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ARTICLE INFO ABSTRACT

Keywords: The activation of microglial NADPH oxidase (NOX2) induced by a-synuclein has been implicated in Parkinson's
Integrin oPs disease (PD) and other synucleinopathies. However, how a-synuclein activates NOX2 remains unclear. Previous
CD11b study revealed that both toll-like receptor 2 (TLR2) and integrin play important roles in a-synuclein-induced
NADPH oxidase microglial activation. In this study, we found that blocking CD11b, the a chain of integrin ayf,, but not TLR2
a-Synuc.lem attenuated a-synuclein-induced NOX2 activation in microglia. The involvement of CD11b in a-synuclein-in-
Synucleinopathy

duced activation of NOX2 was further confirmed in CD11b”" microglia by showing reduced membrane trans-
location of NOX2 cytosolic subunit p47P"* and superoxide production. Mechanistically, a-synuclein bound to
CD11b and subsequently activated Rho signaling pathway. a-Synuclein induced activation of RhoA and
downstream ROCK but not Racl in a CD11b-dependent manner. Moreover, siRNA-mediated knockdown of RhoA
impeded NOX2 activation in response to a-synuclein. Furthermore, we found that inhibition of NOX2 failed to
interfere with the activation of RhoA signaling and interactions between a-synuclein and CD11b, further con-
firming that NOX2 was the downstream target of CD11b. Finally, we found that genetic deletion of CD11b
abrogated a-synuclein-induced NOX2 activatoin in vivo. Taken together, our results indicated that integrin
CD11b mediates a-synuclein-induced NOX2 activation through a RhoA-dependent pathway, providing not only
a novel mechanistic insight but also a new potential therapeutic target for synucleinopathies.

1. Introduction potential mechanisms of synucleinopathies is urgently needed.

Strong evidence indicated that neuroinflammation is implicated in

The synucleinopathies are a diverse group of neurodegenerative
disorders including Parkinson's disease (PD), dementia with Lewy
bodies, pure autonomic failure and multiple system atrophy [1,2].
Abnormal aggregates of a-synuclein (a-Syn) in selective populations of
neuron and glia are the common pathological features shared by sy-
nucleinopathies [1,2]. In clinic, the therapeutic interventions for sy-
nucleinopathies are mainly target symptoms, which partially improves
the life quality of patients, but does not alter disease progression [3].
The obscure of mechanisms greatly hampers the development of novel
therapeutic strategies for synucleinopathies. Therefore, elucidating the

synucleinopathies, especially PD [4-6]. Activated microglia and accu-
mulation of proinflammatory factors are present in the subsantia nigra
(SN) and striatum of patients with PD [7,8]. Moreover, epidemiological
and experimental animal studies demonstrated that non-steroidal anti-
inflammatory drugs reduce the risk of acquiring PD [9-11]. Suppres-
sion of microglial activation also displays neuroprotection in animal
models of multiple system atrophy [8]. a-Syn has been shown to be able
to activate microglia and cause proinflammatory responses in the brain
parenchyma, which exacerbates pathogenic processes [12]. NADPH
oxidase (NOX2), a superoxide-producing enzyme, is subsequently
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recognized to be critical for a-Syn-induced microglial activation and
neurodegeneration since pharmacological inhibition or genetic deletion
of NOX2 attenuates a-Syn-induced microglial activation and related
neurotoxicity [13,14]. However, how a-Syn induces NOX2 activation
remains undefined.

Toll-like receptor 2 (TLR2) is recently identified as a novel receptor
for a-Syn to trigger immune cell responses [12,15]. The TLR2 ligand
activity of a-Syn seems to be highly conformation-selective and only
certain types of oligomer can activate TLR2 [16]. In agreement, TLR2-
independent effects of a-Syn on microglia were reported. Kim et al.
demonstrated that not TLR2 but integrin is required for a-Syn-induced
migration and morphological changes in microglia [17]. Similarly, in-
tegrin, especially macrophage antigen complex-1 (Macl), was involved
in microglial activation induced by A30P and A53T mutant a-Syn [18].
However, it is still unclear whether TLR2 or integrin contributes to a-
Syn-induced activation of NOX2.

