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Severe acute respiratory syndrome coronavirus 2, the 
seventh known coronavirus in humans, is an envel-

oped, single-strand RNA virus responsible for the global 
coronavirus disease 2019 (COVID-19) pandemic since 
the beginning of 2020 (1). With millions of confirmed 
cases in 187 countries within 5 months, the pandemic 
has taken a huge toll on health and economic status, par-
ticularly in the most vulnerable, developing countries, 
such as Iran.

Although any individual can get COVID-19 infection 
regardless of age and sex, elderly persons and those with un-
derlying comorbidities such as obesity, hypertension, and 
diabetes mellitus are at higher risk of severe COVID-19 
pneumonia, complications, and multiorgan failure (2). 
Reverse-transcriptase polymerase chain reaction (RT-PCR) 
assay from nasopharyngeal swab or bronchoalveolar lavage 
is the preferred test for diagnosis of COVID-19 infection 
(3,4). In the first 10 days of infection, the RT-PCR assay 
for COVID-19 infection has lower sensitivity (60%–70%) 
than in the later stage of infection (5–7). Although chest 
CT images can display findings of early COVID-19 pneu-
monia, about 20% of chest CT scans do not show any find-
ings (8). Thus, many organizations recommend limiting 
chest CT to patients with moderate to severe COVID-19 

pneumonia or in those with unexplained deterioration of 
respiratory status (9–12).

In resource-starved sites with limited access to RT-PCR 
assays and in high-risk patients with a negative initial RT-
PCR result, chest CT is frequently used for diagnosis and 
severity assessment of COVID-19 pneumonia (13,14). 
Subjective grading for assessing disease severity from lobar 
extent and type of pulmonary opacities is time-consuming, 
and therefore has limited clinical applications (15–20). 
Some studies have explored radiomics for screening and 
diagnosis of patients with COVID-19 (21,22), but to 
the best of our knowledge, no peer-reviewed studies have 
compared radiomics, radiologists’ interpretation, and clini-
cal variables for predicting disease outcome, severity, and 
patient triage in COVID-19 pneumonia. We compared 
prediction of disease outcome, severity, and patient triage 
in COVID-19 pneumonia with whole lung radiomics, ra-
diologists’ interpretation, and clinical variables.

Materials and Methods

Approvals and Disclosures
The institutional review board approved our retrospective 
Health Insurance Portability and Accountability Act–
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Purpose: To compare prediction of disease outcome, severity, and patient triage in coronavirus disease 2019 (COVID-19) pneumonia 
with whole lung radiomics, radiologists’ interpretation, and clinical variables.

Materials and Methods: This institutional review board-approved retrospective study included 315 adult patients (mean age, 56 years 
[range, 21–100 years], 190 men, 125 women) with COVID-19 pneumonia who underwent noncontrast chest CT. All patients (in-
patients, n = 210; outpatients, n = 105) were followed-up for at least 2 weeks to record disease outcome. Clinical variables, such as 
presenting symptoms, laboratory data, peripheral oxygen saturation, and comorbid diseases, were recorded. Two radiologists assessed 
each CT in consensus and graded the extent of pulmonary involvement (by percentage of involved lobe) and type of opacities within 
each lobe. Radiomics were obtained for the entire lung, and multiple logistic regression analyses with areas under the curve (AUCs) as 
outputs were performed.

Results: Most patients (276/315, 88%) recovered from COVID-19 pneumonia; 36/315 patients (11%) died, and 3/315 patients 
(1%) remained admitted in the hospital. Radiomics differentiated chest CT in outpatient versus inpatient with an AUC of 0.84 (P , 
.005), while radiologists’ interpretations of disease extent and opacity type had an AUC of 0.69 (P , .0001). Whole lung radiomics 
were superior to the radiologists’ interpretation for predicting patient outcome in terms of intensive care unit (ICU) admission (AUC: 
0.75 vs 0.68) and death (AUC: 0.81 vs 0.68) (P , .002). The addition of clinical variables to radiomics improved the AUC to 0.84 for 
predicting ICU admission.

Conclusion: Radiomics from noncontrast chest CT were superior to radiologists’ assessment of extent and type of pulmonary opacities 
in predicting COVID-19 pneumonia outcome, disease severity, and patient triage.
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patients which included 230 patients admitted to the hospital 
and 120 patients managed in outpatient settings. All patients 
had clinical findings and chest CT findings compatible with 
COVID-19 pneumonia.

