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the Identification of In Vivo Vascular Dynamics in 2D
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Objectives: The aimof this studywas to provide an ultrasound-based super-resolution
methodology that can be implemented using clinical 2-dimensional ultrasound
equipment and standard contrast-enhanced ultrasound modes. In addition, the
aim is to achieve this for true-to-life patient imaging conditions, including realis-
tic examination times of a few minutes and adequate image penetration depths
that can be used to scan entire organs without sacrificing current super-resolution
ultrasound imaging performance.
Methods: Standard contrast-enhanced ultrasound was used along with bolus or
infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble
(MB) suspensions. An image analysis methodology, translated from light micros-
copy algorithms, was developed for use with ultrasound contrast imaging video
data. New features that are tailored for ultrasound contrast image datawere devel-
oped for MB detection and segmentation, so that the algorithm can deal with sin-
gle and overlapping MBs. The method was tested initially on synthetic data, then
with a simple microvessel phantom, and then with in vivo ultrasound contrast
video loops from sheep ovaries. Tracks detailing the vascular structure and corre-
sponding velocity map of the sheep ovary were reconstructed. Images acquired
from light microscopy, optical projection tomography, and optical coherence to-
mography were compared with the vasculature network that was revealed in the
ultrasound contrast data. The final method was applied to clinical prostate data
as a proof of principle.
Results: Features of the ovary identified in optical modalities mentioned previ-
ously were also identified in the ultrasound super-resolution density maps. Follic-
ular areas, follicle wall, vessel diameter, and tissue dimensions were very similar.
An approximately 8.5-fold resolution gain was demonstrated in vessel width, as
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vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best
agreement was found between ultrasound measurements and optical coherence
tomography with 10% difference in the measured vessel widths, whereas ex vivo
microscopy measurements were significantly lower by 43% on average. The re-
sults were mostly achieved using video loops of under 2-minute duration that in-
cluded respiratory motion. A feasibility study on a human prostate showed good
agreement between density and velocity ultrasound maps with the histological
evaluation of the location of a tumor.
Conclusions: The feasibility of a 2-dimensional contrast-enhanced ultrasound-
based super-resolution method was demonstrated using in vitro, synthetic and
in vivo animal data. The method reduces the examination times to a few minutes
using state-of-the-art ultrasound equipment and can provide super-resolution
maps for an entire prostatewith similar resolution to that achieved in other studies.

Key Words: microbubbles, detection, localization, tracking, ultrasound,
biomedical imaging, super-resolution, prostate cancer
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U ltrasound imaging is an indispensable tool in medical diagnosis,1

primarily due to its cost-effectiveness and unique real-time capabil-
ity. Contrast-enhanced ultrasound (CEUS) imaging aims to assess vas-
cular flow and tissue perfusion. This requires the intravenous injection
of gas-filled microbubbles (MBs), which are efficient point scatterers
of ultrasound.2,3 Their diameter, typically around 2 to 3 μm, allows pas-
sage through the entire vascular bed. Their nonlinear response to ultra-
sound has been deployed with specially designed ultrasound transmit
pulse sequences to enhance their signals while also suppressing tissue
signals.1 However, after more than 20 years of research, there are very
few CEUS applications in the clinic that are supported by health ser-
vices around the world. The most important application is in the dif-
ferential diagnosis of liver lesions,4–7 whereas other applications in
the abdomen,8–10 cardiovascular,11–14 or using targeted and thera-
peutic MBs15–19 are rather research oriented or have limited clinical
use. The main reason for the limited use of CEUS is the high inter-
observer and intraobserver variability compared with that what is
achieved by other imaging modalities (eg, magnetic resonance imag-
ing [MRI] or computed tomography [CT]). Although ultrasound im-
aging provides comparable resolution to MRI or CT, typically 0.3 to
1 mm for abdominal applications, a number of factors including the
equipment type and settings, the patient variability, and contrast ma-
terial20 affect its performance. All of the previously mentioned items
have a significant role in the increased uncertainty of CEUS-derived
measurements of blood volume and flow that are rather not quantita-
tive.21,22 Despite their limited temporal resolution, MRI and CT are
often preferred.

A recent advance, with significant potential in medical imaging,
is the application of particle localization and tracking methodologies to
CEUS, often inspired by light microscopy.23–26 Despite their small size
compared with the ultrasound wavelength (typically around 100 times
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smaller), most MBs have high scattering cross-section (SCS) and pro-
vide strong ultrasound scatter that can be recorded as a single point
spread function (PSF) in the image.27–29 Thus, their localization is pos-
sible, and early in vivo images showed at least a 5- and up to 10-fold res-
olution improvement at diagnostic frequencies (6.5 MHz).24,30,31 The
work used a small number of single MBs that can be detected and then
tracked. Algorithms for particle detection and localization can be imple-
mented in ultrasound data.23,24,30,32–34 The focus is on localization of
single MBs either isolated30,35,36 or with enough separation between
echoes within a group of multiple MBs, and often overlappingMB ech-
oes, due to MBs located closely, are rejected.24

In practice, the image plane includes a large dispersion of vessel
diameters that range from a few micrometers and up to millimeters. The
MB concentration will be linearly related to the volume of these
different-sized vessel groups, and consequently, under conditions of
constant volume flow, the number of MBs that cross any given
microvesselwill be a feworders of magnitude lower than the feeder ves-
sel, which is millimeters in diameter. An infusion of contrast agent that
ensures a small number of MBs in any given frame is likely to ensure
single MB scattering events that are easy to detect, localize, and track.
However, given the large number of microvessels and the need for
enough MBs to cross the entire vasculature available in the image, it
would be necessary to acquire long duration video loops in the order
of tens of minutes or possibly hours depending on the application, size
of organ, or region of interest. Such data sets render examination proce-
dures impractical and are likely to provide significant motion artifacts
that may be several magnitudes of orders larger than the aimed res-
olution. To alleviate this problem, the length of video data is re-
quired to reduce to a few minutes and thus the concentration of
MBs must be increased. Tracking of a large number of MBs is also
possible.24,25,31,32,35 The most efficient method is provided by high
frame rate imaging that can provide scatter overlap for flowing MBs
and deploy tracking using a simple image analysis method that follows
theMB path bymeans of autocorrelation.23,26 Thismeans that all single
MBs will be tracked and the tracking efficiency is near 100%. To
achieve high frame rate, single-emission protocols, for instance plane
waves, were used. This provides a high acoustic pressure that drops
significantly with depth and normally a high acoustic pressure near
the transducer, which has 2 consequences: (1) the penetration depth
is limited as there is no focus to offset the attenuation, and (2) the
MB detection sensitivity is highly variable. This is due to the highly
variable acoustic pressure with depth and the dependence of the MB
SCS on acoustic pressure27,37 (ie, SCS increases with increasing
acoustic pressure). In general, higher acoustic pressures provide larger
MB densities as a larger number of MBs scatter above noise. In addi-
tion, if the acoustic pressure is high then there will be significant MB
destruction. Thus, the assumption that the MB density across the im-
age is uniform and representative of the vascular volume is difficult
to uphold.

A near-uniform pressure field can be achieved by using a fo-
cused transmission. It is possible to approximately offset the attenuation
using a focus at the bottom of the image. Although the attenuation is
variable at different parts of the image, this approximation ensures a
near-uniform distribution ofMBs across the image that provides a good
approximation of the concentration of red blood cells and hence blood
volume. Currently, ultrasound imaging systems use nearly exclusive fo-
cused transmissions, and it is also possible to generate ultrasound im-
ages with single MBs using these systems. However, the frame rate
will be low in the order of 10 to 20 Hz. This makes MB tracking chal-
lenging as MB echoes across subsequent frames usually show no over-
lap, complicating the reconstruction of the MB trajectories. Also note
that the speed of red blood cells ranges frommicrometers to centimeters
per second.38,39 Thus, in the case of large MB density in the image, it is
difficult to identify each MB in consecutive frames. Furthermore, a
large MB density will provide several MB events that are merged and
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
not separated. Although the focus on isolating single MBs24 ensures
good localization results and thus optimal resolution outcome, the
merged MB events are data that should be used to maximize data usage
and reduce video loop duration.More recently, sparse recovery methods
seem promising in providing similar quality information by using
large MB densities and deploying prior knowledge of the PSF.40,41

Here we use lower MB densities that would enable their separation
but would also create several merged MB scatter events in the image.
It is assumed that these merged MB events are likely to be in image
regions of larger vessels where the flow is pulsatile, hence the MB
density is high. On the other hand, microvessels may provide mostly
single MB events as the blood volume drops and the velocity pro-
files are nearly close to an average.