In the present study, we sought to identify the molecular mechan-
isms involved in a-Syn-induced NOX2 activation by using microglial
cultures and transgenic mice. The potential roles of both TLR2 and
integrin in a-Syn-induced activation of NOX2 were investigated. We
found that not TLR2 but integrin CD11b, the a chain of ayf,, was
required for NOX2 activation induced by a-Syn in both in vitro and in
vivo. The Rho signaling pathway was subsequently recognized to be
critical for CD11b-mediated NOX2 activation.

2. Materials and methods
2.1. Reagents

The recombinant human a-Syn (S1001, endotoxin level, less than
0.024 EU/pug) was obtained from rPeptide (Bogart, GA, USA). HiLyte™
Fluor 488 labeled recombinant human a-Syn (1 - 140) (AS-55457) was
purchased from AnaSpec, Inc (Fremont, CA, USA). Active Rho Pull-
Down and Detection Kit (16116) and Active Racl Pull-Down and
Detection Kit (16118) were purchased from Thermo Scientific
(Rockford, 1L, USA). The RhoA siRNA (sc-36414) was provided by Santa
Cruz Biotechnology (Dallas, TX, USA). The Vectastain ABC Kit was
provided by Vector Laboratories, Inc (PK-4001, Burlingame, CA, USA).
The membrane protein extraction kit was obtained from Beyotime
(P0033, Jiangsu, China). Diphenyliodonium (DPI, D2926) and RGD
peptide (S8008) were purchased from Sigma-Aldrich, Inc. (St. Louis,
MO, USA) and SelleckChemicals (Houston, TX, USA), respectively. The
following primary antibodies were used: anti-p47P"°* (07-500, EMD
Millipore Corporation, Billerica, MA, USA), anti-gp911’h"X (611414, BD
Transduction Laboratories, San Jose, CA, USA), anti-CD11b
(ab128797), anti-a-Synuclein (ab6162), anti-TLR2 (ab108998), anti-
ROCK1 (ab97592), anti-GAPDH (ab181602, Abcam, Cambridge, MA,
USA) and ionized calcium binding adaptor molecule-1 (Ibal;
019-19741, Wako Chemicals, Richmond, VA, USA), The BCA Protein
Assay Kit was purchased from Life Technologies (#23250, Waltham,
MA USA). All other chemicals were of the highest grade commercially
available.

2.2. Primary microglial cultures

Primary microglial cells were prepared from whole brains of 1-d-old
wild type (WT) or CD11b”" mice pups as described previously [19].
Two weeks after seeding, microglia (purity of 95-98%) were shaken off
for 30 min at 180 rpm at 37 °C. Microglia were seeded in 6 or 96-well
plates overnight in Dulbecco's modified eagle medium/F12 supple-
mented with 10% FBS before treatment.

2.3. BV2 microglial cells

The mouse microglia BV2 cell line was maintained as described
previously [20]. Briefly, BV2 microglial cells were maintained at 37 °C

Redox Biology 14 (2018) 600-608

in DMEM supplemented with 10% fetal bovine serum, 50 U/ml peni-
cillin and 50 pg/ml streptomycin in a humidified incubator with 5%
CO, and 95% air. The cells were split or harvested every 3—5 days.

2.4. Preparation of a-Syn aggregates

The recombinant human a-Syn was dissolved in water at 1 mg/ml
and then was incubated with agitation at 37 °C for 7 days to allow
aggregation [13]. The concentrations of a-Syn aggregates were de-
termined based on the initial concentration of a-Syn.