Inpatients.—The recorded clinical variables for inpatients in-
cluded age, sex, presenting symptoms (such as fever, chills, 
fatigue, myalgia, cough, sputum production, sore throat, he-
moptysis, chest pain, shortness of breath, headache, anorexia, 
nausea and vomiting, diarrhea, and loss of consciousness), 
symptomatic days before hospital admission, temperature and 
Spo2 on hospital admission, and presence of any comorbidi-
ties and immunodeficiencies. Results of the following labora-
tory tests were recorded: total white blood count, differential 
white blood counts, platelets count, C-reactive protein level, 
erythrocyte sedimentation rate, and lactate dehydrogenase 
level. Information pertaining to patient outcome (discharged, 
deceased, or still admitted and under treatment at the time of 
data analysis) was recorded.

Outpatients.—Patient symptoms, comorbidities, and past 
medical history for outpatients were not available because of 
lack of electronic medical records. Results of RT-PCR assays, 
when performed, were recorded for all patients. All patients 
(outpatients and inpatients) had a 2-week televisit following 
their discharge or outpatient visit.

We excluded 20 inpatients and 15 outpatients because of the 
presence of extensive motion artifacts on the chest CT images 
(13 and six patients, respectively), coexisting or atypical CT find-
ings suggestive of other abnormalities (five and three patients, 
respectively), incomplete CT datasets (two and three patients, 
respectively), and lack of follow-up (three patients in outpatient 
setting). Thus, the final sample size included 315 adult patients 
(210 inpatients and 105 outpatients; mean age, 56 years [range, 
21 to 100]; 190 men, 125 women) who met our inclusion and 
exclusion criteria (Fig 1).

Noncontrast Chest CT
All included patients underwent a standard-of-care, chest CT 
examination without oral and intravenous contrast material 
administration on admission. Chest CT scans were performed 
on a 16-slice multidetector CT (SOMATOM Emotion 16; 
Siemens Healthineers, Forchheim, Germany) at 110–130 kV, 
fixed tube current of 30–50 mA, 1-second gantry rotation 
time, 16 3 1.2-mm detector configuration, 19.2-mm x-ray 
beam collimation, and 1.5:1 pitch. Two- and 5-mm section 
thicknesses were reconstructed with filtered back projection re-
construction technique with B20f (standard soft-tissue kernel) 
and B70f reconstruction (high spatial frequency sharp) ker-
nels. De-identified Digital Imaging and Communications in 
Medicine CT images were used for subjective evaluation and 
radiomics.

Subjective Assessment of Chest CT
Two experienced thoracic radiologists (S.R.D., with 16 
years of experience; M.K.K., with 14 years of experience) 

compliant human subject study with waiver of informed con-
sent from the study subjects. We have no financial disclosures 
pertaining to this article. Our institution received research 
grants from Siemens Healthineers, Lunit, and Riverain Tech-
nologies for unrelated projects.

Patients
We identified 350 consecutive adult patients who presented 
with symptoms compatible with COVID-19 pneumonia and 
underwent noncontrast chest CT in a teaching hospital in Teh-
ran, Iran, between February 20, 2020 and April 10, 2020.

Per the hospital policies for management of COVID-19 
pneumonia, all patients with dyspnea, hypoxemia (peripheral 
capillary oxygen saturation [Spo2] , 93%), rapid respiratory 
rate (. 30 breaths per minute), fever (temperature  37.8°C) 
with risk factors (cardiovascular disease, hypertension, diabetes 
mellitus, underlying pulmonary diseases, and body mass index 
. 40 kg/m2), or immunodeficiencies (corticosteroid therapy, 
chemotherapy, malignancies, organ transplants, and human 
immunodeficiency virus infection) underwent noncontrast 
low-dose chest CT. Patients with at least one of the following 
criteria were admitted to the hospital: dyspnea (Spo2 , 93% or 
respiratory rate . 30 breaths per minute), positive CT findings 
in patients with the previously mentioned risk factors or im-
munodeficiencies, fever (temperature  37.8°C), and discre-
tion of attending physician for patients with positive radiologic 
findings for pneumonia. Patients with resistant hypoxemia, al-
tered mental status, hemodynamic instability, or hypercapnia 
(or respiratory failure) were transferred to the intensive care 
unit (ICU).