A model-based approach for tracking a large number of particles
has been developed for tracking single fluorescent molecules in optical
microscopy in images that include underlying clutter.42,43 The tracking
method is based on (a) a detection and segmentation algorithm that lo-
calizes the particles retaining their image features into a particle proba-
bility image (PPI), and (b) correlating their image features to detect their
tracks.42–44 If tissue motion is not a problem, there is no limit to the du-
ration of the video loop that this algorithm can process, and the longer
the video loop, the more tracks will be detected. Tracks are formed by
linking detected particles so their number depends on the number
of detected particles per frame, which is assumed to be fixed per
frame. Wilson et al43 showed good performance in images with low
signal-to-noise ratio (SNR) in microscopy applications; these images
contain items similar to CEUS level of noise. In this work, image se-
quences of approximately 2000 frames (30 frames per second) were
processed, and over 4000 tracks were created (SNR, ~2 dB) from
25,000 detected particles. These image conditions resemble CEUS im-
ages with a sparse MB distribution. Thus, this method can be applied to
CEUS. The model-based approach allows the inclusion of prior knowl-
edge on the evolution of MB signals45–50 that may lead to more effi-
cient tracking. Emphasis is given to the detection and segmentation.
This is because, unlike optical microscopy, ultrasound images have a
highly variable PSF (ie, an individual MB will have a different appear-
ance in different locations within the image), which is a significant
challenge for the detection process. Methodologically, a ground truth
is required for testing the algorithms, and this is provided by simulated
environments. To date, super-resolution ultrasound work provides little
information on localization accuracy and particularly on the role of
detection and segmentation in this. Most experiments use vessel en-
vironments that do not provide this information,23,25,51,52 but rather
demonstrate that the vessels can be resolved and that the MBs re-
main within the vascular space. The most common measure of such
an accuracy is the full-width at half maximum (FWHM) of the diam-
eter of each vessel24,31 or the size of a single MB PSF.30 Here, the
detection and localization accuracy are assessed using synthetic data
that simulates real data from animal or human studies. The accurate
assessment of the number of detected particles by this approach, includ-
ing spurious and missed detections, and the localization uncertainty are
important for both methodology development and measurement of per-
formance. As a second step, an in vitro vascular phantom validation is
required. These methods do not replace the synthetic data validation
above as no information on MB location, other than the fact that they
are located inside a vessel, is provided. Instead, the aim is to assess im-
age resolution. In addition, and by using real imaging equipment at set-
tings that are relevant to clinical imaging, a convincing case is presented
that MBs are detected and tracked as they flow inside microvessels with
a resolution beyond the diffraction limit. Awell-controlled experimen-
tal setup with a translucent phantom was used32 here.

However, such a setup has low variations of speed of sound com-
pared with those generated by tissue. Thus, this idealized setup provides
lower aberration in the near field of the array and the PSF of the entire
setup is less variable compared with clinical imaging. This presents less
www.investigativeradiology.com 501
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challenging conditions to the operation of the detection, localization,
and tracking methodologies. For these reasons, we chose to use an in
vivo validation by means of optical coherence tomography (OCT). This
ensures a live in vivo validation with exactly the same equipment, imag-
ing parameters, and contrast agent, with real vessels and tissue aberra-
tion. The animal model used is the ovine ovarian corpus luteum (CL),
a highly vascularized gland, which has previously been shown to be
suited for perfusion imaging studies.53 Two further ex vivo methods
for the microscopic examination of tissue, namely, optical microscopy
and optical projection tomography (OPT), have been deployed to iden-
tify vascular features across the entire tissue that compare well with the
ultrasound images. Finally, a proof of concept examination of a prostate
patient is presented alongside the ex vivo histological evaluation for
comparison. Imaging tumor vascularization is an active research
field,21,54–58 including prostate tumors.59,60 The study of prostate
cancer diagnosis includes all imaging modalities, and MRI seems as
the most promising.61
MATERIALS AND METHODS
The ultrasound image analysis was developed using synthetic, in

vitro, and in vivo animal data. The latter used the sheep ovary and had 2
purposes: first, to provide the basis for generating synthetic data with a
good approximation to in vivo image data; second, to validate the appli-
cation of the methodology in vivo for clinically realistic ultrasound
imaging parameters.

Ultrasound Imaging

Animal Contrast Ultrasound Imaging
All animal data were collected under UK Home Office license

approval (Duncan PPL 60/4401), and all the methods have been previ-
ously described.53 For each experiment, a female adult sheep was anes-
thetized, and each ovary in turn was exposed by laparotomy. The ovary
was secured in place while maintaining full blood supply and was cov-
ered with a coupling ultrasound gel to achieve optimal contact with the
ultrasound probe.53 This ensured that its shape was not distorted due to
breathing motion and during imaging. Off-plane movements were min-
imized by using a reticulated arm that fixed the probe in a position
where the scan plane was parallel to the breathing motion.

The methodology developed here is intended for use with stan-
dard CEUS that is currently available in the clinic. The contrast adminis-
tration protocols were thus designed to provide a high density of single
MB scattering events in the image, aiming to reduce the duration (eg, a
few minutes), similar to that of a clinical patient examination. An iU22
Philips ultrasound scanner (Philips Medical Systems, Bothell, WA) with
an L9–3 linear array probe (3 MHz) was used throughout (λ = 514 μm).
Two contrast administration protocols were used. A 1.2-mL bolus of
SonoVue (Bracco, Geneva, Switzerland) contrast agent and an infusion
of 1.2 mL of SonoVue in 20mL of saline at 0.5 to 1.5 mL/min rates using
a Vueject pump (Bracco SpA, Geneva, Switzerland). All video data were
saved in the DICOM format for offline processing.

In Vitro Imaging
To assess the performance of the super resolution image analysis

in vitro, a cellulose tube, extracted from a single use renal dialysis filter
(Dialyzer GFE-09, Gambro, Germany), secured to a 28-gauge microfill
needle (World Precision Instruments, Stevenage, United Kingdom)
with Luer connection was mounted in a Perspex tank. The tank was
filled with boiled and cooled water. This setup was based on previously
described in vitro work.47 The cellulose tube has a nominal internal di-
ameter of 200 μm. Subsequently, and upon inspection using bright field
microscopy, it was found to have a maximum internal diameter of
300 μm. The same ultrasound scanner and transducer as described
previously were used. The transducer was mounted above the tube.
502 www.investigativeradiology.com
1.2 mL SonoVue contrast agent was added to 50 mL of water and
allowed to flow by gravity feed through the cellulose tube. The end
of the tube was placed out with the Perspex tank so no MBs entered
the surrounding water. B-mode and contrast mode video loops of
MBs flowing through the tube were acquired, saved, and later
processed offline.

Tissue Processing and Microscopy Imaging
To obtain information on the vascular structure of the scanned

ovaries, 3 different tissue imaging methods were used: standard optical
microscopy, OPT, and OCT. The OCT was undertaken in vivo after
CEUS images were acquired. For microscopy and OPT, the ovary was
removed after CEUS and processed as described later. As the only live
validation method, OCTwas expected to provide the most accurate data
on vessel diameter and structure. This validation method serves a dual
purpose: (a) it advances on an in vitro validation because the in vivo
setup here provides the additional challenge of real tissue imaging aber-
ration due to the variable speed of sound provided, and (b) it can be used
as the best criterion standard for comparison with the other 2 optical
methods that are performed ex vivo. Note that it is very difficult to pro-
videMB location data using an optical validation method, so this task is
undertaken by using the synthetic data.

Optical Coherence Tomography
Live images of the structure and information on the dynamics of

the vascular bed were acquired using an OCTwith a Telesto-II (wave-
length 1300 nm, 5.5-μm axial resolution in air; Thorlabs, Lübeck,
Germany).62 The OCT probe was secured directly over the top of the
ovary and perpendicular to the ultrasound probe. This arrangement
aimed at capturing the same image plane with both methods. This
was a challenging experimental setting as the ultrasound probe had to
be horizontal, imaging the top 1 to 2 mm of the tissue. Apart from the
suboptimal gel coupling, the positioning of the ultrasound probe was
not informed by the live OCT image, as the microvessels that appeared
in the OCTare impossible to visualize in B-mode. The OCT data com-
prised a 3-dimensional (3D) data set of the light scattered from the tis-
sue and blood at the surface of the ovary. Optical coherence tomography
files were saved in ThorImageOCT software (Thorlabs, Lübeck,
Germany) and exported to ImageJ for analysis.63,64

Light Microscopy
For ovaries undergoing histological slicing and staining, the pro-

cess has been previously described.53 The removed ovaries were fixed,
dehydrated, and embedded in paraffin, after which 5-μm-thick sections
were sliced. For each 10th section, biotinylated lectin BS-1 (Sigma,
United Kingdom), used to specifically bind to endothelial cells, was ap-
plied overnight at 4°C in a humidified chamber. Impact diaminobenzi-
dine (Vector Labs, United Kingdom) was used to stain the endothelial
cells. Sections were assessed by light microscopy (Olympus BH2)
and a digital camera; images were saved at�20 magnification. Vessels
across the whole plane could be measured and counted. For comparison
with ultrasound imaging, the slice taken from a location as close as pos-
sible to the imaging plane was chosen.

