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Abstract

Motivation: Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions.
Current prediction methods are well developed for the prediction of individual turn types, including a-turn, b-turn, and c-
turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can
accurately predict all types of turns simultaneously.

Results: In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein
based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution
information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of
turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP
utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on
innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which
are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure
alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved
an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn.
Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved
were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.
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Introduction

It is widely acknowledged that the function of a protein is

determined by its structure to a certain extent. In the field of

protein research, the gap between sequences and proteins with

known structures or functions is very large and it is growing at an

exponential rate. To narrow the gap, numerous protein structure

prediction methods have been developed.

Turn is a special secondary structure in proteins, which plays a

crucial role in loops, folds, and interactions. Turns and loops are

all in the flexible region of a protein, a short hairpin loop can also

be called a simple turn [1]. The accurate prediction of protein

turns is undoubtedly useful for loop identification. In protein

folding, turns play a critical part by bringing together regular

secondary structure elements. Turn often defines the three-

dimensional arrangement of other secondary structures, such as

a-helices or b-sheets, thereby determining the overall architecture

of a protein domain [2]. Furthermore, some turns typically occur

on the exposed surface of proteins and, hence, are likely to be

involved in the molecular recognition of the protein environment

or in interactions between peptide substrates and receptors [3].

Different from a-helices and b-sheets, turn is an irregular

secondary structure; turn is the site where a peptide chain reverses

its overall direction. Turns typically involve a hydrogen bond

between the first and the last residue or have a distance between

the first and last residue of less than 7 Å. Turns can be classified as

d, c, b, a, and p types, which are formed by 2, 3, 4, 5, and 6

residues, respectively [2,3].

Several excellent methods have been developed to predict each

turn category. b-turn is the most commonly found turn, and it can

be classified into nine types: I, II, VIII, I’, II’, VIa1, VIa2, VIb,

and IV [4]. One of the best methods for the prediction of b-turns

[5] achieved Accuracy of 87.2% on the BT436 dataset, using

predicted shape strings as a new variable and a two-layer support

vector machine (SVM) model. Except machine learning method

[6,7,8,9], statistical methods also been proposed [10,11]. c-turn is

the second most characterized tight turn, which involves three

amino acid residues and a hydrogen bond between the backbone

CO(i) and the backbone NH(i+2). The problems of c-turn

prediction can be divided into two categories: prediction of c-

turn types [12] and prediction of c-turn/non-c-turn [13,14,15].

The method proposed by our group [15], which utilized G-means

metrics as the optimal criterion for SVM and predicted shape

string as a new variable. a-turn is always present on the exposed

surface of the protein and contains specific information for the

molecular recognition process. Both of SVM [16] and Artificial

neural network [17] were launched to predict a-turn using PSI-

Blast Profiles. The SVM-based classifier could also be used to

predict p-turn, which is the longest tight turn, with PSSMs

(Position Specific Scoring Matrixs) and predicted secondary

structure as inputs [18]. However, there are few methods that

developed for the prediction of all the different types of turns in a

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e48389



protein. Recently, Michael Meissner [2] provided a uniform

classification for all turn families and predicted turn and non-turn

by using self-organizing map (SOM) and SVM. We recognize that

as a regular shape state, turn may have some intrinsic character-

istics that affect the scope of the protein structure. Therefore, it is

useful to predict all turns in a protein based on a unified model to

perfect secondary structure prediction and to prepare tertiary

structure prediction.

In this study, we present a novel approach, TurnP, for the

prediction of global turns in a protein. We have developed a

strategy to predict turns based on sequence and structural

evolution information, which were PSSM (produced by PSI-

BLAST) [19], predicted protein secondary structure information

(secondary structure and Structural Position-Specific Scoring

Matrix (SPSSM)) [20], and predicted protein shape string

information (shape string and shape string profile) [21]; the

method used the Conditional Random Field (CRF) [22] as an

algorithm. After training with a non-redundant dataset (4,107

entries), TurnP was tested on a newly determined dataset, an EVA

set and the CASP9 dataset. The results we obtained indicated that

TurnP showed impressive performance in the field of turn

prediction.

