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ABSTRACT
Since 1997, special paediatric intensive care retrieval teams (PICRTs) based in 11 locations 
across England and Wales have been used to transport sick children from district general 
hospitals to one of 24 paediatric intensive care units. We develop a location allocation 
optimisation framework to help inform decisions on the optimal number of locations for 
each PICRT, where those locations should be, which local hospital each location serves and 
how many teams should station each location. Our framework allows for stochastic journey 
times, differential weights for each journey leg and incorporates queuing theory by consider-
ing the time spent waiting for a PICRT to become available. We examine the average waiting 
time and the average time to bedside under different number of operational PICRT stations, 
different number of teams per station and different levels of demand. We show that consoli-
dating the teams into fewer stations for higher availability leads to better performance.
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1. Introduction

Paediatric intensive care services have been centralised 
in England and Wales since 1997. Children in need of 
intensive care are transported from their local district 
general hospitals (DGHs) to one of 24 paediatric 
intensive care units (PICUs) by specialist paediatric 
intensive care retrieval teams (PICRTs). The specialist 
teams provide patients with intensive care services as 
soon as possible. Ramnarayan et al. showed that using 
specialist teams to transport critically ill children 
improved survival to PICU discharge (Parslow et al., 
2010). The current national quality standard is for 
PICRTs to reach the child’s bedside at the DGH within 
3 hours of accepting the referral (Paediatric Intensive 
Care Society, 2015). There are currently 11 PICRT 
locations across England and Wales, each with 1–2 
teams available at any one time. A typical retrieval 
can take 4 to 5 hours, during which time the PICRT 
team is unavailable for additional referrals. When 
there is no team available for a referral (if all teams 
are out on a retrieval), a sick child at the DGH will 
have to wait longer for specialist care. While relatively 
rare, such delays do happen, particularly in winter 
when demand for PICRT services almost doubles 
(Ramnarayan S. et al., 2018) (Ramnarayan S. et al., 
2015). With such a centralised service, important 
questions are: how many PICRT locations should 

there be? How many teams should staff each location? 
And where should PICRTs be physically located to 
best serve the population, where “best” is defined by 
stakeholders, but could include minimising average 

time to bedside, minimising the probability that any 
child waits longer than 3 hours for a PICRT arrival or 
minimising time for the child to arrive at the receiving 
PICU.

There is currently national variation among the 
different PICRT locations in how quickly they reach 
the patient’s bedside and in the types of interventions 
routinely performed by each team during the trans-
port episode (Parslow et al., 2010) (Paediatric 
Intensive Care Audit Network, 2020). The DEPICT 
study (Parslow et al., 2010) is a national, mixed meth-
ods study, the aim of which is to assess the impact of 
these variations on clinical outcomes and the experi-
ence of stakeholders (patients, families and healthcare 
staff). One strand of the DEPICT work is to use loca-
tion allocation modelling to explore how changing the 
location of current PICRTs, the number of locations of 
PICRTs and the number of teams at each location, 
impacts on the time to bedside and other service 
metrics. Time to bedside could be reduced, for 
instance, by changing the locations and the number 
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of PICRT locations to reduce journey times or by 
increasing the number of teams at each location to 
reduce the chance of a team not being available for 
a new referral.

In previous work (King et al., 2019), we used 
a simple p-median model to explore the achievability 
of the 3 hour service standard with the existing provi-
sion and location of PICRTs and whether there was 
room for improving time to bedside with a different 
allocation of PICRTs. In that initial work, we assumed 
that a retrieval team would always be available for 
a referral and that journey times and demand for 
services were constant. Under those assumptions, we 
showed that 98% of retrieval demand can be met 
within the 3-hour standard. Furthermore, we showed 
that the reduction from 11 locations to 8 locations 
lowers the percentage of demand covered in 3 hours 
only marginally. On the other hand, if the recom-
mended time to bedside was made more stringent, 
fewer DGHs would be accessible within the standard, 
even with more PICRT locations.