Optical Projection Tomography
Previous work formed the basis of the method here.65 Before re-

moval of the ovary, 70-μL rhodamine-labeled Griffonia (Banderiaea)
simplicifolia lectin 1 (GSL 1 lectin; Vector Labs, United Kingdom) in
7 mL of phosphate-buffered saline was flushed through the ovary
followed by 7 mL of phosphate-buffered saline, using the main feeding
artery of the ovary as the input source. The GSL 1 lectin was used to
stain the main vessel endothelial cellwalls. The ovary was then removed
and stored in 4% paraformaldehyde. Before OPT, the ovary was im-
mersed in 1 part benzyl alcohol (Sigma Aldrich, United Kingdom) and
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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2 parts benzyl benzoate solution (Acros Organics, United Kingdom) for 2
to 3 days to achieve tissue translucency. A Bioptonics 3001 OPT scanner
(Bioptonics, Edinburgh, United Kingdom) was used to acquire tomo-
graphic scans generating 801 image files per scan at a rotation of 0.45 de-
gree. Acquired images were 1024 � 1024 pixels with pixel size of
18.28 μm. The ovary tissue was autofluorescent in the green channel,
and the GSL 1 lectin staining was visible on the red channel. Scan
planes were combined to form a 3D reconstruction of the ovary using
NRecon software (Skyscan, Kontich, Belgium). Interrogation of the
3D volume to select the same plane as that of the ultrasound image
plane was undertaken in Bioptonics 3D Volviewer and in ImageJ
(NIH.gov, United States).

Synthetic Data Formation

Vessel Network
The first step was to simulate the MB movement within a vessel

network. The simulation provided the spatial coordinates and identity of
each particle at any time. This information was used as the ground truth
for testing the subsequent localization. Such ground truth information is
not available in in vitro or in vivo experiments. The synthetic vessel
FIGURE 1. A frame (A) from a sheep ovary video loop and (B) from a synthet
C and D, Images are the magnified yellow image sections from panels A and B
image, and panel F, the inverted Gaussian image, as the input variable of the
consisting of 2 single events. H, Detection of 2 single MBs that are located 172
overlapping MB event that is located 14 μm away. The original location of the
software in red stars and their size in white label. Scale bars, 1 mm.

© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
network consisted of a 1.1 � 2.2 cm grid of interconnecting vessels
with diameters that ranged from 10 to 500 μm,while their length ranged
from 25 μm to 2 mm. The particle flow within that network followed
Poiseuille's law: by applying first a constant global pressure drop across
the network and second the mass conservation law, the pressure field
could be calculated. When the calculated elemental pressures were
substituted in Poiseuille's law, the volumetric flow rate within each ves-
sel was obtained. The flow simulation method is illustrated by a set of
diagrams that are included in Boujelben et al.66 The injected dimension-
less particles moved according to the calculated flow value.
Ultrasound Image Simulation
The next step was to assign anMB echo to each particle position.

It is known that the PSF is variable across the ultrasound image. As
MBs are nonlinear scatterers of sound, they will provide echoes that
are highly variable and difficult to model. To our knowledge, there is
no research or commercial ultrasound image simulator that provides a
reasonable MB echo simulation. Thus, we avoid a full calibration of
the PSF here and instead generate a distribution of MB echo character-
istics from in vivo video loops drawn from the sheep ovary experiment.
ic data set constructed in resemblance with the previous in vivo data set.
, respectively. The final MB segmentation using panel E, the gradient
watershed transform. G, A magnified overlapping MB from panel D
μm and 224 μm away from the tube (the yellow line). Detection of one
ground truth centers is in green circles, the detected MB centers by the
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A common characteristic of the MB echo image in this experiment was
the ellipsoid shape of variable orientation (Fig. 1A). Three-dimensional
Gaussian Fitting (minor, major axis, and intensity information) was
used to extract the topology profile of the MBs in the in vivo data set.
The resulting distribution provides a range of sizes, intensities, and
shapes for MB echoes. This process can also be seen as an approximate
estimation of the PSF. Note that it is accepted that the axial resolution
is at best half the pulse length,67 which in our case is 1 λ (514 μm),
whereas the lateral resolution varies across the image depending on
the beam width67,68 and can be up to a few λ using the delay-and-
sum beamfomers,69 which are used here. The histogram of the MB
echo size distribution from the sheep ovary is displayed in Figure 2.
The first and third quantiles are 8 (0.14 mm2) and 20 (0.35 mm2)
pixels, respectively, whereas the median is at 12 pixels (0.21 mm2).
Single MB echoes are unlikely to have sizes above 12 pixels
(0.21 mm2), and the minimum detected MB is 5 pixels (0.09 mm2,
approximately slightly larger than 2 � 2 pixels or one half λ � one
half λ). Note that once 2 particles approach closer than a few
wavelengths, they are likely to become larger in size before appearing
as a merged particle in the image.69

In addition, the noise was characterized in the background and
added to the simulated system as white Gaussian noise. This is because
Rayleigh noise becomes additive Fisher-Tippet noise after log-
transformation,70 which is well approximated by additive white Gaussian
noise.71 Two hundred synthetic frames with simulatedMBswere created.
Figure 1B shows the result of the above process compared with a frame
from a video loop of sheep ovary (Fig. 1A). Figure 1, C and D are the
magnified squares from Figure 1, A and B, respectively, for further detail.

Super-Resolution Image Analysis
AnMB tracking algorithmwas developed here to process the ul-

trasound video loops. The algorithm structure was based on a single
particle tracking software previously used in optical microscopy.43 This
software follows four main steps: (a) to detect particles, (b) to segment
them (ie, identify their region), (c) to localize them (ie, find their center
or exact location), and (d) to track them as they move from frame to
frame. This process ensures that a highly accurate particle location is
identified (super-resolution localization) and then its path is generated
by joining particle locations at consecutive frames. The result can be
displayed in particle density, path density, or velocity maps that contain
different structural and dynamic information. Here, the particles are
MBs that move only within the lumen of blood vessels. Thus, their lo-
calization is a location inside a vessel, and their path identification is
equivalent to drawing the vessel structure. Because ultrasound imaging
has different and highly variable aberration compared with optical mi-
croscopy, its PSF is highly variable. This results in particle appearance
FIGURE 2. Histogram of the size distribution of the detected MB events.
Pixel size is 132 μm.

504 www.investigativeradiology.com
that varies across the image. Thus, the detection and segmentation part
of the algorithm is central to the development here to suit the ultrasound
MB/particle application.

Preprocessing
The CEUS images were processed to remove artifacts, such as

bright echoes that were identified in the preinjection images, and were
cropped from the entire frame sequence using ImageJ. Further, as off-
plane movements were kept to a minimum, the well-established rigid
registration7 was used to remove in-plane movement due to respiration.
This was done using B-mode image features at the end-expiratory phase
as previously described.72

Microbubble Detection
A semiautomatic detection process was designed to detect image

particles with a range of sizes using an adaptive nonlocal means filter,44

which has shown to work well with super-resolution ultrasound
microvessel imaging.73 The manual input of 3 parameters was required:
the average MB echo intensity, the minimum and the maximum MB
echo size. These are roughly estimated in an initial observation of the
video loop. The MB intensity was preserved by using the PPI,43 a non-
local mapping of the original grayscale image through the use of
multiscale Haar-like features.44 These features were obtained after the
convolution of 3 kernels, with variable formation and size that was de-
termined manually according to the range of the particle sizes. The
resulting Haar feature image is the linear combination of the maximum
value of each spatial scale at each pixel. In the normalized Haar feature
image, the pixels with higher values considered as statistically signifi-
cant, whichmeans they are likely to belong to anMB. A noise threshold
is implemented in this image, which is the average noise level of the
original frame sequence. This results in a binary image that is used
to calculate the PPI. Subsequently, the particle probability in each
pixel is the ratio of the number of pixels that have value equal to
one in the binary image divided by the total number of pixels of
the particle area.

Furthermore, a region threshold of 1/e of the normalized PPI is
applied to initially estimate the target regions.43 This enables the dis-
crimination of the foreground and the background and generates an ini-
tial segmented image. In parallel, the input image is convolved with a
Gaussian kernel to create a Gaussian smoothed image, which is used
to extract the local maxima of the image. Only the local maxima points
that belong to a segmented region and have particle probability value
above the threshold are preserved creating the final watershed seed
points. These points determine the regions that the final segmentation
process is based on. The final detection is refined by an automatic up-
date in the last step of the detection process. Microbubble echo regions
with a size below the minimum input size and input average intensity
and above the maximum input size, which depended on the SNR of
the frame sequence, were eliminated. This serves as a third noise classi-
fier as all particles below the minimum size and average intensity effec-
tively are considered as noise. This process also enabled the automatic
MB detection update from frame to frame.