Materials and Methods

1 Datasets
Two major datasets were constructed for the method formation:

a training set Train_0925 and a test set Test_1025. Train_0925

contains 4,107 chains, which were derived from sequences in the

Protein Data Bank (PDB) [23] released before 2010 that were

determined by X-ray diffraction with a resolution better than

2.0 Å. Using PISCES [24], we determined that there are no two

chains that have more than 25% sequence identity. The list of

PDB ID of Train_0925 can be found in Materials S1. We

constructed a newly determined test set Test_1025 to validate

TurnP. Test_1025 was assembled using the same criteria as

Train_0925: the PDB of all sequences in 2010, with no two chains

sharing more than 25% sequence identity with either the test set or

Train_0925. As a result, 736 entries were obtained.

In addition, a database TurnDB_09 was built for users to search

real turns of proteins. Sequences in TurnDB_09 were collected

from the PDB until December 2009; the sequences had been

determined by X-ray crystallography with a resolution better than

2.0 Å. TurnDB_09 contains 48,428 sequences. Turns and

secondary structure elements of TurnDB_09 were prepared for

users to query.

We identified turns by the coordinate analyzing program

Promotif [25] and real secondary structure [26]. Promotif is a

program which can locate turns, especially b-turns and c-turns,

from pdb file of a protein. According to the definitions of tight

turns [3], most of a- and p-turns were overlapped with c- or b-

turns. In addition, we excluded those a- and p-turns that were in

the regular helix regions, which were also excluded by many

former researchers [2]. We considered eight-state secondary

structure information (obtained with DSSP [26]) as a complement.

When there were equal or more than three consecutive ‘‘T’’, we

marked these amino acids as turns. Therefore, we regard our

datasets as the collection of all turns of each sequence.

DSSP was used to obtain secondary structure elements. The

eight-state elements were designed with the following scheme: H,

G, and I to helix; E to sheet; and all others to random coil [27].

The statistical results of the three datasets are listed in Table 1.

Moreover, there are 51.22% turns located in the coil region, which

is counted based on Train_0925.

Besides the datasets that generated by our group, two other

benchmark datasets were used to test our methods. One is

EVAset1 [28], which contains 80 sequences, which are unique and

have very low sequence identities against known proteins. This

strict criterion makes the dataset a convincing benchmark to

evaluate predictors. The other one is CASP9. The biannual CASP

experiments present a unique platform for testing new methods

through blind predictions. We evaluated our method on the

CASP9 data, which was released after May 2010. Each target in

the dataset was new to our model, for all sequences which in our

training set were released before 2010.

2 The Flowchart of TurnP
The flowchart of TurnP is shown in Figure legends.

Figure 1. For a query, the PSI-BLAST, SPSSMPred [20], and

a shape string predictor [21] were launched simultaneously. Then,

five type features, PSSM, SPSSM, predicted secondary structure

(PSS), predicted shape string (SSPred), and shape string profile

(SSProfile), were obtained. Finally, all these features, which were

combined into a vector of 43 elements for each residue in a

sequence, were treated as the input into CRF for modeling and

prediction, where the model was trained by Train_0925.

3 Protein Secondary Structure Prediction
Protein secondary structure information is extremely vital to

protein structural prediction. When the structure of a query is

unknown, the secondary structure of the sequence could be

predicted by many published predictors.

Here, we used a novel predictor, SPSSMPred, which was

recently presented by our group [20] to predict the secondary

structures of a query. The SPSSMPred was based on an original

SPSSM that was generated by sequence alignment, but its

elements were secondary structure profiles. The SPSSM can be

used to build the relationship between the structural profile and

the protein secondary structure. We developed a strategy to

construct a database of the secondary structure profiles of 9 million

sequences. This database, 9M_database, was one in which every

union was an amino acid and its secondary structure profile was

derived from the non-redundant database used in PSI-BLAST

against a database of known structures. We provided a BLAST

tool, 9MBLAST, to simultaneously align a query against the

9M_database and the results in PSSM and SPSSM. A non-

redundant dataset was used as the training set. The SPSSMPred

was tested on newly published protein sequences and benchmark

EVA datasets; we achieved results much closer to the expected

theoretical limit of secondary structure prediction (Materials S3).