2.5. Measurement of superoxide

The production of superoxide was determined by measuring the
superoxide dismutase (SOD)-inhibitable reduction of WST-1 as de-
scribed previously [21,22]. Briefly, microglial cells (1 X 10°/well)
were grown overnight in 96-well plates in DMEM/F12 medium con-
taining 10% FBS and switched to phenol red—free HBSS (50 pl/well).
Subsequently, 50 pl HBSS with and without SOD (50 U/ml) was added
to each well along with 50 pl WST-1(1 mM) in HBSS and 50 pl vehicle
or a-Syn. The absorbance at 450 nm was read with a SpectraMax Plus
microplate spectrophotometer (Molecular Devices). The difference be-
tween the absorbance in the presence and absence of SOD was con-
sidered to be the amount of produced superoxide.

2.6. Co-immunoprecipitation

Co-immunoprecipitation was performed according to our previous
report [23]. Briefly, recombinant human a-Syn was mixed with mi-
croglial lysates (300 pg) in IP lysis buffer (50 mM Tris-HCl, pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and 10 pl/ml proteinase
inhibitor Cocktail). The lysate was centrifuged at 8200 x g for 20 mins
at 4 °C. The supernatant was incubated at 4 °C with anti-a-Syn antibody
(10 pg) or control IgG overnight and with protein A-Sepharose beads
(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) for additional 2 h.
After washing, the beads were eluted and the samples were analyzed by
Western blot for CD11b or a-Syn.

2.7. Confocal microscopy

To observe the surface binding of a-Syn, microglial cells were
seeded in glass-bottom dishes and were treated with HiLyte™ Fluor 488
labeled recombinant human a-synuclein (200 nM) on ice for 20 mins
according to a previous report [24]. After washing three times with cold
PBS, cells were fixed with 4% paraformaldehyde and permeabilized by
0.05% Triton-X. Cells were then incubated with anti-CD11b antibody
overnight at 4 oC, followed by adding Alexa 594-labeled secondary Ab
(1:1000). The double-label immunofluorescence pictures were taken by
the confocal microscope.

2.8. Racl and RhoA activation assays

The activation of Racl and RhoA was determined using active Racl
and Rho pull-down and detection kit, respectively, according to the
manufacturers’ instruction. Briefly, microglial cells were lysized using
1X lysis/binding/wash buffer, and then centrifuged at 16,000 x g at
4 °C for 15 min. The active Rac1-GTP or RhoA-GTP was pulled down
from 500 pg of supernatant using GST-PAK1-PBD (20 ug) or GST rho-
tekin-RBD (400 pg), respectively. For both assays, samples were in-
cubated at 4 on a rotator for 1h, washed three times in 1X lysis/
binding/wash bulffer, resuspended in reducing sample buffer, and then
were analyzed by immunoblot analysis using antibody specifically
against Racl or RhoA.
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Fig. 1. a-Syn activates NOX2. (A) Primary microglial cells were treated with different concentrations of a-Syn. Sixty minutes later, the membrane translocation of p47P"°* was measured
by using western blot and the density of blot was quantified. Gp91P"** was used as an internal membrane control. (B) The dose-dependent production of superoxide in a-Syn-treated
microglia was measured. (C) a-Syn-induced membrane translocation of p47P"°* was measured at the indicated time points after treatment by using western blot and the density of blot
was quantified. (D) The time-dependent production of superoxide in a-Syn-treated microglia was measured. Results are expressed as mean = SEM from three independent experiments.

*p < 0.05, **p < 0.01.

2.9. Knockdown of RhoA in microglia using siRNA

Microglial cells were seeded on 6 or 24-well plates and transfected
by adding Opti-MEM reduced serum media containing a mixture of
Lipofectamine RNAiMAX transfection reagent and ON-TARGETplus
SMARTpool mouse RhoA-specific siRNA according to manufactures’
instruction.