Segmentation
Segmentation is the key step to accurate localization. Marker-

controlled watershed segmentation, as described, works efficiently in
optical microscopy, where the PSF of the system is known and is gen-
erally symmetric and fairly constant in a frame sequence. In live-cell
imaging, the algorithm implements segmentation by using a dilated
gradient image of the Gaussian smoothed image. This image and the
gradient image are the input values of the watershed transform. Subse-
quently, the watershed transforms segments of each particle. The
change in particle area that is due to the dilation process does not affect
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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the localization accuracy as the intensity-weighted center of mass
method works well in a circular and constant PSF.

However, in CEUS, the PSF is variable not only between differ-
ent frames but also within the same frame as the acoustic field and ab-
errations change across the image. As a result, MB echoes have
nonregular shapes, which make the accurate segmentation of each re-
gion essential for efficient localization. Thus, the gradient image was
replaced by an inverted Gaussian as the input variable of the watershed
transform. The latter can better recover the MB echo area and avoid the
reduction caused by the gradient image. This proved particularly useful
for MBs that have low intensity and thus low SNR as well as overlap-
pingMBs that are close to each other and were difficult to discriminate.

As mentioned previously, overlapping MBs are a significant
number of detected events in the ultrasound imaging. By including
these in the processing, data usage is maximized and it is possible to
generate maps with short video loop duration. In super-resolution ultra-
sound, often a number of MBs situated close to each other, creating a
large common echo, were mostly eliminated, and only clearly dis-
criminated single (individual) MBs were included in the detection
process.2,3,24,25,30–32,35,52 In optical microscopy, the accurate knowl-
edge of the PSF permits the differentiation of particles that partially
overlap in the image,43,74 and all the particles are possible to local-
ize. This is difficult to implement in CEUS images due to the lack
of PSF constancy.

However, it is possible to treat overlapping MB events as single.
The rationale is that a single center has high likelihood to be located in-
side its vessel. The overlappingMBsmay follow the same detection and
segmentation process as a single event. Thus, the maximumMB size is
set to a large value to process regions of both single and overlapping
MBs. The algorithm can determine the size and the neighborhood of
the detected MBs by adjusting 2 parameters, the Gaussian smoothing
and the local maxima width. Fewer detections may occur if either the
Gaussian smoothing or the width are increased. Because in an overlap-
ping event there may be low confidence as towhether the local maxima
truly represent single MBs, the choice of larger values in the Gaussian
width and the local maxima width enables a single detection. Finally,
overlapping events follow the same process of the birth and death of sin-
gle MBs within the algorithm, permitting the split and merge of the
events,42 which may occur in consecutive frames.
Microbubble Localization and Tracking
The final segmented regions (MBs) were used for the localiza-

tion of each MB. The intensity-weighted center of mass43 that is com-
monly used in ultrasound field24,30,33 was also used here. This is
because the final segmented regions preserve all the original informa-
tion to deploy this method. Alternative methods include the use the
FWHM,25 a deconvolution of the PSF,23,26,31 or the local maxima to
calculate the center of the PSF. These methods do not deploy the inten-
sity of the segmented regions or rely heavily on the assumption that the
PSF is constant and were not the first choice here. Microbubble linking
in consecutive frames (ie, tracking) was completed using the nearest
neighbor method.42

Following the linking process, all the tracks were superimposed
in one figure, creating this way the final density map. The pixel value in
this map was the number of tracks that passed through this pixel. Fur-
ther, this algorithm provided information about the speed of the MBs,
and an MB velocity map was generated, which represented the mean
velocity of the tracks that passed through each pixel. The pixel size
can be at the original size or at a subdivision of the original size
reflecting the localization uncertainty. Through synthetic data ex-
periment, the level of the subdivision was determined by creating
a subpixel similar to the root mean square error (RMSE) of the
localization uncertainty.
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
Performance Metrics/Criteria

Synthetic Data
The detection efficiency and localization accuracy of the al-

gorithm was tested by means of five statistical measurements on
the synthetic data as commonly used in optical microscopy.75 These
are as follows:

• Root Mean Square Error. The RMSE evaluates the localization accu-
racy of the software using paired particle events. Each ground truth
event is paired with the result of the algorithm that is in its vicinity.
The distance between the 2 provides a measure of the localization de-
viation distance. For the number of pairs in the image sequence, this is
given by the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
:
Xn
t¼1

e2t

s
ðEq: 1Þ;

where et is the localization deviation distance for the pair t. Thus, the
lower the RMSE value, the better the localization.

• Missed Events. Any ground truth event that does not pair with a detec-
tion event is counted as a missed event.

• Spurious Events. Any detected event that has not been attributed to a
ground truth event is counted as spurious events.

• Minimum Distance. This is the minimum localization deviation
among paired events.

• Maximum Distance. This is the maximum localization deviation
among paired events.
In Vitro Data
The algorithm performance was tested by comparing the

resulting vessel diameters on the final density maps with the diameter
of the tube.

In Vivo Data
The accuracy and efficiency of the methodology was evaluated

by comparing features on the final density maps with those identifiable
on optical microscopy, OPT, or OCT. Cross-section area measurements
from the CL and the follicles as well as vessel diameters from arteries,
arterioles, and follicle wall vessel diameters were used.
Proof of Principle Prostate Patient Data
The method was also tested in vivo for the ability to resolve the

prostate microvasculature in a patient referred for radical prostatectomy
at the AMCUniversity Hospital (Amsterdam, the Netherlands) because
of biopsy-proven prostate cancer. An intravenous peripheral injection of
a 2.4-mL SonoVue bolus was performed. The bolus passage through
the prostate was recorded for over 2 minutes by transrectal ultrasound
imaging with an iU22 ultrasound scanner (Philips Healthcare, Bothell,
WA) equipped with a transrectal probe C10-3v. For the acquisition, a
power modulation pulse scheme at 3.5 MHz was adopted to achieve
contrast-specific imaging, and the mechanical index was set equal to
0.06 to avoid bubble destruction. The frame rate was equal to 10 Hz.
The probe was held at a fixed position, and no breathing movement
was observed. After radical prostatectomy, the resected prostate was
first fixated and then cut in slices of 4-mm thickness, which were then
marked by a pathologist to delineate prostate cancer based on micro-
scopic analysis of cellular differentiation.
www.investigativeradiology.com 505

www.investigativeradiology.com


TABLE 1. Statistical Results for the Detection and Localization
Accuracy on Synthetic Ultrasound Data (5663 Single MB Events in
200 Frames) Using the Gradient and the Inverted Gaussian Image as
the Input Variable of the Watershed Transform

Gradient Inverted Gaussian

Detected events (%) 906 (16%) 5659 (99.93%)
Missed events (%) 4757 (84%) 4 (0.07%)
Spurious events 0 0
Minimum distance (pixels) 0.01 (1.23 μm) 0
Maximum distance (pixels) 2.73 (335.28 μm) 1.56 (191.59 μm)
RMSE (pixels) 0.64 (78.6 μm ≅λ

6= ) 0.21 (25.8 μm ≅λ
20= )

FIGURE 3. A, A B-Mode frame and (B) the corresponding contrast mode fram
within the red box (A) trying to detect single events (green circles) and single a
single events creates localization 678.48 μmapart (green line), which implies lo
with 3� 3 subdivision process as the result of the tracking algorithmusing the in
only (isolated) single MBs, (E) any (segmented) single MB, and (F) both single
FWHMwas calculated in 3 parts of the tube, 1–3 and as it shown in panels D, E
scale bar is 1 mm throughout.
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RESULTS

Development of the Super-Resolution Algorithm on
Synthetic Data

A real-frame sequence from a sheep ovarywas used to generate a
sequence of synthetic ultrasound frames. Typical frames are shown in
Figure 1, A and B, respectively.

Figure 1, D to F illustrate the result of the new segmentation
process. The original synthetic image (Fig. 1D) was segmented using
the watershed function. The result from implementing 2 different
methods, the gradient image, as used in optical microscopy (Fig. 1E),
and the inverted Gaussian (Fig. 1F) are shown. As a first observation,
the size of the PSF of the segmented MBs were smaller (number of
segmented pixels displayed next to each MB in Figure 1D) when the
gradient image was used (Fig. 1E) compared with that of the inverted
Gaussian (Fig. 1F), which had very good agreement with the
original data (Fig. 1D). This slight difference between these 2 sets of
measurements (Fig. 1, D and F) is based on the existence of the noise
e from a single tube in an in vitro experiment. C, Localization example
nd overlapping events (red crosses). Trying to segment the region into
calizations outside the tube (tube width is 200–300 μm). The densitymap
vertedGaussian image as input of thewatershed function detecting (D)
and overlapping MBs. G, The density map of (E) in original pixel size. The
, and F pointed with red arrows and explained in details in Table 2. The

© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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in Figure 1D and the manual calculation of the size of each MB there,
whereas in Figure 1F, the same calculation took place after the process
of noise removal by the algorithm.