In this work, we significantly extend the previous 
formulation by developing an optimisation framework 
that generalises the model by dropping some of the 
unrealistic assumptions in (King et al, 2019), in parti-
cular the assumption of constant travel times and the 
assumption that a team will always be available for 
retrieval. This paper is organised as follows: a brief 
literature review of how location allocation methods 
have been used previously to inform health services 
decision-making; in Section 2, a detailed description 
of the optimisation framework that allows stochastic 
journey times and incorporates queuing theory; in 
Section 3, a description of the computational methods 
that implement this non-linear optimisation frame-
work; in Section 4, examples based on real data show-
ing the method in practice; a discussion of the 
framework and next steps.

2. Literature review

Location allocation analysis is a field with many and 
diverse applications. The placement of facilities such 
as factories, schools, and even emergency services have 
been investigated in detail. Location allocation analy-
sis has also, building upon basic models, progressed 
from a static and deterministic approach to incorpo-
rate the dynamics and stochastic nature that more 
closely resembles real situations. The (Toregas et al., 
1971) and Li (Li et al., 2011) provide an overview of 
the basics of location allocation analysis and its histor-
ical development. In this section, we discuss examples 
from the academic literature that are particularly rele-
vant to our work.

A general objective in location allocation research is 
to place facilities in a network with a view to maximise 
the effectiveness of the network. The popular metrics 

for effectiveness could be to reduce the total necessary 
travel distance or time to facilities, such as those used 
for p-median problems (Toregas et al., 1971)(Zhao 
et al., 2011). Another metric is to maximise the cover-
age of the population with the minimal number of 
stations, which is used in the location set and maximal 
coverage location problems. Problem-specific metrics 
can be used depending on the area of application. For 
example, ambulance location problems can use 
expected patient survival as a measurement of the 
quality of facility locations, such as the Maximal 
Survival Location Problems in (Ingolfsson et al, 
2009) (Coates & McCormack, 2015). Most problems 
are solved numerically with optimisation packages or 
simulation methods.

A variety of extensions have been developed for 
location allocation analysis. Stochastic elements have 
been introduced in many ways, including the use of 
queuing theory and probability. The work of 
Mirchandani (Mirchandani & Odoni, 1979) consid-
ered the fluctuations of travel time due to traffic con-
ditions. In a paper by Daskin (Daskin, 2008), 
a covering model is developed to account for the 
possible unavailability of facilities. The hypercube 
queueing model by Larson (Berman et al., 1987) was 
employed to model the state of service availability of 
facilities as a more convenient setting to search for 
optimal location placements. Church and Revelle 
(Church & ReVelle, 1989) introduced stochasticity 
into the covering model by guaranteeing coverage to 
those demanding service with a likelihood above 
a certain threshold probability which was later 
extended to also consider service availability.

Location analysis has been applied to the realm of 
police, ambulance, and other emergency services. 
Larson (Larson, 1974) used the hypercube queuing 
model to divide a district into police patrol beats so 
as to equalise the workload of each police patrol while 
minimising response time. The ambulance network 
was similarly studied (Ingolfsson et al., 2009)(Shiah 
and Chen, 2007) with a goal to minimise the time of 
arrival to incident with extensions to include para-
meters such as capacity requirements and ambulance 
availability (PKnight et al, 2012). Queuing models 
such as the Priority Queuing Covering Location 
Problem (Silva & Serra, 2016) have been applied to 
emergency services as a covering model that allows 
prioritisation of calls for service. Further analyses have 
been done on emergency service planning such as the 
trade-off between equity and efficiency in the distribu-
tion of service to urban and rural areas (Burkey et al., 
2012) (Dale, 1979).

In this paper, we use a stochastic p-median 
approach to model the paediatric intensive care retrie-
val system where queuing for the service is considered, 
expanding upon the approach of Berman (Berman 
et al., 1987) by solving both the optimal locations of 
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PICRT stations as well as the optimal allocation of 
DGHs to these stations.