Two study coauthors (R.B., H.K.M.) reviewed medical re-
cords and digital imaging archive (in the hospital picture ar-
chiving and communication system) to identify 350 adult 

Abbreviations
AUC = area under the curve, COVID-19 = coronavirus disease 
2019, GLCM = gray-level co-occurrence matrix, GLDM = gray-
level dependence matrix, GLRLM = gray-level run-length matrix, 
GLSZM = gray-level size-zone matrix, ICU = intensive care unit, 
RT-PCR = reverse-transcription polymerase chain reaction, Spo2 = 
peripheral capillary oxygen saturation, 3D = three dimensional

Summary
CT radiomics are superior to radiologists’ visual assessment and the 
combination of patient demographics, symptoms, and laboratory 
data for predicting severity of lung involvement, disease outcome, 
and patient triage in COVID-19 pneumonia.

Key Points
 n Radiomics from noncontrast chest CT scan accurately measure 

the extent of pulmonary involvement, assign to intensive care 
unit, inpatient, or outpatient care, and predict disease outcome in 
COVID-19 pneumonia.

 n Whole lung radiomics were superior to subjective assessment of 
radiologists in predicting patient outcome and disease severity in 
COVID-19 pneumonia.

 n Adding clinical variables to radiomics resulted in modest improve-
ment in patient outcome prediction but did not improve predic-
tion of disease severity.
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Radiomics
Radiomics were estimated from the 2-mm im-
age series. First, we segmented both lungs (entire 
lung volume) with a semiautomatic approach 
with Radiomics 3D Slicer Extension program 
(25). Regions beyond the lung were edited out 
to exclude mediastinal, hilar, or pleural struc-
tures and abnormalities from the lung volumes 
(F.H., 2-year postdoctoral research experience 
in radiology). Then, we derived a total of 1690 
radiomics over the segmented entire lung vol-
umes which included both the abnormal and 
normal lung parenchyma. These radiomics 
included first order (n = 18), shape (n = 17), 
gray-level co-occurrence matrix (GLCM) (n = 
24), gray-level run-length matrix (GLRLM) (n 
= 16), gray-level size-zone matrix (GLSZM) (n 
= 16), neighboring gray tone difference ma-
trix (n = 5), and gray-level dependence matrix 
(GLDM) (n = 14) features (total n = 110) as 
described extensively in prior publications 
(26). Squares, square roots, logarithms, and 
exponentials of these features (n = 372) were 
also obtained in addition to three-dimensional 
(3D) wavelet transform (multidimensional de-
composition of image – multidimensional sig-
nal processing) parameters (n = 744) and Log 
with five (0–4 mm) sigma levels (n = 465) of 
the previously mentioned features.

Statistical Analysis
Data were analyzed with Excel (Microsoft, Redmond, Wash) 
and R Statistical Computing (https://www.R-project.org, R 
Foundation for Statistical Computing, Vienna, Austria, Ac-
cessed 4.15.2020). We performed multiple logistic regression 
tests for data analyses and obtained both the area under the 
curve (AUC) and P values as outputs. The multiple logistic 
regression used a stepwise procedure and displayed AUCs and 
P values for each combination of input variables (no variables 
were excluded from the model). From these, we identified the 
combination of input variables with best AUCs. For predic-
tion of type of pulmonary opacities with radiomics, we clas-
sified the opacities into two groups (group 1: ground-glass 
opacities; group 2: other types of opacities including consoli-
dation, nodular, ground-glass opacities mixed with consolida-
tion or interlobular septal thickening). P values , .05 were 
considered statistically significant.

Results
Of the 210 inpatients, 115 (55%) patients had positive 
RT-PCR assays, 59 (28%) did not have any RT-PCR, and 
36 (17%) had a negative single RT-PCR assay. Just two pa-
tients in the outpatient setting had positive RT-PCR, and 
the rest were not tested because of a shortage of test kits and 
a large number of patients suspected of having COVID-19 
infection.