2.10. Animal treatments

Three month-old male WT (C57BL/6 J) and CD11b”" mice were
deeply anesthetized using chloral hydrate (300 mg/kg, s.c.) and then
fixed on the stereotaxic frame (David Kopf Instruments, Tujunga, CA,
USA). a-Syn (2 pg in a volume of 2 ul of PBS] was injected unilaterally
to the SN. The other side was injected with PBS. Stereotaxic co-ordi-
nates used were AP — 2.8 mm, ML — 1.3 mm, and DV- 4.5 mm, ac-
cording to one previous report [25]. The injection rate was 0.2 pl/min
for both a-Syn and PBS. The animals were sacrificed 1 h after a-Syn
injection and midbrain tissues were dissected. Experiments were per-
formed in accordance with the Animal Guideline of Dalian Medical
University. Housing and breeding of animals were performed strictly
with Dalian Medical University's Guide for the Care and Use of La-
boratory Animals. All experimental protocols were approved by and in
agreement with the Ethical Committee of Dalian Medical University.

2.11. Immunohistochemistry

Immunohistochemistry were performed as described previously
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[26]. Briefly, the free-floating sections (35 um) encompassing the entire
midbrain cultures were immunoblocked with 4-10% NGS and then
incubated with rabbit antibody to Iba-1 (1: 5000) for 24 h at 4 °C.
Antibody binding was visualized using a Vectastain ABC Kit (Vector
Laboratories, Inc) and diaminobenzidine substrate. Images were re-
corded with a CCD camera and the MetaMorph software (Molecular
Devices). The densities of Iba-1 immunostaining in the SN were mea-
sured using ImageJ software (National Institutes of Health) [27].

2.12. Membrane extraction

The membrane fractions of microglia and midbrain tissue were
prepared using the membrane protein extraction kit as described pre-
viously [20]. Briefly, microglia and midbrain tissue were lysed in lysis
buffer A provided by the kit and then subjected to Dounce homo-
genization (20-25 St, tight pestle A). The lysates were centrifuged at
700 x g for 10 mins; the supernatant was collected and centrifuged at
14,000 X g for 30 mins. The pellets were suspended using extraction
buffer B and incubated for 20 mins. After centrifugation at 14,000 x g
for 5 mins, the supernatant was used as membranous fraction.

2.13. Western blot

For western blot analysis, equal amounts of protein were separated
by 4-12% Bis-Tris Nu-PAGE gel and transferred to polyvinylidene di-
fluoride membranes. The membranes were blocked with 5% non-fat
milk and incubated with primary antibodies (1:1000) against p47ph°",
gp91ph°", Racl-GTP, total-Racl, RhoA-GTP, total-RhoA, ROCK, GAPDH
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Fig. 2. Integrin CD11b but not TLR2 mediates a-Syn-induced activation of NOX2. (A) BV2 microglial cells were pre-treated with anti-TLR2 antibody (2.5 ug/ml) for 30 mins and then
were treated with a-Syn for additional 60 mins. The membrane translocation of p47°"°* was determined in a-Syn-treated microglia with or without anti-TLR2 antibody by using western
blot and the density of blot was quantified. (B) The production of superoxide was measured in a-Syn-treated microglia with or without anti-TLR2 antibody, RGD (50 uM) or anti-CD11b
antibody (2.5 pg/ml) pre-treatment for 30 mins. (C) The membrane translocation of p47P"°* was measured in a-Syn-treated microglia with or without RGD or anti-CD11b antibody by
using western blot and the density of blot was quantified. (D) The membrane translocation of p47P"** was measured in a-Syn-treated WT and CD11b”" primary microglia by using western
blot and the density of blot was quantified. (E) The production of superoxide was measured in a-Syn-treated WT and CD11b”" microglia. Results are expressed as mean + SEM from three
independent experiments. N.S, not significant; c-IgG: control IgG. *p < 0.05, **p < 0.01.
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Fig. 3. a-Syn binds to CD11b. (A) Purified recombinant human a-Syn aggregates were mixed with microglial lysates to allow a-Syn to react with CD11b, and then the mixtures were
immunoprecipitated with antibody against a-Syn. Binding was detected via immunoblot for CD11b and a-Syn. (B) Confocal microscopy analysis further delineated the interaction
between a-Syn and CD11b on the cell surface. This experiment was performed 4 independent times with duplication. Bar = 10 um.

and HRP-linked anti-rabbit or mouse IgG (1:3000) for 2 h. ECL reagents post hoc testing. In all analyses, a value of p < 0.05 was considered

were used as a detection system.