Table 1 summarizes the difference between the 2 segmentation
approaches. Better size and shape recovery (Fig. 1F) of the original
MBs (Fig. 1D) led to the significant improvement in localization
accuracy. The RMSE was 3 times lower using the inverted Gaussian
(25.8 μm) compared with the gradient image (78.6 μm). Second, there
was a significant decrease of the missed events using the inverted
Gaussian method to 0.07% (Table 1). The high occurrence of missed
events using the Gradient image is explained by the removal of
scatterers by the algorithm, which was significantly reduced in size
using the gradient image (arrow in Fig. 1, E and F) as they have size
below the MB echo input size. As a result in Figure 1E, 2 of 5
detections are recorded, whereas in Figure 1F, 5 of 5.

Overlapping events where MBs were merged in appearance in
the synthetic data were assessed. An example is shown in Figure 1G
where 2 MBs are 59 μm apart. If the algorithm is used to deploy the de-
tection of local maxima to identify each of the 2MBs (Fig. 1G), they are
(Fig. 1H) 396 μm apart, and 172 μm and 224 μm away from the tube,
respectively. Increasing the typical particle size that reduces the
segmented regions, the 2 merged MBs were treated like a single event
(Fig. 1I). The distance of this event from the center of the tube was
14 μm. The processed synthetic video loop contains 10,780 single
MBs in 200 frames, which resulted in 2442 overlapping MBs (mostly
due to double particle overlap) and 5896 well-separated single MBs
(8338 in total). The overlapping events were effectively 2 or more
MBs that were in a distance below the three fourth of the wavelength
(385 μm) from each other. These were treated as single events.
The number of both single and overlapping events is in a good
correspondence with the software result that detected 8117 events.

Assessment of Super-Resolution Methodology in
Real Imaging

Performance Assessment In Vitro
The results for the in vitro feasibility test are shown in Figure 3.

The video loop comprised 300 frames and was collected using the same
ultrasound settings as the in vivo work. A B-mode frame and the corre-
sponding contrast mode frame are displayed in Figure 3, A and B, re-
spectively. The methodology using the inverted Gaussian image was
used to process the in vitro frame sequence. This was limited to an
ROI that was away from artifacts (yellow box of Fig. 3B). Figure 3C
presents an example processing with detections within the red box of
Figure 3B. The events that result from segmenting overlapping events
into 2 or more single ones (green circles) and those that result from
treating overlapping events as single (red crosses) are presented. It can
be seen that in treating overlapping events as single leads to localiza-
tions inside the tube while segmenting these into single events leads
to 2 localizations that are 600 μm apart (tube maximum internal diam-
eter, 300 μm). Thus, segmenting overlapping events is often erroneous
TABLE 2. Number of Detected Events In Vitro and FWHM of the Tube Fo

Single Individua
(Fig. 3D)

No. detected events 1639
Vessel FWHM, mean ± SD, μm 1 167 ± 64

2 176 ± 58
3 198 ± 115

Tube diameter is nominally 200 μm and 300 μm at maximum.

FWHM indicates full-width at half maximum.

© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
and leads to an overestimation of vessel size.69 Further, the density
maps at a 3� 3 subdivision of the original pixel size were studied using
the 3 available detection processes. Figure 3D shows the density map
that resulted from detections of only single and well-separated events,
whereas Figure 3E used single events that stem after the segmentation
of overlapping events, and Figure 3F detects overlapping events as single
along with the well-separated single ones. The FWHM at the same 3
example positions (1, 2 and 3) was measured for each of the above pro-
cesses and are given in Table 2. This shows that the diameter estimation
is best depicted by the map of Figure 3F, where overlapping events are
treated as single. Note that the lack of data in Figure 3D leads to an under-
estimation of the diameter and the lack of accurate PSF knowledge leads
to an overestimation of the diameter in Figure 3F. Finally, Figure 3H shows
the corresponding density map for Figure 3E using the original pixel size.

The vessel diameter is depicted accurately when overlapping
MBs are treated as single and confirms our hypothesis on the over-
lapping MB location. These results are in agreement with the syn-
thetic data. By treating overlapping events as a single event, all
localizations are found inside the vessel, and the vessel width is
depicted accurately. On the other hand, our knowledge on the PSF is
not adequate to inform the splitting of overlapping events accurately
(similar to Fig. 1H), and therefore they can be located outside the vessel
resulting in an overestimation of the vessel width (Fig. 3E). In
addition, when only well-isolated single MBs are used, the number of
detections drops by 40%, compared with when overlapping events are
accounted for (Table 2), which leads to an underestimation of the
vessel diameter.
Algorithm Performance Assessment In Vivo
The extracted ultrasound video loops comprised 500 to 1500

(processed) frames with frame rate of 12 to 13 Hz. All videos were ac-
quired in the wash-in or the wash-out period of a bolus injection apart
from the videos used for OCT comparison, which were generated by
using an infusion of sparse MBs. The mean video duration for bolus in-
jections was 121 ± 19 seconds and for infusions 92 ± 28 seconds.

Figure 4 illustrates an example of the algorithm performance in
an in vivo setting depicting the density maps using the original pixel
size (132 μm) or the 3 � 3 subdivision of the original size (44 μm) as
described previously. Figure 4A shows the tiled microscopy image, lec-
tin stained to show endothelial cells, of a slice of a typical mature CL of
the sheep ovary (day 9). The circular pattern is due to the near-spherical
shape of the CL. This shape is the result of the rapid angiogenic growth
of the CL in the first 9 to 10 days of the oestrous cycle of the ewe. Its
vascular architecture here shows that the largest arterial feed surrounds
the tissue and branches into smaller arterioles. The size of this artery is
between 200 and 300 μm. The arrows in Figure 4A show that the artery
is no longer in view in this slice, which is due to continuation and
branching off plane. Branching of this artery into arterioles is evident
across the entire length of these arteries. The core of the CL is mostly
filled with microvessels. Not shown in Figure 4A is the supporting
llowing Different Processing (Fig. 3)

l Single and Overlapping
(Fig. 3F)

Single Segmented
(Fig. 3E)

2712 3817
203 ± 51 301 ± 83
144 ± 29 288 ± 66
161 ± 28 213 ± 48
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FIGURE 4. A,Histology (�20 tiledmicroscopy) of the corpus luteum (CL) of a sheep ovary. B, The B-mode frame and (C) the corresponding peak contrast
frame from the CL include the supporting artery and vein branches from the ovarian artery and vein respectively that support the gland and are not
available in (A). The density map with 3 � 3 subdivision process as the result of the tracking algorithm using the inverted Gaussian image as input of the
watershed function and detecting (D) only singleMBs and (E) both single and overlappingMBswhile (F) is the corresponding velocitymap for (E). Panel
G is the equivalent of E using the gradient image instead of the inverted Gaussian. Panel H is the equivalent of E in original pixel size. The color bars indicate
the number of the tracks per pixel for the density maps and the average mean velocity (millimeter per second) for the velocity maps. The scale bar is
1 mm throughout.
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ovarian vessels (artery and vein) that lie under the location of the CL.
Figure 4, B and C are the B-mode and peak contrast image in CEUS
mode, respectively. The MB movement was tracked through the CL,
27 seconds after the peak contrast image and when the population of
MBs was sparse enough for the algorithm to operate. The video loop
consists of 583 frames, and its duration was 48.6 seconds. In Figure 4D,
the processing includes the inverted Gaussian, and the parameters are
adjusted for single MB detection only. The number of detections were
10,906, the average number of detections per frame was 19 (ranging
from1 to 42), and the number of trackswas 1135. Note that, in the absence
of ground truth, the number of missed or spurious events cannot be quan-
tified. Figure 4E displays the path density map that uses the inverted
Gaussian in the segmentation process and is set to detect both single and
overlappingMBs. This resulted in 34,325 detected events, which is on av-
erage 59 events per frame (ranging from 7 to 138), and 2951 tracks. The
display has a pixel size 44 μm. Figure 4F shows the corresponding mean
velocitymap. Figure 4G shows the densitymap for single and overlapping
MBs just as in Figure 4E, but uses the gradient image in the segmentation
process instead of the inverted Gaussian. Finally, although Figure 4, D
to G used the 3 � 3 subdivision process, the respective density map of
Figure 4E with the original pixel size is shown in Figure 4H.