3. Method

The basic elements of the objective function are the 
three different elements of a PICRT’s round trip dur-
ing a retrieval, illustrated in Figure 1. The three ele-
ments are (i) the journey from PICRT station to the 
District General Hospital (DGH) (green), (ii) the jour-
ney from the DGH to the receiving Paediatric 
Intensive Care Unit (PICU) (purple), and (iii) the 
return trip from the PICU to the base PICRT station 
(orange). Extending our previous approach of only 
considering the time to bedside (P. Ramnarayan 
et al., 2019), we now allow the other journey elements 
to contribute to the objective function, with their 
contribution weighted according to their importance 
as determined by the service user. Another key reason 
for including all legs of the journey is that total time 
away from base determines the availability of a team 
for a new referral. Additionally, a journey includes 
a mobilisation time for PICRTs between referral and 
leaving the PICRT base, the time it takes for a team to 
get to the child’s bedside after a PICRT arrives at the 
DGH, and a period of treatment at the DGH before 
transporting the patient to the PICU; these times are 
assumed to be constant and set at Tm ¼ 30 minutes, 
Ta ¼ 10 minutes, and Tp ¼ 2 hours, respectively, 
where these estimates are based on historical PICRT 
audit data.

Journey times between hospitals are scaled by 
demand, where demand is the number of requests 
for PICRT services from each DGH, so that journeys 
taken more frequently are given more weight. While 

demand can vary throughout the year or even time 
of day, demand is assumed to be constant within our 
optimisation framework. The impact of different 
demand levels is instead examined by exploring dif-
ferent realisations of the optimisation model under 
different scenarios of demand (e.g., winter vs non- 
winter).

After introducing our mathematical notation, we 
first develop the optimisation framework assuming 
that a PICRT is always available before extending 
this formulation to allow for a waiting time before 
a team becomes available for retrieval.

3.1. Interim formulation assuming that a team is 
always available

We first introduce some notation (see also Table 1). 
Let I , J , and R denote the set of DGHs, PICRT 
stations, and PICUs, respectively. The size of these 
sets are correspondingly denoted by I, J, and R. The 
set J comprises of both the PICUs in the set R and 
other existing PICRT station locations. Of the J PICRT 
stations, we limit the number of operating stations to 
be N. For example, in previous work (King et al., 
2019), N ¼ 11.

Decision variables that identify the operational sta-
tions and the hospital allocations are given by 

Xj ¼
1 station j is operational
0 otherwise

�

Yji

¼
1 if station j serves hospitali
0 otherwise

�

(1) 

for i ¼ 1; . . . ; I and j ¼ 1; . . . ; J:

Figure 1. Illustration of a PICRT team’s ROUND TRip: PICRT station to the District General Hospital (DGH) (green), DGH to the 
receiving Paediatric Intensive Care Unit (PICU) (purple), PICU back to the base station (orange).
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The objective function is a weighted sum of the three 
journey times in a PICRT’s round trip. For the trip 
between the DGH and PICU, we calculate the expected 
travel time averaged proportionately over all possible 
PICU destinations from each DGH. The travel times of 
a team’s journey are labelled t1

ji (station j to DGH i), t2
irðiÞ

(DGH i to PICU rðiÞ), and t3
rðiÞj (PICU rðiÞ to station j). 

These times are scaled by the demand of each hospital, 
denoted by di, and also by weighting the different parts 
of the journey by a parameter wk, where k ¼ 1; 2; 3.

The result is a linear integer optimisation problem 

min
ðfXjg;fYjigÞ

X
:i;jdiYjiðw1ðTm þ t1

ji þ TaÞ

þ w2ðTp þ t2
irðiÞÞ þ w3t3

rðiÞjÞ (2) 

subject to the following constraints:
(C1) 

P
:jYji ¼ 1 for i ¼ 1; . . . ; I (each hospital is 

served by one and only one PICRT station)
(C2) Yji � Xj � 0 for i ¼ 1; . . . ; I and j ¼ 1; . . . ; J 

(hospitals must be served by an operational station)
(C3) 

P
:jXj � N (the number of operational sta-

tions are at most a fixed number N.)
(C4) Xj;Yji 2 f0; 1g (the variables are binary),
which can be solved by standard integer optimisa-

tion packages, using mean travel times between pairs 
of hospital (either estimated from historical data or 
using online software such as Google Maps).