The excellent performance for the prediction of secondary

structure is one of the foundations of TurnP.

Table 1. Statistic result of datasets and database.

Dataset
Sequence
count

Residue
count Turn count

Turn
percentage

Train_0925 4,107 929,035 228,062 24.5%

Test_1025 736 176,674 42,740 24.2%

TurnDB_09 48,428 11,293,117 2,759,778 24.4%

EVAset1 77 7,718 1,973 25.6%

CASP9 248 53,144 12,336 23.2%

doi:10.1371/journal.pone.0048389.t001

A Novel Approach of All Turn Prediction
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4 Protein Shape String Prediction
Backbone dihedral angle is also a characteristic of the secondary

structure of a protein, and it is usually described by the w/Y pair

in the Ramachandran space and can also be expressed as a shape

string [29]. Shape strings contain clustering information, which

suggests that they can play an important role in the prediction of

protein structures [30].

Here, we used a novel predictor, SSPred, which accurately

predicts the shape string of a query as we recently described [21].

The innovative technology is the hallmark pattern library (HPL).

The HPL was instrumental in searching structural similarities

among highly divergent proteins. A hallmark pattern is composed

of short, consecutive sequences that are conserved both in the

sequences and in the shape strings. The HPL was believed to

reflect remote homologue information in the ‘‘twilight zone’’.

Initially, we began a traversal search for conserved sequence

patterns with sufficient frequency in a representative non-

redundant PDB chain set (NCBI, 2009, 7775 entries). We used

an algorithm [31] to extract local combinational variables from

unequal-length sequences without sequence alignment. These

short patterns were merged with every other single fragment that

contained the same residue as the former fragment to form

potentially longer sequences while maintaining the frequency

criterion. We set the frequency criterion to 100, and 5,667

conserved sequence patterns were obtained. Then, for each

position of a conserved sequence pattern, the p-value of the

corresponding shape string of the amino acid at this position was

calculated. If one of the p-values of a pattern was less than the

background probability, the conserved sequence pattern was

identified as a significant hallmark pattern. Finally, based on the p-

values, we selected 2,761 hallmark patterns that typically exhibited

conserved structures to construct the library. The HPL represent-

ed remote homology in the sequences and shape strings, and it was

an indispensable procedure for our approach to predict shape

Figure 1. The flowchart of TurnP.
doi:10.1371/journal.pone.0048389.g001

Figure 2. Diagram of profile. We used 3 kinds of profiles in this study: PSSM, SPSSM and Shape string profile. They have 20, 3 and 8 specific
elements for each amino acid respectively obtained by sequence alignment and sequence-structure alignment. Each square represents a element
that is normalized frequency. The red squares represent large values near ‘19 and blue ones represent small values near ‘09; and the deeper the color
of the square is, the closer the value to extreme values.
doi:10.1371/journal.pone.0048389.g002

A Novel Approach of All Turn Prediction
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strings (Materials S4). The improved performance of prediction

with the shape string profile is another important element of

TurnP.

5 Profiles
In this work, two new features based on structural evolution

information were utilized to improve the accuracy of turn

prediction: profiles of secondary structure and shape strings. The

profile of the sequences, PSSM, contains rich sequence evolution

information; PSSM has proved to be an effective variable for the

prediction of protein structure and function. The profiles of

secondary structure and shape string are considered to contain

structural evolution information and are introduced for the

prediction of turn in the protein. These profiles of secondary

structure and shape string are generated by sequence-structural

alignment. There are three elements of a vector in secondary

structure profile and eight elements of a vector in shape string

profile for each residue (Figure 2). Initially the sequence of a query

is aligned against a special database that contains sequences and

known structural information (secondary structures or shape

strings). Then top N (say 50) sequences, whose E-values are less

than 1E-6, are selected as matched sequences. The structural

element of matched sequences is counted at each position of the

query. It is the frequency of the structural element at this position

after alignment. Finally the normalized vector is output as the

structural profile of this residue. The performance of TurnP

confirmed that these profiles are useful features for predicting the

structure and function of proteins.