There is good resemblance between Figure 4A and Figure 4E,
whereas Figures 4D and 3G depict a number of sparse tracks that bear
little resemblance to the vascular architecture of the sheep ovary
(Fig. 4A). Arrows in Figure 4E show a very similar location of the
termination of the feeder arteries (arrows in Fig. 4A). Further, these
larger vessels have a large number of paths (in yellow) compared with
the inner CL, which agrees with their large comparative size shown in
the histology. In addition, a number of smaller vessels are shown to
branch inwards from these feeder vessels as shown in the histology
slice. The rest of the inner CL area has a small number of paths that
may be attributed to low microvessel flow. Under the boxed area of
Figure 4E is the ovarian artery and vein, not shown in Figure 4A.
These display the largest density of paths in Figure 4E and largest
blood velocity (Fig. 4F). These features are not apparent in Figure 4D
and Figure 4G that use only single MB processing and gradient
image approach in the segmentation, respectively. In addition, using
the original pixel size for localization in density maps (Fig. 4H)
cannot depict different types of vessels. The feeder vessels that
surround the CL (200 to 300 μm) and other microvessels inside
the CL do not appear different to the ovarian artery and vein below
the CL that are a couple of mm wide.

Density mapswere obtained and processed similarly from 6 con-
trast video loops, which were typical of the range of data sets that were
acquired, and the information is displayed in Table 3. From these, 1 was
in wash-in and wash-out of the bolus, limiting the process only within
the CL, 3 were in the wash-out and 2 were captured during an infusion
TABLE 3. Number of Detected Events In Vivo

Video Loop
Video Loop Duration

(No. Frames), s Injection Method
Single (Estima

Single, %)

55b 113 (1469) Infusion 28,431 (13,260,
137b 72 (936) Infusion 847 (204, 24%
108b 39 (508) Bolus* 17,026 (10,417,
58b 56.6 (736) Bolus 40,151 (−1,511,
34b 34.6 (450) Bolus 8269 (−4961, 0
153a 48.6 (583) Bolus 15,833 (−1540, 0

*The process was limited only inside the corpus luteum where the majority is sing

© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
of sparse MBs. The duration of each video loop varies from 39
to 129 seconds.

Table 3 shows that detecting both single and overlapping MBs
using the new methodology with the inverted Gaussian as the input
for the segmentation process maximized the number of detected events.
As there is no ground truth in these data, a manual observation con-
firmed that the proportion of missed (undetected MBs) and spurious
events (wrong detections) is low and did not affect the final density
map. Indeed, within the CL, there is clear vascular network pattern. This
table shows that the overlapping and single MBs using the inverted
Gaussian (column 7) was always the maximum number of detected
events in each data set and thus optimal detection. When the algorithm
was adjusted to count the single events (column 6), it was shown that
the overlapping events were between 32% and 68% of the total number
of detectedMB events. Columns 4 and 5 show the particle underestima-
tion effect of using the gradient image as input for the watershed func-
tion instead. When both single and overlapping events were used in the
detection process, the number of events accounted for were between
17% and 57% less than the ones that were counted using the inverted
Gaussian. This was due to the shrinking of these particles' areas
resulting from the gradient image calculation. The shrinking caused a
lot of MB events to diminish to sizes that were not more than 5 pixels,
which is the minimum input size threshold, and thus were eliminated. In
addition, the size discrimination between single and overlapping events
became more difficult to implement. This is because the algorithm size
threshold was implemented after the segmentation process, and the
shrinking due to the gradient image resulted in a lot of overlapping
MB events to bemisclassified as single. The resulting column 5 is likely
to include mostly overlapping events, as many single ones were re-
moved by the minimum input size threshold. In addition, when the par-
ticle size parameter was adjusted for single events, then the number
further decreased, but a large number of overlapping events remained
included (column 4). If it is assumed that the total number of true
MB events is approximately that of column 7 and that the single events
are reasonably approximated in column 6, it is then possible to produce
an estimated number of single MB events accounted for in column 4,
which is the difference between the column 5 number and the number
of overlapping events (difference of columns 7 to column 6). This varies
between 0% and 63% of the total number calculated. Negative numbers
in brackets signifies that no single events are accounted for, and a num-
ber of overlapping events were also missed. These results confirm the
synthetic data behavior observed in Figure 2, D and F.
Validation of In Vivo Ultrasound Size Measurements
Density maps from 10 different ovaries from 8 different sheep

were compared with either histology (4 ovaries), OPT (6 ovaries), or
No. Particles

Gradient Inverted Gaussian

ted Single + Overlap
(% Missed Events) Single Single + Overlap

Overlap
(% of Total)

46%) 29,549 (42%) 34,660 50,949 32%
) 847 (56.7%) 1314 1957 32.9%

61%) 23,116 (26.6%) 18,800 31,499 40.3%
0%) 50,895 (41.6%) 34,702 87,108 60.2%
%) 11,948 (50.1%) 7292 24,201 69.9%
%) 21,879 (36.3%) 10,906 34,325 68.2%

le microbubbles.
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FIGURE 5. Comparison of panel A density map obtained from a SonoVue infusion at 1.5mL/min (936 frames) with panel B OCTmean variance image at
depth comparable to that of the ultrasound scan. The ultrasound transducer was placed perpendicular to the OCT probe and as close as possible to the
surface of the ovary while maintaining contact for imaging. A Thorlabs Telesto-II OCT machine (wavelength 1300 nm, 5.5 μm axial resolution in air)
provided clear images on the vessels closest to the surface of the ovary. The arrows indicate comparable locations with example measurements from
OCT being location 1 0.98 ± 0.01 mm, location 2 0.96 ± 0.02 mm, and location 3 228 ± 23 μm compared with measurements from the density map of
1.20 ± 0.01 mm, 1.10 ± 0.02 mm, and 236 ± 15 μm, respectively.
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OCT (2 ovaries) imaging. From these, 8 were bolus injections and 2
were captured during an infusion. Optical coherence tomography pro-
vided a live image of the vessels close to the surface of the ovary in situ,
and the comparison with the respective density map is displayed in
Figure 5. The main vessels are clearly seen in the density map
(Fig. 5A) and the OCT image (Fig. 5B). Table 4 provides a summary
of the measurements made. For the images shown in Figure 5, the
vessels were measured to have diameters of 0.9 ± 0.01 mm from OCT
compared with 1.19 ± 0.01 mm on the density map, and the narrow
vessel diameter was measured to be 228 ± 23 μm from OCT compared
with 236 ± 15 μm. The mean difference in measured sizes between the
2 was approximately 10%, which is not significant. Thus, OCT provided
the best agreement between density maps, showing that the density map
(Fig. 5A) can provide quantitative and accurate information of vascular
structures, including vessel diameter and bending.

Compared with the OCT, the OPT provided information from
larger areas of the tissue and in 3D. Compared with standard optical mi-
croscopy, OPT provided a 3D reconstruction of the whole ovary. It was
then possible to choose a subvolume at a region of choice, which could
also have a similar thickness to the ultrasound scan plane, which was
TABLE 4. Measurements of Sheep Ovary Structures From Histology, OPT

Region
Criterion
Standard Number

Value Range
(DMp)

Rang
(Criter

Vessel diameters, μm OCT 4 60–1196
OPT 8 141–1121

Histology 2 145–274
CL area, mm2 Histology 2 73–113

OPT 3 88–194
Follicle area, mm2 OPT 3 6–23
Follicle wall thickness, μm OPT 3 241–379 1

OPT indicates optical projection tomography; OCT, optical coherence tomography

510 www.investigativeradiology.com
approximately 2 mm, for comparison. This is not possiblewith standard
2-dimensional (2D) microscopy where the slices have a thickness of ap-
proximately 5 μm. Their orientation is roughly estimated before slicing,
and therefore the comparison with the ultrasound image is difficult to
make. Thus, in the example of Figure 4, it is rather fortuitous that
Figure 4A appears very similar to Figure 4E. An example of a density
map and the corresponding OPT slice are shown in Figure 6. The
structure of the ovary from the ultrasound image can be seen in each
modality: (a) peak contrast in CEUS mode, (b) density map in super-
resolution processing, and (c) OPT. There are structures in the ovary
identifiable in both the density map and the OPT slice such as the
follicles (F1, F2), the CL, and larger vessels (V). The 2 follicles
are well defined by the density map, and the large CL has a dense
vascular network. On the smaller scale in the density map, there is
a track detected in the first follicle, which is assumed to be part of
the outer surface of the follicle. This is also seen in the OPT image
(arrowed). This vessel measures 141 ± 54 μm diameter on the density
map compared with 83 ± 7 μm on the OPT.