3.2. Extension of problem to relax assumption 
that a team is always available

We now consider the possibility that a patient might 
need to wait for a team to become available to receive 
the next request. Incorporating a waiting time term 
introduces nonlinearity to the objective function in 

equation 2, requiring a new method for its solution. In 
this section, we detail how the waiting time is approxi-
mated using queueing theory and how a genetic algo-
rithm is applied to solve the resulting problem.

3.3. Incorporating waiting time within our 
objective function

Each team at the PICRT station can be considered as 
a server and the patients as forming a queue, waiting 
for the server to be free. The queue can be arbitrarily 
long as patients are not in a physical queue but are 
waiting in local hospitals. We also assume that the 
service is first-come-first-serve. As is standard in mod-
elling demand for emergency services, arrivals are 
taken to be memoryless (i.e., following a Poisson dis-
tribution). We cannot however assume such simplicity 
for the service time (the time that a retrieval team is 
away from base). Therefore, in PICRT station j, we 
have an M=G=cj=1 queue. The parameter cj refers to 
the number of teams working in PICRT station j. The 
waiting time can be calculated by simulation, which in 
our particular problem is computationally expensive, 
or approximated by an explicit formula.

A result from queueing theory allows us to approx-
imate waiting time at steady state starting from 
a simpler M=M=cj=1 queue, where the waiting time 
can be explicitly stated in the following way: for station 
j, we need the parameters

1. total arrival rate: λj ¼
P
:idiYji

2. service rate: μj ¼
λjP

:idiYjiE½Tji�

3. utilisation rate: ρj ¼
λj

cjμj
,

where Tji is the random variable of the round-trip 
travel time of a team from leaving the station to pick up 
a patient and returning to the station. Recall from the 
previous section that Tji is dependent on which PICU 
a patient is transported to. Note also that the service rate 
is of this form because it is the inverse of the average 
service time at station j, which is the average of round-trip 
journey times over all hospitals i allocated to the station 
weighted by the demand of each of these hospitals.

These parameters allow us to approximate the waiting 
time of a M=G=cj queue at a stationary state using 
Kingman’s formula (Kingman J.F.C., 1961), stated 
below (equation (3)), which states that the steady state 
waiting time of M=G=cj queue is the steady state waiting 
time of a M=M=cj queue (Allen, 1990) multiplied by 
a factor calculated from the coefficient of variation of 
the service time Cs;j: 

Wj �
ð1þ C2

s;jÞ

2
½waiting time ofM=M=cj=1 queue at stationary state�

(3) 

Table 1. Notations.
Xj 1 if station j is operational, 0 otherwise
Yji 1 if hospital i is served by station j, 0 otherwise
I ; I set of DGHs, number of DGHs
J ; J set of potential PICRT stations, number of potential PICRT 

stations
R; R set of PICUs, number of PICUs
N number of operational PICRT stations
di demand of PICRT services over a year for hospital i
wk weight of the k-th journey for k ¼ 1; 2; 3
rðiÞ rðiÞ is the closest PICU to hospital i
t1

ji journey time from PICRT station j to hospital i

t2
irðiÞ

journey time from hospital i to PICU rðiÞ

t3
rðiÞj

journey time from PICU rðiÞ back to PICRT station j

Tm mobilisation time; Tm ¼ 30 minutes is assumed
Ta time from arrival to hospital to patient bedside; Ta ¼ 10 minutes 

is assumed
Tp treatment period before transport to PICU; Tp ¼ 2 hours is 

assumed
Tji the combined travel time Tm þ t1

ji þ Ta þ Tp þ t2
irðiÞ þ t3

rðiÞj
Zi Zi ¼ j if hospital i is served by station j (Yji ¼ 1)
λj request of service per minute for station j
μj service rate: number of customers served per minute for station j
cj number of retrieval teams at station j
ρj utilisation rate: λj

cj μj
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�
ð1þ C2

s;jÞ

2

X
:
cj� 1
k¼0

ðcjρjÞ
k

k!
þ
ðcjρjÞ

cj

cj!