2.14. Statistical analysis

All values are expressed as the mean + SEM. Differences among
means were analyzed using one- or two-way ANOVA with treatment as
the independent factors. When ANOVA showed significant differences,
pairwise comparisons between means were tested by Newman-Keuls
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statistically significant.

3. Results

3.1. Blocking integrin but not TLR2 attenuates a-Syn-induced NOX2

activation in microglia

To investigate whether TLR2 or integrin is involved in a-Syn-
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CD11b”" mice were treated with a-Syn for 60 mins. Levels of RhoA-GTP, total-RhoA (D) and ROCK (E) were determined by western blot using specific antibodies and the density of blot
was quantified. GAPDH was used as an internal control. Data are expressed as mean = SEM from three independent experiments. N.S, not significant; **p < 0.01.

induced NOX2 activation, we initially examined the stimulatory effects
of a-Syn on NOX2 in our system. Primary microglia were treated with
the indicated concentrations of a-Syn and the membrane translocation
of NOX2 cytosolic subunit p47P"°*, an essential step for NOX2 activa-
tion, was detected. As shown in Fig. 1A, compared the vehicle control,
the levels of p47P"°* in membrane fractions prepared from 50, 100 and
200 nM a-Syn-treated microglia were gradually increased, indicating
dose-dependent activation of NOX2. a-Syn-induced NOX2 activation
was further confirmed by measuring the production of superoxide. A
dose-dependent pattern for a-Syn-induced superoxide production was
observed in microglia (Fig. 1B). Time course study revealed that a-Syn-
induced p47P"°* membrane translocation and superoxide production
also followed a time-dependent manner and peaked at 60 mins after
treatment (Fig. 1C and D).

Next, we determined the role of TLR2 and integrin in a-Syn-induced
NOX2 activation. The activity of TLR2 in microglia was blocked using
anti-TLR2 antibody. As seen in Fig. 2A, blocking TLR2 failed to interfere
with a-Syn-induced membrane translocation of p47P"°%, suggesting that
TLR2 is not required for a-Syn-induced NOX2 activation. This conclu-
sion was further confirmed by showing that anti-TLR2 antibody failed
to attenuate superoxide production in a-Syn-treated microglia
(Fig. 2B). In contrast, blocking integrin using RGD peptide, a cell ad-
hesion motif that can bind to integrin, markedly mitigated a-Syn-in-
duced p47P2°* membrane translocation and superoxide production in
microglia (Fig. 2B and C), suggesting that integrin is necessary for a-
Syn-induced activation of NOX2.
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3.2. CD11b integrin is necessary for a-Syn-induced NOX2 activation

CD11b is the a-chain of ayf3> (also called CD11b/CD18) integrin
and presents with high level in innate immune cells, including micro-
glia [28]. To determine whether integrin CD11 is involved in a-Syn-
induced NOX2 activation, anti-CD11b antibody was used to block
CD11b activation. As shown in Fig. 2B and C, blocking CD11b sig-
nificantly suppressed p47°"°* membrane translocation and production
of superoxide in microglia treated with a-Syn.

To further confirm the involvement of CD11b in a-Syn-induced
NOX2 activation, microglial cells deficient in CD11b were prepared. We
found that p47P°* membrane translocation was detected in a-Syn-
treated WT but not CD11b”" microglia (Fig. 2D). In agreement, mi-
croglia deficient in CD11b were more resistant to a-Syn-induced su-
peroxide production than WT controls (Fig. 2E).

3.3. a-Syn binds to CD11b

To investigate the mechanisms by which CD11b mediates a-Syn-
induced NOX2 activation, the interaction of a-Syn and CD11b was
determined. Recombinant human a-Syn was used to coimmunopreci-
pitate CD11b. As shown in Fig. 3A, a-Syn pulled down CD11b from
membrane extracts prepared from microglia. Reciprocally, CD11b was
also able to coprecipitate a-Syn, whereas neither CD11b nor a-Syn was
pulled down by control IgG. To further confirm the interactions be-
tween a-Syn and CD11b, a binding assay was performed. Immuno-
fluorescence staining showed a surface binding of Fluro 488 labeled a-
Syn (green) in microglia. Co-staining with anti-CD11b antibody
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revealed colocalization of CD11b (red) with surface-bound a-Syn
(Fig. 3B), indicating a direct binding between CD11b and a-Syn.