The main comparison performed between density maps and his-
tology slices was on the measurement of the area of the CL. For 3
, and OCT Ultrasound Density Maps

e of Values
ion Standard)

Range % Difference
Between DM and Optical

Mean % Difference
Between DM and Optical

54–983 3–17 10
83–692 24–61 41
29–128 53–79 66
40–54 36–59 48
45–75 42–61 50
5–28 11–23 19
46–258 24–61 37

; DM, density maps; CL, corpus luteum.
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FIGURE 6. Comparison of a densitymap (by processing 1246 frames) obtained by imaging the sheepovarywithCEUS and using a 2.4-mLbolus injection
of SonoVue, with a subvolume selected from a 3D reconstructed OPT volume (A) peak contrast ultrasound image, (B) density map, and (C) OPT image
using maximum intensity projection to display a 2-mm-thick volume. There are structures in the ovary identifiable in both the density map and the OPT
slice such as the follicles (F1 [OPT: area 5.6 mm2 wall thickness 173 μm; density map: area 6.4 mm2 wall thickness 344 μm], F2 [OPT: 11.3 mm2 wall
thickness 258 μm; density map: area 14.7 mm2 wall thickness 340 μm]), the CL (OPT: area 45.3 mm2; density map: area 88mm2), and larger vessels (V).
The dip in the follicle 1 wall in the OPT image is due to the delicate surface of the follicle on the edge of the ovary collapsing during the processing.
Arrowed is a small vessel (SV) located on the surface of the follicle that can be identified in the OPT image (83 ± 7 μm) and the density map (diameter
141 ± 54 μm).
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density maps and histology pairs, the mean CL area measured 48%
smaller on histology than that measured on the density map. For all mea-
surements, the mean difference in sizes measured on OPT is 36% smaller
than that measured on the density map. Of the measurements made on the
density maps, the smallest measurable regions that could be com-
pared with similar regions on OPT were small vessels and follicle
walls. A vessel diameter measurement on OPT at 83 ± 7 μm is com-
pared with 141 ± 54 μm on the density map. Follicle wall thickness
was measured to be 173 ± 35 μm on OPT compared with 241 ± 10 μm
on the density map. It is evident that histology and OPT provide a signif-
icant underestimation of all sizes and area measurements compared
with the density maps.
TABLE 5. Unverified Ultrasound Density Map Measurements

Vessel Location Mean Diameter ± SD, μm

Upper CL 99 ± 12
Small vessel in CL 66 ± 18
Around edge of CL 84 ± 8
Edge towards center of CL 75 ± 7
Upper CL vessel from edge 118 ± 8
Outer CL 173 ± 26
Vessels close to surface of ovary 115 ± 17
Vessels close to surface of ovary 55 ± 10
Vessels close to surface of ovary 56 ± 2

CL indicates corpus luteum.

© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
Finding comparable vessels in the optical images that were
smaller than 100 μm and could be compared with the same vessels in
the density maps was challenging. This is because all the different cri-
terion standard techniques did not provide an abundance of such mea-
surements. The OPT staining was inadequate to delineate arterioles,
whereas the OCT resolution and sensitivity are not adequate to show
the smallest vessels. As mentioned previously, the 2D microscopy with
lectin staining provides such vessels but cannot be matched with the ul-
trasound maps. A number of vessels below 100 μm were observed,
however, in the ultrasound maps and are displayed in Table 5 but were
not verified. However, the large number of tracks strongly suggests the
existence of vessels. The narrowest vessel measured on the density
Vessel Length ± SD, μm Mean Track Number ± SD

1256 ± 8 33 ± 11
736 ± 18 27 ± 8

1059 ± 74 42 ± 7
595 ± 31 40 ± 8
762 ± 10 14 ± 12
970 ± 62 33 ± 10
530 ± 38 38 ± 11
374 ± 29 24 ± 15
393 ± 44 33 ± 11
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FIGURE 7. A, B-Mode and (B) contrast mode of a human prostate with a sparse MB population apparent in the late wash-out phase. C, Ultrasound path
density map (color map shows number of MB paths). D, Ultrasound velocity map in millimeter per second. Red scale bars in C and D are 5 mm. E,
Histology slices of the prostate displaying cancer in red.
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maps was 55 ± 10 μm, and there are several clear vessel paths between
50 and 100 μm.
Example Map of the Prostate
The MB tracking algorithm was applied to a human prostate

with cancer. Figure 7, A and B are the B-mode and a contrast image af-
ter the peak of the MB density in CEUS mode, respectively. The ac-
quired data set was typical and of low SNR. The video duration was
136 seconds from which the 115 seconds was the processed time that
provided a density and velocity map (Fig. 7). The detection parameter
combination was optimized to detect both single and overlapping
MBs. A total of 1149 frames were processed, where 612,439 events
were detected and created 47,536 tracks. The examination time had to
be kept as short as possible; hence, an MB bolus injection was used.
As a result, there is highMB density per frame, where the average num-
ber of detections per frame was 533.

The marked areas by a rectangle shape, an oval shape, and an ar-
row in Figure 7, C and D show the tumor areas that correspond to the
histology. In the histology (Fig. 7E), cancerous areas are displayed with
512 www.investigativeradiology.com
red color, based on the microscopic analysis of cell differentiation
(Gleason's pattern) of whole-mount sections according to Montironi
et al.76 Before the histopathological analysis, the prostate was fixated in
formalin for 24 hours and sectioned in 4-mm slices. Note that the
histological slices and ultrasound imaging planes are not parallel,
and one imaging plane can intercept multiple slices. The velocity
map provides very good correspondence to the histology particularly
slices 5, 6, and 7, whereas the density map provides also a reasonable
agreement with these slices.
DISCUSSION
Super-resolution images under realistic patient imaging condi-

tions were achieved, demonstrating the feasibility of clinical 2D ultra-
sound super-resolution imaging using a standard CEUS mode. The
gain in resolution is at least 5-fold, as vessels under 100 μm were de-
tected at transmit frequency of 3MHz (λ = 514 μm), and the system res-
olution here is approximately λ (half the pulse length). The smallest
verified vessel width was 60 μm (Table 5), and the unverified detection
of small arterioles (55 μm) presented nearly an order of magnitude
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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resolution gain. The synthetic data investigation shows that the MB lo-
calization uncertainty can achieve 26 μm accuracy. The use of synthetic
data enabled the development of the method into an ultrasound one as
the errors induced by several parts of the processing were possible to as-
sess and minimize. This was done by investigating detection efficiency,
segmentation accuracy, and subsequently MB localization accuracy.
The in vivo results are comparable with the literature in terms of resolu-
tion improvement. Experiments in thinned skull of rats in a fixed loca-
tion provided λ/6 resolution at 20-MHz transmit frequency and using
ultrafast scanning.31 Elsewhere, λ/4 resolution was achieved using
higher transmit frequencies for identification of tumors.33 A clinical
scanner has been used in the initial demonstration of super-resolution
imaging in vivo, and under 20 μm resolution was achieved, which is
over 5 times the improvement to the system resolution.24 This was per-
formed in an optimal setting to minimize aberration, as only a thin slice
of tissuewas scanned, a flattened mouse ear, and the depth was also lim-
ited to 1 cm, and the tissue and probe were static. Our results that re-
solved structures with at least λ/8.5 accuracy were performed under
conditions that are closer to clinical 2D CEUS using standard CEUS
mode, low frame rate, radiology-relevant image depth to investigate a
volume of tissue. Thus, compared with the above studies, significantly
increased aberration was present in the in vivo data here. This results in
additional PSF shape distortion with potentially negative consequences
in MB detection and segmentation. Given the approximately 2-mm
thickness of the 2D ultrasound plane, it seems surprising that vessels
with tens of micrometers in diameter can be visualized. This is ex-
plained as the tracking algorithm enables the super-resolved MB local-
ization across the third dimension of the slice thickness. The resulting
density and velocity maps are in fact a projection of the ultrasound-
exposed 3D volume into a 2D image plane. Thus, provided that scatter-
ing events are possible to distinguish, vessel structure is preserved
projected and so is blood velocity. This is because different vessels
may lie at different angles (ie, from vertical to parallel) in relation to
the scan plane. This may result in inaccurate depiction of velocity as
the angle is not known. However, in principle, 2D super-resolution im-
aging in vivo is not hampered by the width of the ultrasound scan slice,
and several microvessels are possible to depict in density maps. Al-
though it can be argued that in the future the velocity accuracy may
be improved using 3D CEUS, the 2D prostate image here (Fig. 7D)
strongly suggests that the velocity accuracy is not a problem as the
high blood velocity were detected only around the tumor and
correlated well with its area. This may be attributed to the high
density of tumor neovessels that also have irregular pattern. This
ensures that a large number of vessels are parallel to the scan plane.
All this suggests that, in a clinical study, different types of velocity
maps need to be tested to identify those that represent closest tumor
dynamics in 2D (eg, maximum velocity that may be hypothesized to
represent parallel vessel velocities). In addition, tissue motion
artifacts do not appear in the super-resolution literature and seem
to be well compensated here. Note that the animal experimental
setup ensured that nonrigid motion is avoided and that the rigid
motion due to breathing is kept in plane with the 2D ultrasound
image plane. Thus, the well-established rigid registration provided
good compensation. Further, the prostate did not require tissue
motion compensation as breathing motion does not affect the
position of the tissue.