1
1 � ρj

" #� 1

ρjðcjρjÞ
cj

cj!ð1 � ρjÞ
2λj

:

The mean ms,j is the average service time and σs,j the 
standard deviation; these can be estimated from the 
distribution of the travel times obtained from histor-
ical audit data (data on all PICRT journeys has been 
collected nationally since 2012). Given EðTjiÞ and 
VarðTjiÞ, we can calculate these two parameters by 

ms;j ¼
1
μj
¼
X

:i
di

λj
YjiE½Tji�

σ2
s;j ¼ E

X
:i

di

λj
YjiTji

� �2
" #

�
X

:i
di

λj
YjiE½Tji�

� �2 

¼
X

:i
di

λj

� �2

YjiVarðTjiÞ:

Finally, our objective function including waiting 
time is given by: 

min
ðfXjg;fYjigÞ

F fXjg; fYjig
� �

¼
X

:i;jdiYjiðWj þ w1t1
ji

þ w2t2
irðiÞ þ w3t3

rðiÞjÞ;

(4) 

subject totheconstraintsðC1Þ; ðC2Þ; ðC3Þ; andðC4Þ:

This objective function is no longer linear and 
requires a different approach to solving it in 
a reasonable computational timeframe.

3.4. Solving the non-linear problem using 
a Genetic Algorithm

We apply a genetic algorithm to approach this non-
linear optimisation problem. While there are various 
possible heuristic approaches to solve this optimisa-
tion, we chose to use a genetic algorithm because of its 
simplicity in sorting through a vast pool of potential 
solutions and ability to combine fragments of optimal 
features from the population of solutions. Another 
advantage is that it can be implemented simply and 
is flexible enough to handle different objective func-
tions for future use. For a detailed introduction to 
genetic algorithms, see (Mitchell, 1990). The main 
challenges in its application are the number of vari-
ables and the inclusion of constraints. We overcome 
both obstacles by restructuring our optimisation 
problem.

Instead of solving both the optimal locations for the 
PICRT stations and the allocation of DGHs together, 
the optimisation is split into two stages, where we 

assume the number and location of PICRT stations 
are given and solve for them the optimal allocation of 
DGHs, and afterwards optimise the configuration of 
PICRT stations. This allows us to deconstruct a large 
problem into several manageable parts. Both problems 
will be solved by applying a genetic algorithm.

3.5. Part 1: given PICRT station locations and 
their number

Given a set of operational PICRT stations, we can 
reduce the number of variables Yji, since there are 
now only N number of possible values of j. The objec-
tive function in equation (4) remains the same but 
only the terms where station j is an operational 
PICRT station remain. The constraints (C1), (C2), 
and (C4) will be imposed, whereas (C3) does not 
matter at this stage because the operational PICRT 
stations are already known.

There is another constraint that can be imposed on 
the variables based on the idea that the practical solu-
tion must be one for which each station is able to 
satisfy the demand of the DGHs allocated to it and 
not be overloaded, that is rate of new requests should 
not exceed the rate at which they can be served. 
Mathematically, the requirement is expressed as 

ðC5Þ ρj ¼
λj

cjμj
¼
X

:idiYjiE½Tji� � 1: (5) 

In summary, when the set of operational PICRT sta-
tions are given, we solve the problem 

min
Yji

X
:jWjðfYjigÞ

þ
X

:i;jdiYijðw1ðTm þ t1
ij þ TaÞ þ w2ðTp þ t2

rðiÞiÞ

þ w3t3
jrðiÞÞ

subject toðC1Þ; ðC2Þ; andðC5Þ: (6) 

It is possible that this has no feasible points, in which 
case we arbitrarily assign the answer to be an extre-
mely high number, say 1010.