reviewed each CT examination in consensus (MicroDicom 
DICOM Viewer, Sofia, Bulgaria) in lung windows (at mod-
ifiable window width 1500 HU, window level −600 HU). 
The radiologists excluded cases with extensive motion arti-
facts on their chest CT images (n = 19), coexisting or atypi-
cal CT findings (n = 8), and incomplete CT image series 
(n = 5). In consensus, they recorded the type of pulmonary 
opacities (ground-glass, mixed ground-glass and consolida-
tion, consolidation, organizing pneumonia [reverse halo 
sign with ground-glass opacity surrounded by consolida-
tion], nodular, or ground-glass with septal thickening [crazy 
paving appearance]) and the percentage of each lobe (right 
upper, right middle, right lower, left upper, and left lower) 
affected by the opacities (score 0: 0% involvement; score 1: 
, 5% involvement; score 2: 5%–25% involvement; score 
3: 26%–50% involvement; score 4: 51%–75% involve-
ment; score 5: . 75% lobar involvement) (15,23). Total 
lung involvement (labeled as subjective severity score) was 
estimated by adding the scores for all lobes (minimum score 
0; maximum score 25). We classified this subjective severity 
score or total lung involvement into two groups (extensive: 
total score  15; nonextensive: total score , 15). CT find-
ings were classified into typical, intermediate, atypical, and 
negative based on the published guidelines for COVID-19 
pneumonia (Table 1) (24).

Figure 1: Flowchart shows details of patients included in our study. ICU = intensive care unit, RR = 
respiratory rate, RT-PCR = reverse-transcription polymerase chain reaction.

http://radiology-cti.rsna.org
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(square root of cluster tendency-GLCM feature, 3D wave-
let transforms of small dependence low gray-level emphasis-
GLDM feature, and 3D log sigma of gray-level variance-
GLRLM feature) had an AUC of 0.81 (95% CI AUC: 0.75, 
0.84, P , .002) for predicting mortality associated with CO-
VID-19 pneumonia as opposed to an AUC of 0.68 based on 
the radiologists’ assessment of chest CT images (Table 2). In 
28 patients with atypical findings, radiomics predicted pa-
tient outcome with an AUC of 0.93 (95% CI: 0.83, 0.95), 
while subjective severity scores could not predict outcome 
(AUC: 0.59, P . .08).

RT-PCR Positive COVID-19 Pneumonia in Inpatients
Among the 115 inpatients with positive RT-PCR assay for CO-
VID-19 pneumonia, 40 patients (40/115; 35%) had extensive 
pulmonary opacities with a severity score  15, and 75 patients 
(75/115; 65%) had nonextensive pulmonary involvement and a 
severity score , 15. Radiomics differentiated these two groups 
with an AUC of 0.93 (95% CI AUC: 0.89, 0.94, P , .004) 
(Table 3). Clinical variables were inferior to radiomics for dif-
ferentiating extensive and nonextensive lung involvement (AUC 
0.88, 95% CI AUC: 0.8, 0.91, P , .0001). A combination of 
both clinical variables and radiomics resulted in improvement in 
differentiation of extensive and nonextensive pulmonary opaci-
ties (combined AUC 0.96, 95% CI: 0.9, 0.96, P , .003).

Entire Patient Cohort
Of 315 patients included in our study, 227 
patients (72%) had a subjective severity score 
, 15 (nonextensive pulmonary opacities), 
and 88 patients (28%) had extensive pul-
monary opacities (subjective severity score 
 15) from COVID-19 pneumonia. The 
3D wavelet transforms of skewness (first 
order statistics), 3D log sigma of gray level 
variance (GLSZM feature), and dependence 
nonuniformity normalized (GLDM feature) 
in combination had the highest AUC (AUC 
0.9; 95% CI AUC: 0.88, 0.91, P , .0001) 
for differentiating extensive and nonextensive 
pulmonary involvement.

About a third of the patients (110/315; 
35%) had pure ground-glass opacities asso-
ciated with early stage of the disease; the re-
maining 205/315 patients (65%) had other 
opacities such as consolidation, nodular opaci-
ties, and ground-glass with interlobular septal 
thickening or consolidation. Radiomics had 
a lower AUC (AUC 0.67; 95% CI AUC: 
0.64, 0.7, P , .003) for differentiating type 
of pulmonary opacities (such as differentiating 
ground-glass, consolidative, and mixed opaci-
ties) from COVID-19 pneumonia. Only a few 
patients had mild emphysema, subsegmental 
or relaxation atelectasis, biapical scarring, or 
calcified granulomata on their chest CT im-
ages. A combination of square root of cor-
relation (GLCM feature), 3D log sigma of gray-level variance 
(GLRLM feature), and 3D wavelet transforms of gray-level non-
uniformity (GLSZM feature) had the highest AUC.

