns may result in phenotypic
abnormalities (8). Emerging evidence have revealed that
DNA methylation alterations at selected genomic loci may
affect social cognition (9), learning and memory (10) and
stress-related behaviors (11), and contribute to aberrant
gene expression in a range of neurodevelopmental dis-
orders, including autism, schizophrenia, depression and
Alzheimer’s disease (12—-16). Although a multitude of epi-
genetic marks exist, DNA methylation is the most stable, a
crucial factor in studying patterns of epigenetic modifica-
tions in human disease.

In recent years, many new approaches have been
developed to study genome-wide DNA methylation pat-
terns, providing substantial insight into the role of cyto-
sine methylation in genome organization and function.
Some approaches depend on the use of methylation-
sensitive or -dependent restriction enzymes (17-21) where
the level of DNA methylation is quantified by hybridiza-
tion to high-density oligonucleotide arrays or sequencing
via next-generation sequencing platforms (22). Other
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approaches capture methylated genomic DNA using
immunoprecipitation via an antibody that recognizes
5-methylcytosine, followed by array hybridization or
sequencing (23-26). Direct sequencing of bisulfite-treated
DNA allows mapping of methylation of individual
cytosine nucleotides in a genome-wide fashion (27).
We have developed an enzymatic-based method,
Methylation Mapping Analysis by Paired-end Sequencing
(Methyl-MAPS) (22) to characterize DNA methylation
profiles of primary cells from human and mouse
post-mortem brain tissues. The Methyl-MAPs method
uses a battery of methylation-sensitive and -dependent
endonucleases to delinecate the methylation status of
>80% of CpG sites genome-wide in an unbiased fashion.
Fractionation by the methylation-dependent Mc¢rBC endo-
nuclease generates the unmethylated compartment (22,28).
The methylated compartment is generated by diges-
tion with a panel of all known methylation-sensitive
tetranucleotide restriction enzymes termed RE (Hpall,
Hhal, Acil, BstUI and HpyCH4V). Genomic DNA from
human and mouse is fractionated into methylated and
unmethylated compartments, and paired-end libraries
are constructed, sequenced and mapped onto the respective
human and mouse genomes. To analyze the Methyl-MAPS
data, we have developed a data analysis pipeline referred to
as Methyl-Analyzer (29) to generate methylation profiles.

The focus of our research is to investigate the role
of DNA methylation in central nervous system func-
tion, and to identify DNA methylation alterations
associated with neurodevelopmental disorders, as depres-
sion and schizophrenia. A genome-wide DNA methyla-
tion database focusing on brain development and
function is an invaluable resource to the community of
researchers within the areas of neuroscience, neurobiol-
ogy, psychiatry and neuro-epigenetics. In this effort, we
used the Methyl-MAPS method accompanied by the
Methyl-Analyzer pipeline to profile the brain methylome
of 29 human samples. Additionally, for comparative epi-
genetic studies, we profiled the mouse forebrain
methylome. The methylation data in its entirety are pre-
sented in a novel methylation database referred to as
MethylomeDB.

Although a handful of DNA methylation databases
exist in the public domain (30-32), they either contain
limited methylation data or differ in biological scope.
Among these methylation databases, NGSmethDB (30)
collects public genome-wide methylation data generated
by next-generation sequencing approaches from various
species and tissue types. Our database, however, has a
focused biological target that aims to characterize the
neuroepigenetic landscape of both normal and abnormal
human brain. Our study design makes it feasible to
identify potential DNA methylation signatures that may
be associated with neuropsychiatric disorders, specifically
depression and schizophrenia, using rare and well-
characterized postmortem human brain specimens, with
majority of cases having complete toxicological and psy-
chological autopsy data. In addition to our internally
generated data, Methylome DB  will include
published DNA methylation data from external sources,

Table 1. Samples used in MethylomeDB

Tissue Category Sample no.  Age PMI (h)

Brain dIPFC  Control 4 47 £ 8 9.5+638
Brain dIPFC  Schizophrenia 5 41+ 15 104 £438
Brain vPFC Control 6 47+ 6 7.8 £3.8
Brain vPFC Depression 6 41 £8 9.5+33
Brain AC Control 4 47 £ 8 7.0 £2.8
Brain AC Schizophrenia 4 39+ 17 9.0 +4.2

representing a comprehensive resource for the mammalian
brain methylome.

DATA SOURCES

Presently, MethylomeDB provides internal genome-wide
DNA methylation profiles of post-mortem brain tissues
across both human and mouse species and external
age-related DNA methylation profiles. For internal data,
a total of 29 human brain specimens are represented from
three distinct cortical regions, namely, dorsolateral pre-
frontal cortex (dIPFC), ventral prefrontal cortex (VPFC)
and auditory cortex (AC) (Table 1 and Supplementary
Table S1). These regions were selected because they have
been implicated in the neuropathology of depression and
schizophrenia. Within each human cortical region, both
disease and non-psychiatric control samples have been
profiled (matching subjects by age and sex in each
group). The forebrain region was profiled in a
6-month-old mouse (129S6/SvEv inbred strain). Besides
the internal human and mouse methylomes, we included
age-related DNA methylation profiles from a study con-
ducted by Hernandez et al. (33), which investigates DNA
methylation changes across 90 postmortem brain samples
spanning 16-102 years in age. This large number of human
samples cover four brain regions: frontal cortex, temporal
cortex, pons and cerebellum. These methylation profiles
were generated by Infinium HumanMethylation27
Beadchip (Illumina) which covers 27278 CpG sites in
the human genome.

