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The plastid genomes of nonphotosynthetic algae are not so small after all

Francisco Figueroa-Martineza,b, Aurora M. Nedelcua, Adrian Reyes-Prietoa,c, and David R. Smith d

aDepartment of Biology, University of New Brunswick, Fredericton, NB, Canada; bCONACyT-Research Fellow, Universidad Aut�onoma
Metropolitana, Iztapalapa, Vicentina, Mexico City, Mexico; cIntegrated Microbiology Program, Canadian Institute for Advanced Research,
Toronto, ON, Canada; dBiology Department, University of Western Ontario, London, ON, Canada

ARTICLE HISTORY
Received 20 December 2016
Revised 10 January 2017
Accepted 11 January 2017

ABSTRACT
The thing about plastid genomes in nonphotosynthetic plants and algae is that they are usually very
small and highly compact. This is not surprising: a heterotrophic existence means that genes for
photosynthesis can be easily discarded. But the loss of photosynthesis cannot explain why the
plastomes of heterotrophs are so often depauperate in noncoding DNA. If plastid genomes from
photosynthetic taxa can span the gamut of compactness, why can’t those of nonphotosynthetic
species? Well, recently we showed that they can. The free-living, heterotrophic green alga Polytoma
uvella has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the
most bloated plastome yet found in a heterotroph. In this addendum to the primary study, we
elaborate on why the P. uvella plastome is so inflated, discussing the potential impact of a free-
living vs. parasitic lifestyle on plastid genome expansion in nonphotosynthetic lineages.
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The evolutionary forfeiting of photosynthesis is typically
followed by severe reduction or outright loss of the plas-
tid genome.1,2 Indeed, the smallest plastid DNAs
(ptDNAs) observed to date all come from nonphotosyn-
thetic plants and algae. For instance, the nonphotosyn-
thetic parasite Helicosporidium sp. has by far the most
miniscule ptDNA (37.4 kb) ever found in a green alga.3

Even tinier ptDNAs have been uncovered in apicom-
plexan parasites, such as Plasmodium falciparum
(34.2 kb)4 and Eimeria tenella (34.7 kb),5 as well as in
heterotrophic land plants, including the orchid Epipo-
gium roseum (19 kb)6 and the holoparasite Pilostyles
aethiopica (11.4 kb).7

The diminutive ptDNAs of nonphotosynthetic species
are a consequence of 2 distinct processes: (i) Plastid gene
loss, which mostly pertains to the disappearance of genes
connected to photosynthesis, but can also involve the
loss, or plastid-to-nucleus transfer, of genes unrelated to
photosynthesis.1 And (ii) the widespread erosion of non-
coding ptDNA, including intergenic and intronic
regions.3

Taken to its ultimate extreme, process (i) can eventually
result in the complete forfeiture of a plastid genome—an
extremely rare event, but one that is thought to have

occurred in the holoparasitic land plant Rafflesia lagascae8

and in members of the nonphotosynthetic green algal
genus Polytomella.9 Conversely, the contraction of noncod-
ing ptDNA in nonphotosynthetic taxa should not have a
direct impact on whether a plastid genome is lost or main-
tained. In fact, one would expect there to be extensive plas-
tid gene loss following the transition from a photosynthetic
to nonphotosynthetic lifestyle, but it is not obvious why
such a transition should promote the wholesale deletion of
noncoding DNA from a plastid genome. One might also
ask: why don’t heterotrophs dispose of their plastids entire-
ly? The reason being that plastids are a hub formany essen-
tial biochemical pathways apart from photosynthesis, such
as isoprenoid biosynthesis.10

Like their counterparts in heterotrophic species, the
plastid genomes of photosynthetic eukaryotes can also
contain very little noncoding DNA, as exemplified by
some red algae (e.g., Cyanidioschyzon merolae)11 and
prasinophytes (e.g., Ostreococcus tauri).12 But the
genomes from photosynthetic plastids can be bloated as
well, as seen in some chlamydomonadalean green algae,
such as Volvox carteri (»525 kb with >80% noncod-
ing).13 If the ptDNAs from photosynthetic species can
span the full gamut of compactness then why can’t those
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from nonphotosynthetic lineages? Well, it turns out that
they can.