3.4. a-Syn induces activation of Rho signaling pathway through a CD11b-
dependent manner

We next explored the downstream events occurring after a-Syn
binds to CD11b. It has been documented that Rho family GTPases are
essentially involved in superoxide formation during phagocytosis of
immune cells [29]. We therefore investigated the effects of a-Syn on the
activation of Racl and RhoA, two widely studied members of Rho fa-
mily. Results showed that compared with vehicle controls, the activa-
tion of RhoA was significantly increased in a-Syn-treated microglia by
showing elevated expressions of active RhoA (RhoA-GTP) in a time-
dependent manner, although the levels of active Racl (Racl-GTP) were
unchanged (Fig. 4A and B). Consistent with RhoA activation, the ex-
pression of ROCK, a downstream effector of Rho kinase, was also time-
dependently increased in a-Syn-treated microglia (Fig. 4C).

To determine whether CD11b mediates a-Syn-induced activation of
RhoA signaling, the activation of RhoA and ROCK was detected in
CD11b”" microglia. As seen in Fig. 4D and E, a-Syn elevated the levels
of both RhoA-GTP and ROCK in WT microglia, which was significantly
reduced in microglia deficient in CD11b, suggesting that CD11b con-
tributes to a-Syn-induced activation of RhoA signaling.

3.5. RhoA knockdown blocks a-Syn-induced activation of NOX2

To investigate whether Rho signaling is involved in a-Syn-induced
NOX2 activation, RhoA was silenced by using siRNA. The efficiency of
siRNA was initially examined. As seen in Fig. 5A, the expressions of
both RhoA and ROCK were markedly reduced in microglia transfected
with RhoA siRNA, but not control siRAN. In agreement with inhibition
of Rho signaling, the membrane translocation of p47P"°* and super-
oxide production induced by a-Syn were greatly impeded in RhoA
siRNA-transfected microglia (Fig. 5B and C), suggesting that Rho

signaling mediates a-Syn-induced NOX2 activation. However, trans-
fection with control siRNA failed to interfere with a-Syn-induced NOX2
activation.

3.6. Inhibition of NOX2 fails to interfere with activation of CD11b

The activation of integrin can be regulated by both outside-in and
inside-out signals [30]. We next determined whether NOX2-derived
superoxide could be served as a paracrine signal for CD11b activation.
Since Rho pathway is also involved in regulating CD11b activation by
inside-out signals [31], the effects of NOX2 on a-Syn-induced activation
of Rho signaling were initially determined. The activity of NOX2 was
blocked by DPI, a widely used NOX2 inhibitor. No significant difference
of a-Syn-induced Rho signaling activation was observed in microglia
with or without DPI treatment as shown by a comparable level of RhoA-
GTP and ROCK between combined DPI and a-Syn and a-Syn alone
group (Fig. 6A and B).

Next, the expression of CD11b in a-Syn-treated microglia was
measured. As seen in Fig. 6C, inactivation of NOX2 by DPI or down-
regulation of Racl or RhoA by siRNAs had no effect on CD11b ex-
pression in microglia treated with a-Syn. Inside-out signaling leading to
integrin activation can also be measured by binding of ligands with
integrin [28]. Therefore, the effects of NOX2 and Rho signaling on in-
teractions between a-Syn and CD11b were determined. In agreement
with no alteration of CD11b expression, both DPI and RhoA siRNA also
failed to interfere with the interactions between a-Syn and CD11b
(Fig. 6D and E). These results suggest that NOX2 is a passive down-
stream target of integrin CD11b.