The DNA methylation data in MethylomeDB are
represented at single-CpG resolution. We created two
MySQL databases to store the human and mouse
methylomes, where each table includes data on chromo-
somal mapping, *™C chromosomal position, methylation
probability and sequence read coverage. The data analysis
pipeline, Methyl-Analyzer (29) estimates methylation
probabilities based on methylated (RE) and unmethylated
(McrBC) digested fragments. The methylation probability
provides CpG methylation estimates, ranging from 0 to 1
corresponding to unmethylated to methylated states. The
samples in MethylomeDB have methylation profiles with
>80% CpG genomic coverage (Supplementary Table S1).

In addition to the human and mouse methylation
profile databases, we created annotation databases. We
compiled  methylation-related =~ CpG  annotations
characterizing CpG sites with respect to the RE or
McrBC enzyme recognition sites, and from public anno-
tations we overlay associated genomic features (e.g.
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Figure 1. Methylation profiles in microarray format of 12 brain vPFC samples for gene CRHBP. Methylation probability (0-1) is encoded from
green (unmethylated) to black (intermediate methylation) to red (methylated) in continuous color scheme.

promoter, exon and intron features). Also, we
incorporated gene, regulation, variation and conservation
annotation tables from UCSC Bioinformatics Genome
Browser.

WEB INTERFACE

We have organized the web interface of MethylomeDB
into three major functional features that include browse,
search and download. The first two functions utilize the
basic interface of the UCSC Genome Browser mirror site
(with the permission of UCSC Genome Bioinformatics
group), which we denote as the MethylomeDB Browser.
Methylation data can be viewed in various formats,
including (i) microarray (see representative example in
Figure 1), (ii)) wiggle (Figure 2), (iii) raw reads with
methylated/unmethylated fragments produced by the RE
and McrBC enzymatic digestions and (iv) read count
referring to sequence read coverage of CpGs in wiggle
format. Typically, the CpG methylation levels represented
in microarray and wiggle formats (or tracks) will likely be
the most frequently used tracks by the user community.
The wiggle format is quantitative, featuring numerical
values, whereas the microarray format is compact,
allowing for visualization of DNA methylation data
from multiple samples at a glance. The remaining two
tracks provide additional technical data specific to the
Methyl-MAPS method. The fragment track represents
methylated (or unmethylated) sequence fragments that
are products of enzymatic digestions. These raw read

fragments are used in estimating CpG methylation
probabilities. The coverage track represents the
combined number of methylated and unmethylated
sequence coverage at single CpG resolution. The raw
read and CpG coverage tracks together can be used to
gain in-depth sequencing information for each sample.
These data would also be of utility to evaluate the
relative accuracy or confidence associated with the
estimated CpG methylation probabilities. Our analyses
of biological replicates as well as validation experiments
using an independent experimental method for methyla-
tion mapping show that sequence coverage of 8§x or
greater provide robust methylation estimates. Lastly, the
download function can be accessed by the user in two
ways. The Methylome Browser offers the Table feature
for easy download. Users can download whole genome
or methylation data by position for selected samples.
Advanced users may want to download raw data for
more sophisticated  bioinformatics analyses. The
‘Download’ page provides links to methylation data for
all 30 samples in the current build of the database. These
are text files with information on CpG coordinates,
chromosome, methylation probabilities and coverage.

FUTURE WORK

The current version of MethylomeDB is the first release of
our database. Although it contains a wealth of
brain-specific DNA methylation profiles in both the
human and mouse species, the available features and
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Figure 2. Methylation profiles in wiggle format of 12 brain vPFC samples for gene CRHBP. The bars for wiggle format range from 0 to 1

representing methylation probability from 0 to 1.

functionality are still limited. However, given the import-
ance of the data as a resource to the scientific community,
we have made the MethylomeDB available while we
continue to extend the database with new functionality.
We plan to develop more advanced search functions
and data analysis tools for the web interface. A unique
feature of the Methyl-MAPS method is that it allows for
interrogation of DNA methylation patterns genome-wide
including repeat sequences that occupy the majority of the
human genome. We are able to use the CpG annotations
we have compiled to link our DNA methylation data
with genomic features, namely, promoter, exon, intron,
intergenic and repeat sequences. One useful feature
would be to search or browse the methylation distribution
of user defined genomic feature(s) for any number of
samples. Summary figures representing average methyla-
tion by feature and brain region and disease state would
be highly appealing for users interested in, for example,

the methylation state of a specific gene promoter in
different cortical regions or across normal and disease
samples. Furthermore, we will create a fast track to
search a specific genomic region or a gene. The current
version of MethylomeDB Browser nicely displays methy-
lation profiles of a position query. The fast track,
however, will show average methylation across multiple
samples, and will provide downloadable data files.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1.
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