3.6. Part 2: Optimising PICRT station locations

We now have a map from the variables Xj‘s to the 
minimum value obtained by solving equation 6 (the 
allocation of DGHs to PICRT locations j), which we 
write as FðXjÞ. The resulting minimisation problem is 

min
fXjg

FðfXjgÞsubject to ðC3Þ: (7) 

These two minimisation problems working together 
yield the optimal location of PICRT stations and allo-
cation of DGHs.
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3.7. Distribution of teams among selected 
locations

The final important problem is to assign the optimal 
number of teams to each operational station given an 
overall number of teams. A natural solution is to 
consider cj as a decision variable, instead of 
a parameter, along with the optimal operating stations 
and hospital allocations and apply the genetic 
algorithm.

However, due to the nonlinearity of the objective 
function and the size of our problem, we used 
a simpler method to arrive at team distributions 
to maintain practical computational solution times. 
Our strategy is to over-prescribe teams to each 
station and use this over-prescribed team profile 
to solve the objective function given in equation 
4. Then, using the obtained retrieval team locations 
and hospital allocations, teams are sequentially 
removed from each station using a greedy algo-
rithm; that is, a team is removed if its removal 
leads to the least increase in the optimised objective 
function value.

Let C denote the number of teams to be distrib-
uted and let c0 be the number of teams prescribed 
to each station. c0 is chosen such that c0N > ¼ C, 
where N is the number of operational stations. 
After obtaining the operational station locations 
and the hospital allocations, the greedy algorithm 
is employed. The choice of c0, however, can affect 
the result of its corresponding stations and hospital 
allocations obtained from equation (4). For exam-
ple, the higher value of c0, the closer the solution 
would be to the linear optimal solution (without 
wait time). Therefore, we perform the optimisation 
for several values of c0, apply the greedy algorithm, 
and choose the resulting solution that yields the 
lowest objective value.

3.8. Software

The model was coded in MATLAB and solved using 
intlinprog for integer linear programs and ga for the 
integer genetic algorithm. The Google Maps 
Distance Matrix API is used to obtain the mean 
travel times not obtainable from historical PICRT 
transport data. The Google Maps Geocoding API is 
used to plot the allocations through the gmplot 
module in Python.

3.9. Ethical approval

DEPICT has ethical approval from the Health 
Research Authority, the National Research Ethics 
Service (London Riverside, reference: 17/LO/1267) 
and the Confidentiality Advisory Group (reference: 
17CAG0129).

4. Results

We applied our optimisation framework to England 
and Wales to obtain configurations of operational 
PICRT stations as well as an allocation of local hospi-
tals to these stations across a range of scenarios. We 
describe how average time to bedside, waiting time, 
and the percentage of demand covered differ with 
demand load, number of teams in service, and number 
of operational PICRT stations. The parameterisation 
and scenarios considered were chosen together with 
our clinical collaborators. We received pseudony-
mised data from the Paediatric Intensive Care Audit 
Network (PICANet) on all journeys by PICRT services 
between 2014 and 2018. This comprised over 15,000 
transports which were used to estimate: demand for 
service from each DGH, mean and variance of journey 
times between hospitals, and the proportion of each 
hospital’s demand that went to each receiving PICU. 
Where no journeys between a pair of hospitals was 
recorded (e.g., for instance, a hospital in the South 
would not be served by a PICRT in the North and so 
we would not expect a journey between the two) we 
estimated the mean travel times using Google Maps.

In the current service, there are 212 hospitals, 24 
PICUs, and 11 operating PICRT stations. We allow 
any PICU to be a potential location for a PICRT sta-
tion, giving us 28 possible PICRT locations (24 PICUs 
plus 4 further locations which currently host PICRTs). 
The 212 DGHs are hospitals, which may include some 
PICUs, that have used the PICRT service at least once 
from 2014 to 2018.