6 Conditional Random Field
We performed our prediction by applying CRF to predict all

turns. CRF is an algorithm for building probabilistic models to

segment and label sequence data [22]; CRF is superior to many

other machine-learning methods in terms of speed. CRF can

exploit context sequence without slide-window when the lengths of

sequences are different. It was utilized in our approach for

modeling and prediction, with the Unigram template where two

upward variables and two downward variables in a row were

considered.

7 Performance Evaluation
Measures to evaluate the turn/non-turn issue are Ac (also

referred to as Qtotal), Qpred(also referred to as Qunder), Sn (also

referred to as Qobserved or Qunder), Sp and MCC (Matthew’s

Correlation Coefficient), they can be calculated according to

following equations:

Ac~
TPzTN

TPzFPzTNzFN
, ð1Þ

Qpred~
TP

TPzFP
, ð2Þ

Sn~
TP

TPzFN
, ð3Þ

Sp~
TN

TNzFP
, ð4Þ

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ| TPzFPð Þ| TNzFPð Þ| TNzFNð Þ

p : ð5Þ

Here, TP is the number of correctly classified turn residues, TN

is the number of correctly predicted non-turn residues, FP is the

number of non-turn residues incorrectly classified as turn residues,

FN is the number of turn residues incorrectly predicted as non-turn

residues.

From the definition, it can be found that the Ac is the

percentage of correctly predicted residues; the Qpred is the

percentage of correctly predicted turns; Sn reflects the percentage

of correctly predicted turns among the observed turns; and MCC

is a robust measure of the prediction quality, which considers both

over- and underpredictions.

Results and Discussion

1 Performances of Cross Validation
The performance of a five-fold cross validation test on

Train_0925 is listed in Table 2. We performed validations on

the training set using both features with and without the structural

evolution information, which was in the shape of SPSSM and

shape string profile. With the adding of profile features, the Ac

improved from 87.2% to 88.8%. The main contribution of the

added variables was improving the Sn, and its increase of 4.1

percentage lead to 0.05 improvement of MCC. These results

indicate that the training model using structural evolution

information has a strong potential for practical applications. The

performance was highly impressive for turn prediction; in

addition, the method is uniquely capable of global turn prediction.

As shown in Table 2, an accuracy of 90.3% could be achieved

by utilizing the real secondary structures (obtained with DSSP),

real shape strings [29], and their profiles as features. The

comparision result highlights that the features we chose are very

reliable.

2 Prediction of Newly Determined Sequences
All other reported methods are used to predicting certain turn

categories separately, while our method predicting global turns in

Table 2. 5-fold cross validation results of Train_0925.

Ac (%) Qpred (%) Sn (%) Sp (%) MCC

Without profile
features

87.2 76.7 67.7 93.4 0.64

All features 88.8 79.9 71.8 94.2 0.69

Real variable 90.3 85.2 72.4 96.0 0.72

doi:10.1371/journal.pone.0048389.t002

Table 3. Validation results with Test_1025 as test set.

Ac (%) Qpred (%) Sn (%) Sp (%) MCC

Without profile features 82.3 64.7 57.6 90.1 0.50

All features 82.6 64.4 60.8 89.5 0.51

The first line shows the validation result using PSSM, Predicted Secondary
Structure and Predicted Shape String as feature; the second line shows the
validation result adding two more structural evolution information: SPSSM and
Shape String Profile.
doi:10.1371/journal.pone.0048389.t003

A Novel Approach of All Turn Prediction
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proteins. By using optimized model with all features mentioned

above, we achieved a better result (Table 3). Even the

improvement of accuracy was only 0.3 percentages, the Sn

increased from 57.6% to 60.8%, which offset part of the impact of

dataset skewedness.