The short video loop time (approximately 2minutes) here, which
provided adequate data for processing, strongly suggests that a clini-
cally relevant examination time is feasible. However, such reduction
of data results in additional challenges for the processing compared
with other studies. The short video loop time required the use of a large
number of MBs per frame. Table 3 shows the number of the detected
events (single-overlap column) and the time for each processing, giving
an overview of the average number of detections per frame. Comparing
with literature, our algorithm detects, for the case of prostate cancer,
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
533 events on average per frame in 1149 frames, whereas the corre-
sponding values, for example, in Errico et al,31 are approximately 13
events per frame, for a 75,000-frame data set. As mentioned previously,
millimeter-sized vessels have orders of magnitude more blood volume,
and thusMB concentration, compared with microvessels. At sparseMB
infusion concentrations, this, in theory, results in very few single MBs
in the microvascular bed, whereas a lot more and several overlapping
MBs will appear in the larger vessels. Indeed, it was found here that
more than 32% of detected events are attributed to overlapping MBs,
which implies that overall these account for more than 50% of the
MBs in the image, as shown in the CL study (Table 4). Previous inves-
tigations tend to avoid overlapping MB events.24,31,32 In this case, large
data sets are required to depict the entire vascular space under investiga-
tion,24,25,31,52 which implies that clinical examination times would be
significantly increased. The advantage of excluding overlapping events
is that no assumptions are needed to include these events, and the local-
ization accuracy is optimized. However, using only the single events the
visualization of large vessels in their entirety may not be depicted accu-
rately. The comparison between Figure 4D (single only) and Figure 4E
(overlapping MBs included) showed that, within the approximately
49 seconds video loop time, the inclusion of only single MBs in
the processing provided maps that do not include larger arterioles
and feeder vessels. In other words, the exclusion of overlapping
events provides a systematic error in mapping the vascular bed.
The inclusion of overlapping MB echoes in the processing provided
a more accurate depiction of the vascular structure with better represen-
tation of MB path proportion in different-sized vessels. It is suggested
that the path density correlates well with volume flow, whereas the ex-
clusion of overlapping MBs results in a blood volume estimation error
for larger vessels. This further strongly suggests that the assumption
that most overlapping events are likely to be located in the larger vessels
is correct.

The challenge of including large MB numbers in the imaging
may be best addressed using high frame rate imaging, which can pro-
vide MB scatter overlap and deploy tracking using the autocorrelation
method.31 As mentioned in the introduction, such frame rates require
a plane wave transmission that provides high attenuation and limited
penetration. Further in CEUS, this limitation further increases the vari-
ability of the MB detection efficiency across the image due to increased
S/N variability andMB destruction. Thus, the detected MB density and
path density do not correlate well to red blood cell density and volume
flow, respectively, which severely limits quantitative super-resolution
maps of vascular dynamics. Here it is demonstrated that the less vari-
able field of the focused transmission at low nondestructive acoustic
pressures ensures reasonably uniformMB detection, with high penetra-
tion depth up to at least 6 cm (Fig. 7A). In addition, and as mentioned
previously in Errico et al,31 an average of 13 events per frame were
detected, whereas the method presented here processed, in the case of
the prostate (Fig. 7), enables the handling of a larger number of
detections as more than 700 events were detected in some frames.
The tracking, used here, used a combination of the nearest neighbor
approach and knowledge on the MB intensity, suggesting that it is not
significantly inferior to the autocorrelation method. The tracking is in
effect a sparse recovery method for the location of an MB path that
has very few MB detections. In addition, there is no evidence in the
literature that suggests that a high frame rate improves the statistics of
the processing. Given that a bolus injection requires a minimum of a
couple of minutes for the first pass to complete in most organs, it is
suggested that it is this MB transit time, along with the dimensions of
the vascular bed, that determine the MB number that is adequate to
map the entire vascular structure. Here, it is suggested that mapping
capillaries may be beyond the capability of image-based methods
that aim at high resolution. Thus, vessels of tens of micrometers in
diameter are the realistic targets of super-resolution ultrasound in
clinical radiology, and most of these may be crossed several times
www.investigativeradiology.com 513
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in by the MB concentrations used here, thus providing adequate signal
for processing. The inclusion of overlapping MBs is thus necessary.
An approach that deals with the cumulative signal from all MBs in
each pixel rather than particle events and, thus, uses the localization
of spatially nonisolated MBs77 may be argued to include single and
overlapping events in the processing. However, it is not evident from
this processing what are the MB event areas, and thus it is much more
difficult to assess detection and localization accuracies.

The super-resolution density maps presented here are the result
of a robust detection and segmentation processes. All of the MBs were
used in the tracking process including both single MBs of low intensity
and overlapping MB events of large size and intensity. The signal en-
hancement through PPI and Haar-like features and the noise removal
discriminating the background from the foreground make this algo-
rithm capable of detecting even the weakest scatter. Christensen et al24

based the detection of single MBs on the cross correlation of each re-
gion in the reference frame and the subsequent frames. The groups that
use ultrafast imaging detect individual events based on the correlation
of each MB with the corresponding one in the next consecutive frame,
due the high frame rate.23,26,31,51 These approaches are not effectively
different to the one proposed here. Our approach enables the automatic
detection and identification of MB events. Other methods apply the de-
tection in B-mode frames after a similar approach to our background
and foreground discrimination,32,35 thus dealing with multiple MB
numbers. However, in CEUS, the shape of each scatterer in the image
is nonregular and needs to be preserved. As a result, an optimal segmen-
tation, using appropriately the watershed function, may be proposed for
accurate localization of each event as well as ensure that nearly all MBs
are detected.

Initial images of prostate cancer have been presented here
from one patient. Although not conclusive, this initial result seems
promising. Both density and velocity maps show good correlation
with the histological evaluation. The velocity map suggests that tu-
mor areas have redundant anastomotic vessels due to neovasculari-
zation. Extensive research aims at detecting and grading cancer by
imaging technology to replace the use of invasive systematic biop-
sies (standard procedure) and reduce the risk of overtreatment and
undertreatment. As aggressive (high grade) prostate cancer is corre-
lated with angiogenesis and increased microvascular density,78,79 the
proposed method may represent an asset for improved prostate cancer
diagnostics and monitoring.

In future work, immunohistology by, for example, CD31 stain-
ing should be used to establish a ground truth of the microvascular ar-
chitecture and improve over the adopted indirect comparison with the
histology. A full study is required to assess this information that is oth-
erwise difficult to compare with histological evaluation. The different
microscopic techniques provided a criterion standard. However, these
are limited, and this has become apparent through the improved near-
microscopic resolution performance of ultrasound super-resolution
images. Both microscopy histology and OPT images provided signif-
icantly reduced size measurements compared with the ultrasound
density maps (Table 5; 41% mean difference), which confirms several
other studies. It is known that optical imaging is undertaken ex vivo
and after further tissue processing. This processing results in tissue
shrinking.80 Further, fixation and histological preparation distort
the tissues, and some of the variables required for this are difficult
to standardize.81,82

The OCT performed in vivo provided the best comparison of
vessel sizes with the density map with measurements within 10%. This
confirmed that the measurements in the density maps are very accurate
and demonstrated that ex vivo criterion standard comparison may be
less appropriate for super-resolution ultrasound development. In addi-
tion, this OCT validation is superior to that using an in vitro setup with
a capillary or capillary network that has been used previously.23,30,32

The in vitro setup provides lower PSF variability across the image
514 www.investigativeradiology.com
compared with in vivo tissue imaging. This is because significant
changes in the speed of sound across tissue affect the aberration and
augment PSF variability compared with that of a translucent in vitro
setup. This may be the reason that in vitro setups have been used previ-
ously to validate velocity estimation,32 as the diameter estimation is not
a robust validation for the real imaging in vivo. In this context, the ves-
sel diameter and thus system resolution are better validated in vivo. The
2 different-sized vessels (Fig. 5), which were embedded in tissue, had
different vessel diameter and curvature, which provided a convincing
validation of the vessel diameter accuracy of the ultrasound density
maps at multiple positions in the same image. However, the most signif-
icant challenge with the use of the OCTwas the matching of its plane
with that of the ultrasound image. First, the ultrasound image is of
low resolution and thus impossible to compare in situ. Second, the
OCT is limited in depth (1.5 mm), which imposed an unusual position
for the ultrasound transducer and restricted the imaging plane to very
close to the surface of the ovary (and perpendicular to the plane in view
for the rest of the imaging). However, it was shown that live techniques
are more likely to be of use in the development of similar high-
resolution ultrasound-based imaging methods.

In conclusion, a new super-resolution tool, which can be used
with current clinical 2DCEUS, was presented. The feasibility was dem-
onstrated in vivo for clinical radiology relevant image depths, with tis-
sue motion and for short examination times under 2 minutes. The
potential lies in the identification of regions with abnormal vasculature
and particularly malignant tumors.
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