Close to half of all patients (151/315; 48%) were admitted 
on the non-ICU medical floors, a third (105/315; 33%) were 
managed as outpatients, and 19% (59/315) of patients needed 
ICU admission for management. A combination of three ra-
diomics (gray-level nonuniformity normalized-GLRLM, 3D 
log sigma of gray-level nonuniformity normalized-GLSZM, and 
interquartile range) were able to discern chest CT features of 
outpatients versus inpatients (ICU and non-ICU) with an AUC 
of 0.84 (95% CI AUC: 0.83, 0.86, P , .005). Although statisti-
cally significant, the subjective severity scores from the radiolo-
gists’ interpretation (AUC: 0.69, 95% CI: 0.69, P , .0001) did 
not have an AUC as high as radiomics for predicting hospital-
ization (AUC: 0.84, 95% CI: 0.82, 0.86, P , .005) (Fig 2). In 
28 patients with atypical findings for COVID-19 pneumonia, 
radiomics predicted hospitalization with an AUC of 0.95 (95% 
CI: 0.92, 0.96), while subjective severity scores were not signifi-
cantly different among inpatients and outpatients (AUC: 0.57, 
P . .6).

Most patients (276/315; 88%) recovered from COVID-19 
pneumonia, 36/215 patients (11%) died, and 3/315 patients 
(1%) remained admitted in the hospital at the time of writ-
ing of our manuscript. The combination of three radiomics 

Table 1: Distribution Type and Extent of Pulmonary Opacities in Patients 
with COVID-19 Pneumonia and their Likelihood

Parameter RUL RML RLL LUL LLL

Extent of pulmonary opacities
 No involvement 38 79 23 48 28
 ,5% involvement 63 58 17 48 32
 5%–25% involvement 97 77 93 93 86
 26%–50% involvement 73 66 104 86 95
 51%–75% involvement 29 22 53 27 48
 .75% involvement 15 13 25 13 26
Type of pulmonary opacities
 Ground glass 163 159 117 146 126
 Ground glass and consolida-

tion
57 48 79 49 68

 Consolidation 3 3 12 3 11
 Nodular pattern 14 11 9 15 13
 Organizing pneumonia 4 2 13 5 12
 Ground glass and interlobu-

lar septal thickening
42 21 72 57 64

Distribution of CT findings in 
patients with COVID-19

 Typical for COVID-19 264
 Intermediate for COVID-19 23
 Atypical for COVID-19 28

Note.—Data are numbers of patients. COVID-19 = coronavirus disease 2019, LLL 
= left lower lobe, LUL = left upper lobe, RLL = right lower lobe, RML = right middle 
lobe, RUL = right upper lobe

http://radiology-cti.rsna.org
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radiomics for such differentiation. The clinical variables (such 
as demographics, presenting symptoms, comorbidities, vital 
signs, and laboratory values) could not predict the type of 
pulmonary opacities (best AUC of up to 0.57, P . .2).

The combination of square root run entropy (GLRLM fea-
ture), 3D log sigma of zone entropy (GLSZM feature), and 
large dependence low gray-level emphasis (GLDM feature) 

Most inpatients with positive RT-PCR assay for COVID-19 
pneumonia also had mixed or consolidative opacities (78/115; 
68%) as opposed to pure ground-glass opacities (37/115; 32%).

Radiomics distinguished different pulmonary opacities 
with an AUC of 0.75 (95% CI: 0.74, 0.75, P , .006). Square 
root of correlation (GLCM feature) plus exponential of gray-
level nonuniformity (GLSZM feature) represented the best 

Figure 2: Transverse CT images of six patients with different outcomes (A, B) and management (C−F) for COVID-19 pneumonia. 
A, A 52-year-old man with a medical history of diabetes mellitus, hypertension, and ischemic heart disease had a complete recovery 
and was discharged (CT severity score = 13); B, A 55-year-old man with diabetes mellitus died of complications related to COVID-19 
infection (CT severity score = 12); C, A 25-year-old man who was treated in an outpatient setting (CT severity score = 11); D, A 
63-year-old man with diabetes mellitus was admitted into the intensive care unit (ICU) for 9 days and then spent 5 days in a non-ICU 
medical unit (CT severity score = 14); E, A 49-year-old man with diabetes mellitus and hypertension was admitted to the medical floor 
(CT severity score = 17); F, A 54-year-old woman admitted to the ICU (CT severity score = 12). 