3 Evaluation on Benchmark EVA Dataset
To further assess our method, we performed a blind test with

the EVAset1; nine sequences that were present in both the

EVAset1 and the training model were removed from the

Train_0925. Table 4 shows the prediction performance of our

method on EVAset1. A Sn of 49.0% was achieved, even for

unique protein sequences.

Due to the imbalance between positive and negative data, the

specificity is much higher than the sensitivity in Table 4, which

occurs frequently in binary classification when the default decision

threshold is 0.5. It is possible to adjust the decision threshold to

obtain reasonable sensitivity and specificity [32]. Table 4 shows

the results that the decision threshold is set as 0.2 for EVAset1 and

CASP9 data. It is obviously that the sensitivity is raised and the

specificity is debased. However there are two issues that trigger the

discussion of adjusting decision threshold: (i) how to optimize

decision threshold when the real value is unknown (testing case). It

was proposed to determine decision threshold on training sets or

datasets whose data was similar with test sets [33]. However, in

general the determined decision threshold was not always

optimized; (ii) the criterion of adjustment is ambiguous. Table 4

shows that the Ac is worsened after adjustment, and other

measurements are affected by adjustment. In fact, adjusting

decision threshold is to move a point on a receiver operating

characteristics (ROC), it doesn’t change the area under an ROC

curve (AUC). Here the results with and without adjustment were

both listed for predictions of EVAset1 and CASP9.

4 Evaluation on CASP9
As detailed in Table 4, the accuracy of prediction was 79.3%.

The result proved that TurnP was among the best methods of

Turn Prediction. A comparison chart between Train_0925 5-fold

validation and evaluation result of Test_1025, EVAset1 and

CASP9 was shown in Figure 3. The chart shows that the overall

accuracy hardly fluctuated and all the results were around 80%,

which indicates our method is very stable. More detailed results

can be found in Material S2.

5 Prediction of the Turns in Merozoite Surface Protein
1B9W_A, which is the crystal structure of the C-terminal of the

merozoite surface protein, was used as an example to test one of

the predicted results of TurnP. 1B9W_A is essential for successful

erythrocyte invasion by the malaria parasite, Plasmodium. There are

91 residues in total, which form ten turns, and nine turns were

hinted. The lengths of these turns are from 429 residues; all the

turns are marked in Figure 4.

6 Performance Comparison with Methods of Turn
Category Prediction

Table 5 shows the performance comparison between TurnP

and a prediction method of Meissner’s group [2], which using self-

organizing map (SOM) and SVM with uniform classification to

predict all turn families. The MCC of TurnP valued up to 0.69,

which shown the excellent ability of turn prediction.

Figure 3. Comparison chart between Train_0925 5-fold validation and evaluation result of Test_1025, EVAset1 and CASP9.
doi:10.1371/journal.pone.0048389.g003

Table 4. The prediction performance of our method on
EVAset1 and CASP9.

Ac (%)
Qpred

(%) Sn (%) Sp (%) MCC

EVAset1a 79.6 62.5 49.0 90.0 0.43

EVAset1b 73.1 48.0 75.7 72.2 0.43

CASP9a 79.3 55.5 54.1 86.9 0.41

CASP9b 73.6 45.9 77.2 72.5 0.43

‘a’ represents the original prediction results. ‘b’ represents the prediction results
with decision threshold of 0.2.
doi:10.1371/journal.pone.0048389.t004

A Novel Approach of All Turn Prediction
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7 Web Server
We have set up a web server on our local infrastructure for the

use of TurnP by scientific researchers. It is available at http://cal.

tongji.edu.cn/TurnP/index.jsp. There are two parts in TurnP:

analysis and prediction.

In the analysis section, users are allowed to search and display

the turns of proteins among the TurnDB_09 online via submitting

a PDB ID or download the entire database in a text format. The

output of searching as well as a statistical analysis of the amount of

consecutive turn residues in different lengths can be seen in the

Material S5.

Prediction section provides a powerful predictor of all types of

turns for a query or a file (FASTA format). An ID is required to

mark each entry, and a random ID can be given when a user

submits only one query without an ID. The output of a query

sequence consists of predicted turns and the probability of the turn

prediction. The results of the turn and non-turn are identified by

different colors for easy discrimination. To visualize the results, we

created a concise and vivid colorful string as the secondary

structure diagram, which can be displayed with low software

requirements.