3.7. CD11b mediates a-Syn-induced NOX2 activation in vivo

To determine whether CD11b mediates a-Syn-induced activation of
NOX2 in vivo, a-Syn was injected stereotaxically into the SN of both WT
and CD11b-deficient mice (Fig. 7A). The activation of NOX2 was ex-
amined by detecting the membrane translocation of p47°2°*, Consistent
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Fig. 6. Blocking NOX2 fails to affect activation of RhoA pathway and CD11b. (A) a-Syn-induced activation of RhoA was determined in microglia pre-treated with NOX2 inhibitor, DPI
(10 uM) for 30 mins by using western blot and the density of blot was quantified. DPI at this concentration displays potent inhibitory effects on NOX2 activation and superoxide
production in our previous study [21]. (B) The effects of DPI on a-Syn-induced expression of ROCK were determined by using western blot and the density of blot was quantified. (C) a-
Syn-induced CD11b expression was determined in microglia transfected with Racl-specific, RhoA-specific or control siRNA or pre-treated with DPI by using western blot. The density of
blot was quantified. (D, E) The effects of RhoA knockdown (D) or NOX2 inhibition (E) on the interactions of a-Syn and CD11b were determined by co-immunoprecipitation. Results are

expressed as mean = SEM from three independent experiments. N.S, not significant.

with in vitro, the levels of p47P"°* in the membrane fractions were
significantly increased in a-Syn-injected WT mice (Fig. 7B), suggesting
that a-Syn activates NOX2 in vivo. However, mice deficient in CD11b
displayed resistance for a-Syn-induced activation of NOX2 since no
significant membrane translocation of p47°"°* was detected in midbrain
tissues prepared from CD11b”" mice (Fig. 7B). NOX2 activation was
associated with activation of microglia in a-Syn-treated WT mice as
shown by elevated Iba-1 expression and enlarged cell body size com-
pared with vehicle controls (Fig. 7C and D). In agreement with in-
activation of NOX2, activated microglia were not detected in CD11b”"
mice injected with a-Syn (Fig. 7C and D).

4. Discussion

In this study, we demonstrated that not TLR2 but integrin CD11b
was required for a-Syn-induced activation of NOX2. For the mechanism
of regulation, we discovered that a-Syn bound to CD11b and subse-
quently stimulated activation Rho signaling pathway, which triggered
membrane translocation of NOX2 cytosolic subunit p47P"°%, resulting in
NOX2 activation. Finally, mice deficient in CD11b were more resistant
to a-Syn-induced NOX2 activation than WT controls.

TLR2 is a key innate immune receptor belongs to pattern recogni-
tion receptors [32]. TLR2 was recently identified as an endogenous
receptor for a-Syn [16]. However, studies delineating the role of TLR2
in a-Syn-mediated microglial activation have generated contrasting
results. Kim et al. reported that neuron-released a-Syn stimulated

activation of microglia and release of TNFa and IL-6 through a TLR2-
dependent manner [16]. Similarly, TLR2-dependent microglial activa-
tion in a-Syn-treated microglial culture was also observed in Daniele
et al.” study [12]. In contrast, TLR2-independent microglial activation
in response to a-Syn was also reported in previous studies [17,18]. In
this study, we found that blocking TLR2 failed to mitigate recombinant
human o-Syn-induced NOX2 activation, supporting the TLR2-in-
dependent activity of a-Syn. Although the exact mechanism for both
TLR2-dependent and -independent effects of a-Syn remains unknown,
the intrinsic difference between recombinant and endogenous a-Syn
might be one of the reasons. Additionally, the different structures of a-
Syn used in these studies might also take a responsibility because the
TLR2 ligand activity of a-Syn is conformation-sensitive; only specific
types of oligomer can interact with and activate TLR2 [16].