http://radiology-cti.rsna.org
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(AUC 0.77, 95% CI: 0.73, 0.79, P , .02) was better than 
the radiologists’ assessment (AUC 0.68, 95% CI: 0.61, 0.68, 
P , .0001) for predicting ICU admission among inpatients. 
The clinical variables (such as altered mental status and low 
peripheral O2 saturation) had a slightly higher AUC (AUC 
0.79, 95% CI: 0.62, 0.8, P , .0006) for predicting ICU ad-
mission compared with radiomics. The combination of these 
clinical variables and radiomics was associated with modest 
improvement in AUC for predicting need for ICU admis-
sion (AUC 0.84, 95% CI: 0.78, 0.85, P , .02) as well as for 
patient outcome (AUC 0.85, 95% CI: 0.73, 0.87, P , .007) 
(Table 3).

Finally, radiomics of patients with positive RT-PCR assay for 
COVID-19 pneumonia and those without RT-PCR confirma-
tion were similar (AUC , 0.62, P . .06). None of the radi-
ologists’ interpretation features or clinical variables differentiated 
patients with RT-PCR positive COVID-19 infection from those 
who did not have a RT-PCR (AUC , 0.56, P . .08).

Discussion
Our study demonstrated the value of whole lung radiomics 
from noncontrast chest CT in prediction of disease severity, 
outcome, and patient triage in COVID-19 pneumonia. Whole 
lung radiomics were superior to radiologists’ interpretation for 
patient triage (AUC 0.84 vs 0.69) and in predicting patient 
outcome (AUC 0.81 vs 0.68). The addition of clinical variables 
and laboratory data to radiomics did not improve the AUCs 
of radiomics alone for differentiating patients with extensive 
and nonextensive pulmonary involvement as well as early and 
advanced stages of disease (based on types of pulmonary opaci-
ties). Adding clinical variables to the whole lung radiomics 

improved prediction of patient outcome and those with ICU 
admission.

Although chest CT is used for diagnosis of COVID-19 
pneumonia in sites with high disease prevalence and limited 
RT-PCR and immunoassays, several organizations such as 
the United States’ Centers for Disease Control and Preven-
tion, Society of Thoracic Radiology, American College of 
Radiology, and Royal College of Radiology do not recom-
mend routine use of imaging for diagnosis of COVID-19 
pneumonia (9–12,27). Chest CT is frequently recom-
mended for assessing moderate to severe infection, unex-
plained worsening of cardiorespiratory status, and disease 
complications (15–20).

Use of chest CT-based radiomics has been described for 
differentiating COVID-19 pneumonia from other pneumo-
nias (21,22). Chen et al developed a diagnostic model based 
on clinical features and radiologic semantics for differentiat-
ing COVID-19 pneumonia (22). They trained their model 
with radiomics derived from lung opacities rather than the 
entire lung volume used in our study. Radiomics from pul-
monary opacities can be tedious (with manual segmenta-
tion), subjective, and thus prone to interobserver variations. 
In comparison, semiautomatic entire lung segmentation used 
in our study reduced segmentation effort and interobserver 
variations while also obtaining radiomics information from 
both the normal and abnormal lung parenchyma. Likewise, 
the entire lung radiomics also account for other coexisting 
pulmonary abnormalities, such as emphysema and atelectasis, 
which can reduce the functional lung volume. A recent study 
from Colombi et al reported that quantification of well-aer-
ated pulmonary parenchyma on hospital admission chest CT 

Table 2: Summary of Best Radiomics for Predicting Extent and Type of Pulmonary Opacities as well as Their 
Comparison with Radiologists’ Interpretation for Predicting Patient Triage and Disease Outcome in the Entire 
Patient Cohort

Variable Best Features from Multiple Logistic Regression AUC P Value

Extent of pulmonary opaci-
ties

 Radiomics Skewness (first order statistics) 1 Gray level variance (GLSZM) 1 
Dependence nonuniformity normalized (GLDM)

0.9 ,.0001

Type of pulmonary opacities
 Radiomics Correlation (GLCM) 1 Gray level variance (GLRLM) 1 Gray 

level nonuniformity (GLSZM)
0.67 ,.003

Patient triage (inpatient 
versus outpatient)

 Radiomics Gray level nonuniformity normalized (GLRLM) 1 Gray level 
nonuniformity normalized (GLSZM) 1 interquartile range 
(first order statistics)

0.84 ,.0005

 Radiologists Extent of pulmonary opacities 1 Likelihood 0.69 ,.0001
Patient outcome
 Radiomics Cluster tendency (GLCM) 1 Small dependence low gray level 

emphasis (GLDM) 1 Gray level variance (GLRLM)
0.81 ,.002

 Radiologists Extent of pulmonary opacities 0.68 ,.0001

Note.—The entire cohort consisted of 315 patients. AUC = area under the curve, GLCM = gray-level co-occurrence matrix, 
GLDM = gray-level dependence matrix, GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix.

http://radiology-cti.rsna.org
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could predict ICU admission and death related to CO-
VID-19 pneumonia (28).