A recent analysis of the nonphotosynthetic chlamydo-
monadalean Polytoma uvella revealed an uncharacteristi-
cally large and inflated plastid genome: »230 kb, 75%
noncoding DNA.14 What’s more, the ptDNA of P. uvella
is 60 kb larger than that of one of its closest photosyn-
thetic relatives, Chlamydomonas leiostraca—a trend that
had not previously been observed in any other close pho-
tosynthetic-nonphotosynthetic duo. P. uvella is also a
close relative of Polytomella, but each of these 2 lineages
lost photosynthesis independently of one another and, at
first glance, their plastid genomic architectures could not
be more different: expansion and complete deletion,
respectively.

Despite its large size, the P. uvella plastid genome has,
like other nonphotosynthetic ptDNAs, undergone signif-
icant gene loss, shedding all coding regions for photosyn-
thetic pathways. However, unlike the ptDNAs from
other nonphotosynthetic species, that of P. uvella does
not appear to have experienced rampant contraction of
its noncoding regions—rather, the opposite: its inter-
genic spacers are expanded relative to those of C. leios-
traca.14 But why?

Perhaps the contraction of noncoding DNA in the
plastids of heterotrophic species has less to do with the
loss of photosynthesis and more to do with another
life-history feature: parasitism. Most of the known het-
erotrophic plastid-bearing lineages are parasitic.1,2,15

And, with some exceptions,16,17 the transition from a
free-living to a parasitic existence is associated with
genomic compaction—a trend that has been recorded
across all domains of life and for all types of genomes,
particularly the genomes of obligate parasites.18,19 P.
uvella, however, is not a parasite. It is free living and
there is no reason to believe that it had a recent para-
sitic ancestor.10 Thus, the lack of genomic compaction
in this colourless alga might partly be a consequence of
it not being a parasite.

The absence of parasitism certainly does not preclude
a plastid genome from being compact, be it in a nonpho-
tosynthetic or a photosynthetic species. There are exam-
ples of nonparasitic colourless plants and algae with very
little noncoding DNA in their plastid genomes.20,21 But
the switch to a parasitic lifestyle, in many cases, probably
contributes to the extreme genomic compaction found
in some ptDNAs.22 It is worth noting that parasitic algae
are nearly always endobiotic whereas nonphotosynthetic
land plants are typically ectoparasites, surviving via
myco-heterotrophy or through the direct parasitism of
other plants. Nevertheless, both endo- and ecto-parasitic
modes of existence have been associated with extreme
plastomic reduction.6,3

Polytomella species are free living and have likely lost
their plastid genomes,13 which might seem to be a con-
tradiction to some of the arguments made above. But,
again, the contraction (or expansion) of noncoding DNA
is not the driving force for plastid genome loss, and there
is no reason to think that the ancestral ptDNA of Polyto-
mella spp. did not have an expanded architecture before
being jettisoned. In fact, the order to which both Polyto-
mella spp. and P. uvella belong—the Chlamydomona-
dales—has a propensity for plastid genomic inflation,
with at least 6 members known to have ptDNAs in excess
of 250 kb.9,23

There has been much debate about the forces driving
organelle genomic expansion, with some arguing that it
might be a consequence of random genetic drift, muta-
tion rate, and/or inefficient and finicky DNA mainte-
nance processes.24 The identification of an inflated
ptDNA in a heterotrophic alga only adds a further layer
of complexity to the already complicated conundrum of
genome size evolution. If anything, the P. uvella plastid
genome reinforces the idea that no type of chromosome
is immune to genomic expansion, even those that exist
in the dark.
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