The data were fed into a genetic algorithm as 
described in the previous section. The search for the 
optimal allocation was done with an initial population 
of 50 configurations and was run over 20 generations. 
The search for the optimal PICRT station configura-
tion had an initial population of 50 configurations and 
was run over 10 generations.

4.1. Changing number of PICRT locations

We illustrate the optimisation framework given in 
equation (4) by comparing results for 8 PICRT sta-
tions with 11 PICRT stations (see Figure 2), with 16 
PICRTs in total and travel leg weights of w1 = w2 = 2 
and w3 = 1. This is to reflect that fact that getting 
a child to the receiving PICU is considered more 
important than returning to base quickly once the 
child has been transferred. When the number of sta-
tions is reduced from eleven to eight, one station is 
removed from London, the remaining two London 
stations dividing the service on an East-West axis. 
Two further stations are removed from the Midlands 
and Cambridge. Other allocations remain roughly the 
same because hospitals in those regions such as the 
Manchester and Newcastle cluster are separated far 
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enough from other PICRT stations that any changes to 
their current situation will incur too great a travel time 
cost.

Using the average historical demand for the retrieval 
service during the winter, the calculated expected time to 
bedside and time to PICU are 97.9 minutes and 
281.6 minutes, respectively, when using 8 stations and 
110.4 minutes and 294.1 minutes, respectively, when 
using 16 stations. The advantage of using eight stations 
here is that this configuration trades geographical proxi-
mity with the availability of a retrieval team. When 16 
teams are spread out, the waiting period for a next avail-
able team increases, particularly at times of high demand. 
Allowing more than one team per station reduces this 
wait time at a relatively lower cost of travel time.

4.2. Comparing solutions with changing demand 
and number of teams

To compare solutions obtained from our extended 
model more broadly, we consider two metrics: the 
average waiting time (the time for the next PICRT to 
be available) and the average time to bedside. After 
discussion with clinical partners, each metric is evalu-
ated with 15 to 22 teams for between 8 and 11 stations 
(there are currently typically 16 teams across the coun-
try during daytime). We compare the performance 
between two levels of demand calculated from 
PICANet data: one is the demand during the day 
(8am-8pm) in the months March to October, which 
we will call non-winter, and one during the day in the 
months November to February, which is winter (when 

demand typically doubles). We concentrated on day 
time since we wanted to optimise the service for the 
busier part of the 24-hour day.

In Figure 3, we show how average waiting time for an 
available PICRT changes with total number of teams and 
number of locations (stations) for winter (Figure 3b) and 
non-winter (Figure 3a). Because the demand for the 
PICRT service is higher during the winter, the waiting 
time for a team must correspondingly be greater. Waiting 
time reduces as more teams are available. It is generally 
more efficient to have the same number of teams spread 
across fewer locations as it is then more likely that a team 
is available at a given location (e.g., waiting time for 16 
teams across 11 stations is more than twice as high as for 
the same number of teams across 8 stations).

In Figure 4 we show the corresponding times to 
bedside for winter (Figure 4b) and non-winter (Figure 
4a). Again, the time to bedside is greater for the demand 
during winter and generally decreases as more teams 
are used. However, there is an interesting trade-off 
between the efficiency in waiting time for teams across 
fewer locations and the fact that fewer locations means 
that, inevitably, some DGHs will be further away with 
correspondingly longer travel times. This trade-off is 
more pronounced in winter. For a lower number of 
teams, fewer stations is better as teams are a scarce 
resource and reducing waiting time becomes more 
important than reducing journey time. However, after 
18 or 19 teams, there are sufficient teams to provide 
a short waiting time, and journey times become more 
important. So while 8 is the optimal number of loca-
tions for 15 teams it is the worst number of locations 

Figure 2. DGH Allocation under different number of stations. With fewer stations, the Midlands, the East and London are served by 
one fewer station each.
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once you have 19 teams available. 9 or 10 stations are 
instead optimal, with little improvement in journey 
times after 19 teams.