The ability of whole lung radiomics to differentiate the type 
of pulmonary opacities can be explained on the basis of differ-
ences in CT numbers based on the type of pulmonary opacities 
(for example, ground-glass vs consolidation vs crazy-paving pat-
tern). Likewise, success of radiomics for differentiating disease 
severity is likely related to changes in distribution of CT voxel 
values in patients with less or more extensive pulmonary opaci-
ties. Several prior studies have reported that radiomics help pre-
dict treatment response and prognosis in several malignancies, 

including lung cancer (29–32). In fact, radiomics signatures of 
more heterogeneous malignant lesions are associated with poor 
outcome. Although its application in an infectious disease like 
viral pneumonia such as in our study has not been assessed, the 
ability of radiomics to assess and quantify attenuation changes 
related to COVID-19 pneumonia like in patients with cancer 
explains why radiomics were useful for predicting disease out-
come in our patient population.

Although prior studies have reported on the ability of vi-
sual severity score of COVID-19 pneumonia on chest CT 
(16,18,20), we found that such qualitative assessment was not 

Table 3: Summary of Best Radiomics for Predicting Extent and Type of Pulmonary Opacities as well as Their 
Comparison with Radiologists’ Interpretation for Predicting Patient Triage and Disease Outcome in 115 Inpa-
tients with RT-PCR Positive COVID-19 Pneumonia

Variable Best Features from Multiple Logistic Regression AUC P Value

Extent of pulmonary 
opacities

 Radiomics 10th percentile (first order statistics) 1 Interquartile range (first 
order statistics) 1 Long run low gray level emphasis (GLRLM) 
1 Dependence nonuniformity normalized (GLDM)

0.93 ,.004

 Clinical ESR 1 LDH 1 Spo2 at admission 0.88 ,.001
 Radiomics 1 clinical 10th percentile (first order statistics) 1 Interquartile range (first 

order statistics) 1 Large dependence low gray level emphasis 
(GLDM) 1 ESR 1 LDH 1 WBC count

0.96 ,.003

Type of pulmonary opaci-
ties

 Radiomics Correlation (GLCM) 1 Gray level nonuniformity (GLSZM) 0.75 ,.006
 Clinical None reached significance ,0.57 ,.2
 Radiomics 1 clinical No improvement over radiomics alone … …
ICU admission
 Radiomics Run entropy (GLRLM) 1 Zone entropy (GLSZM) 1 Large 

dependence low gray level emphasis (GLDM) 1 Correlation 
(GLCM)

0.77 ,.02

 Radiologists Extent of pulmonary opacities 1 Likelihood 0.68 ,.0001
 Clinical Altered mental status 1 Spo2 at admission 0.79 ,.0006
 Radiomics 1 clinical Run entropy (GLRLM) 1 Dependence entropy (GLDM) 1 

Altered mental status 1 Age
0.84 ,.02

 Radiologists 1 clinical No improvement over clinical alone … …
Patient outcome
 Radiomics Cluster tendency (GLCM) 1 Long run low gray level emphasis 

(GLRLM) 1 Busyness (NGTDM) 1 Large dependence low 
gray level emphasis (GLDM)

0.81 ,.02

 Radiologists Extent of pulmonary opacities 1 Likelihood 0.68 ,.005
 Clinical Altered mental status 1 Spo2 at admission 1 Asthma/COPD in 

past medical history 1 Days of presenting symptoms prior to 
admission

0.8 ,.02

 Radiomics 1 clinical Long run low gray level emphasis (GLRLM) 1 High gray level 
zone emphasis (GLSZM) 1 Spo2 at admission 1 Altered 
mental status 1 Asthma/COPD in past medical history