The integrins are non-covalently-associated heterodimeric trans-
membrane receptors consisting of a and 3 chains [28]. CD11b, the a-
chain of ayf3,, is highly expressed in innate immune cells and has been
implicated in various immune cell response, such as adhesion, migra-
tion, phagocytosis, and chemotaxis [28]. It is both an adhesion mole-
cule and a pattern recognition receptor. Multiple pathogen and da-
mage-associated molecules such as endotoxin lipopolysaccharide (LPS)
[33], Polyl:C [24], high mobility group box-1 protein (HMGB1) [34]
and aggregated (3-amyloid (A) [35] can bind to CD11b. Previous study
demonstrated that CD11b/CD18 is involved in adhesion-elicited NOX2
activation [36]. In the present study, we provided direct experimental
evidence implicating the involvement of CD11b in a-Syn-stimulated
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NOX2 activation. This conclusion is supported by the following ex-
perimental findings: first, a-Syn bound to CD11b; second, inhibition or
genetic deletion of CD11b abrogated a-Syn-induced p47°"°* membrane
translocation and superoxide production; third, mice deficient in
CD11b were more resistant to a-Syn-induced NOX2 activation. Con-
sistent with our findings, the involvement of CD11b in NOX2 activation
was also observed in HMGB1 and LPS-treated microglial cultures
[34,37]. Taken together, these results lend strong credence to the
concept that CD11b mediates a-Syn-stimulated activation of NOX2.
Mechanistically, the most critical question to address is how CD11b
mediates a-Syn-elicited NOX2 activation. The Rho family of GTPases is
one of the downstream signaling pathways of integrins and plays an
important role in many diverse critical cellular processes, such as gene
transcription, cell-cell adhesion, cell cycle progression and cell survival
and death [29]. Although RhoA/ROCK is involved in superoxide for-
mation [38], it is still remains unclear whether Rho signaling pathway
is involved in a-Syn-induced activation of NOX2. Here, we found that
a-Syn stimulated activation of RhoA and downstream ROCK, which was
markedly mitigated by genetic deletion of CD11b. Moreover, silencing
RhoA suppressed a-Syn-induced p47P"** membrane translocation and
superoxide production. These results suggest that a-Syn-CD11b axis
regulates NOX2 activation through a Rho signaling-dependent manner.
Similarly, the activation of Rho signaling pathway was involved in
angiotensin II-stimulated NOX2 activation [39]. Moreover, Rho sig-
naling pathway-mediated NOX2 activation also contributed to hy-
drogen peroxide-induced vascular contraction [40]. The mechanism

responsible for Rho signaling-mediated NOX2 activation might be re-
lated to the activation of extracellular signal-regulated kinase (ERK), a
Rho downstream kinase that can phosphorylate p47P"°* and subse-
quently result in membrane translocation [41] since a-Syn is well-
known to be able to active ERK [42].

Integrin signals bidirectionally through the plasma membrane in
pathways referred to as “inside-out” and “outside-in” signaling.
Previous study indicated that Rho signaling might be one of the “inside-
out” signals to regulate integrin. GM-CSF was found to regulate integrin
through Rho GTPase pathway, leading to migration of human eosino-
phil [43]. Similarly, in Arita et al.'s study, silencing Rho/Rho-kinase,
ROCK interfered with the expression of CD11b/CD18 in TNFa-medi-
ated diabetic microvascular damage [44]. However, in the present
study, silence of Rho signaling failed to affect both the expression of
CD11b and interactions between a-Syn and CD11b. Although the un-
derlying mechanisms remain unclear, lack of additional stimulating
signal for the activation of Rho signaling might be one of the reasons.
This speculation was supported by the findings that NOX2-derived su-
peroxide failed to be as a paracrine signal to regulate a-Syn-induced
RhoA activation, although inhibition of NOX2 blocked angiotensin II-
induced activation of Rho signaling in previous report [45].

In conclusion, our studies reveal a new regulatory function of
CD11b in a-Syn-induced NOX2 activation. We also identified Rho
signal as a potential novel signaling pathway that bridges a-Syn-CD11b
axis and subsequent NOX2 activation. These results help to expand our
understanding for the pathogenesis of synucleinopathies. Our findings
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also suggest that integrin, especially CD11b, may be a promising target
for the treatment of synucleinopathies.
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