Conclusions
In this study, we proposed the approach for predicting all the

types of turns in a protein. The turns of a protein compose a tight

structure based on common mechanisms; thus, turns and non-

turns can be identified based on a unified model. The innovation

technology was the utilization of structural evolution information.

We introduced two novel features: SPSSM and shape string

profiles, which can accurately reflect the characteristics of turns.

Hence, these novel features were beneficial to the performance of

the predictor. We constructed a prediction model by a non-

Figure 4. An example of prediction of TurnP, 1B9W_A. in Figure 4(a), the red curve represents turn residues which have been
marked as turn, while the other grey curve represents Random Coil. The marine spiral represents Helix, and the green arrow represents
Sheet. In the Figure 4(b), all turns in 1B9W_A were shown as blocks to make them more clearly to see. The line represents the sequence, the red
blocks represent turn residues which have been predicted correctly, while the grey ones represent turn residues that have not been predicted by
TurnP. Position number is counted every 10 residues for convenience, and the position of relevent turns were signed in (a). The illustration of the 3D
structure was drawn by PyMOL [34].
doi:10.1371/journal.pone.0048389.g004

Table 5. Performance comparison of the present method and
other methods.

Ac (%) Qpred (%) Sn (%) MCC

TurnP 88.8 79.9 71.8 0.69

SOM of Meissner’s
Group

76.0 81.1 67.8 0.53

SVM of Meissner’s
Group

61.9 45.0 68.1 0.25

doi:10.1371/journal.pone.0048389.t005

A Novel Approach of All Turn Prediction
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redundant dataset and tested the model on a newly determined

dataset, the benchmark EVA set as well as CASP9 data. The

results showed that TurnP outperformed existing models in the

field of large-scale turn prediction. TurnP is a pioneering work for

the prediction of global turns throughout a protein; we believe it

can be complementary to other protein secondary structure

prediction methods and may be useful for protein three-

dimensional structure prediction.

Supporting Information

Figure S1 An example of generation of raw SPSSM in
9M_database. A query in 9M_database is sp|P85173.1,
and its listed 49 amino acids (first line). Four aligned
‘Sbjcts’ examples (in PDB_99) are shown, and two arrow
tips point to two obtained sequences and their second-
ary structures. Then the query and found secondary
structural elements are shown in middle. After score, its
raw SPSSM is constructed and a part of them (in red) is
shown in bottom.

(TIF)

Figure S2 Schemes of SSPred. (A) The flowchart of the
prediction of shape string and (B) sequence alignment
with hallmark patterns as seeds. An example of (C) the
predicted shape string and (D) the output sequence
shape string profile. AA: amino acid; MT, match times;
PredSS, predicted shape string; Prob, output probabil-
ity.

(TIF)

Figure S3 1AOP_A was taken as an example of analysis
result. The output contains sequence, turn, secondary
structure as well as a colorful string diagram of

sequence’s main secondary structures (’-’for band,
’+’for turn, ’ = ’for beta-sheet and ’*’for alfa-helix).
(TIF)

Figure S4 An example of TurnP output. Each output of a
query is corresponding to 9 lines: sequence, position
number; predicted turn, predicted three-state second-
ary structure elements, predicted shape string and
probability of each prediction; structure diagram string.
In the diagram, characters are schemed as follow: ‘-‘ for
band, ‘+’ for turn, ‘ = ’ for b-sheet and ‘*’ for a-helix.
(TIF)

Table S1 PDB ID list of Train_0925.
(DOCX)

Table S2 Detailed results of datasets.
(DOCX)

Text S1 PDB ID list of Train_0925.
(DOCX)

Text S2 Details of results.
(DOCX)

Text S3 Secondary structure prediction-SPSSMPred.
(DOCX)

Text S4 Shape string prediction-SSPred.
(DOCX)

Text S5 Webserver introduction.
(DOCX)
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