0.85 ,.007

 Radiologists 1 clinical No improvement over clinical alone … …

Note.—AUC = area under the curve, COPD = chronic obstructive pulmonary disease, COVID-19 = coronavirus disease 2019, 
ESR = erythrocyte sedimentation rate, GLCM = gray-level co-occurrence matrix, GLDM = gray-level dependence matrix, 
GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix, ICU = intensive care unit, LDH = lactate de-
hydrogenase, NGTDM = neighboring gray tone difference matrix, RT-PCR = reverse-transcription polymerase chain reaction, 
Spo2 = peripheral capillary oxygen saturation, WBC = white blood cell.
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as useful as radiomics in predicting ICU admission or patient 
outcome (recovery vs death). This may be related to difficulty 
in differentiating various opacity types and assigning scores 
based on percentage of individual lung lobe involved by pul-
monary opacities. Although not formally quantified in prior 
studies (16,18,20) or in our study, it is challenging to assign 
reliable and reproducible scores based on a difference of 1% 
in terms of lung lobe involvement. For example, less than 4% 
lung lobe involvement gets a score of 1 and 5% is categorized 
with a score of 2. Such scoring is also not part of the clinical 
interpretation of chest CT. The inconsistencies in scoring lung 
involvement from visual inspection may explain why radiolo-
gists significantly underperformed compared with whole lung 
radiomics.

The main implication of our study was the demonstration 
of use of open access whole lung segmentation and radiomics 
tool in predicting patients requiring ICU admission and dif-
ferentiating those with favorable and unfavorable outcome 
of COVID-19 pneumonia. Along with the clinical variables, 
whole lung radiomics can be a powerful tool for assessing dif-
fuse pulmonary parenchymal diseases such as the viral pneu-
monia assessed in our study. Such prediction can help in alloca-
tion and planning of resources in high prevalence diseases such 
as the current COVID-19 pandemic. We believe that our study 
provides evidence for integration of information from whole 
lung radiomics into radiology reports. The automatic whole 
lung segmentation ability, available in both open access and 
commercial image processing platforms, can avoid or minimize 
any effort from radiologists in obtaining radiomics informa-
tion. However, institutions would require datasets, such as in 
our study, to establish a training model so that individual pro-
spective cases could be tested against such local models to ac-
count for local variations in CT scanners, scan parameters, and 
patient characteristics. For such integration to happen, both 
the radiologists and referring physicians need to understand 
the principles, strengths, and limitations of radiomics so that 
meaningful inferences can be drawn from a large amount of 
quantitative information generated from radiomics.

One of the limitations of our retrospective study was the lack 
of RT-PCR confirmation availability for all included cases be-
cause of the shortage of test kits in an extremely resource-con-
strained country with a high prevalence of COVID-19 pneu-
monia. However, neither radiomics nor subjective radiologist 
evaluation could differentiate between patients deemed to have 
COVID-19 pneumonia with or without RT-PCR. A recent 
study with 1014 patients reported positive rates of 88% for chest 
CT and 59% for RT-PCR assay for the diagnosis of suspected 
COVID-19 and a sensitivity of 97% for CT with RT-PCR as 
a reference standard (13). Another limitation of our study per-
tained to the fact that some patients may have been admitted to 
the hospital based on severity of symptoms, other comorbidities 
(such as immunodeficiencies), or positive CT findings rather 
than extensive lung changes related to COVID-19 pneumonia. 
In such cases, neither radiomics nor subjective severity scores can 
reliably predict hospitalization. We also included patients with 
negative RT-PCR but CT findings typical of COVID-19 pneu-
monia in our study. He et al has reported on the role of chest CT 

for clinically suspected COVID-19 pneumonia in patients with 
a negative RT-PCR (33). Prior studies have also included nega-
tive RT-PCR cases in part of their entire datasets (14). Another 
limitation of our study was the lack of a complete list of clinical 
variables for outpatients because of a lack of electronic medical 
records in the teaching hospital in Tehran, Iran. Our results may 
not be generalizable because of the use of a single CT scanner 
and data from a single institution. Further studies with multi-
scanner and multicenter data will be necessary to validate our 
study results.

In conclusion, whole lung radiomics derived from noncon-
trast chest CT can help identify patients in need of ICU ad-
mission and predict outcome in patients with COVID-19 
pneumonia. Whole lung radiomics were superior to subjective 
assessment of radiologists in predicting patient outcome and dis-
ease severity in COVID-19 pneumonia. The addition of clinical 
features to the radiomics can further improve the prediction of 
patient outcome and the need for ICU admission.
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