We also see from Figure 4 that for the same number 
of teams available, time to bedside is higher in winter 
than out of winter (unsurprisingly, given increases in 
waiting time under higher demand). However, adding 
teams in winter could provide similar times to bedside 
as in non-winter: for instance, if 15 teams were avail-
able across 9 locations in non-winter, extra 4 teams in 
winter across 9 locations would achieve similar time to 
bedside.

5. Limitations

While our model has generated several useful insights, 
there are some limitations.

We currently assume that the mobilisation time, 
time for the team to get to the bedside from ambulance 
arrival at the DGH, and the treatment time at the bed-
side before transport to the PICU to be constant and the 
same for all locations. The mobilisation time and time 
to reach the child’s bedside are small compared to 
journey time but the time at bedside can be long (sev-
eral hours) and quite variable, depending on the con-
dition of the child. However, for informing decisions 
about location of services and number of teams at each 
service, which will depend most on demand and jour-
ney times, treating these variables as constant (using 
observed mean values) is reasonable.

The Kingman’s formula approximation presents 
the main limitation to our model. One problem 
posed by the approximation is the assumption of 
steady state. Depending on how fast a given scenario 

Figure 3. Average waiting time with respect to 8 to 11 PICRT stations and 15 to 22 total PICRTs with (a) average demand on 
a summer’s day and (b) average demand on a winter’s day. The waiting time is greater for winter, which has a higher demand for 
PICRT service, decreases with number of teams and increases with number of stations.
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converges to the steady state and the volatility of 
service demand, it may be reasonable to make this 
assumption and one could argue that assuming steady 
state is sensible for decisions on long-term service 
provision. However, if the system does not converge 
quickly, this assumption may not hold. In that case, 
the waiting time could be obtained using alternative 
methods or the framework must be adapted to the 
change in demand throughout the year. 
Furthermore, the heuristic approach to solve the non-
linearity introduced by the formula cannot guarantee 
the solution to be globally optimal.

Another limitation is the assumption of a First 
Come First Served protocol for attending new 
referrals. While this is normally the case, where 
two referrals come in at once and only one team 
is available, the sicker child is prioritised. We have 

not incorporated such complexity into our 
framework.

Finally, we have set up a simplified way to deter-
mine the number of teams to be allocated to each 
PICRT location. Having the distribution of teams 
included as a variable to the optimisation greatly 
increases the size of the problem and the computa-
tional times to solve it are not practical. However, 
future work will include designing a more efficient 
algorithm that incorporates the distribution of teams 
as a variable along with the other variables.

6. Discussion

We have developed an optimisation framework that 
incorporates stochastic journey times, team availabil-
ity and different levels of demand for paediatric 

Figure 4. Average time to bedside with respect to 8 to 11 PICRT stations and 15 to 22 total PICRTs with (a) average demand on 
a summer’s day and (b) average demand on a winter’s day. The time to bedside decreases with the number of teams. Fewer 
stations performs comparatively better when fewer teams are available while more stations performs comparatively better with 
more teams.
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intensive care retrieval services from each local district 
general hospital (DGH). We have used the framework 
to explore different scenarios with clinical collabora-
tors for different numbers of locations, different over-
all numbers of teams available, and different levels of 
seasonal and daytime demand.

Exploring the various scenarios showed that 
number of locations is less important than total 
number of teams, particularly when more teams 
were available. For a smaller number of teams, 
fewer locations tends to be better as more locations 
can then “double up” on teams. This is consistent 
with the general principle from queuing theory that 
it is better to have more servers and a single queue 
(more teams at one location) than many queues 
with a single server (more locations with one 
team each). Another important result is that for 
a given number of locations, we can inform deci-
sions to increase team capacity in the busy winter 
surge to keep times to bedside the same as for non- 
winter on average. Not only can we say how many 
more teams would be needed, but we can also 
inform where they should be allocated. 
Unsurprisingly, the locations with the highest 
demand tend to be those that are allocated the 
extra teams.

The other insight from the piece is that many 
different configurations of numbers of locations 
and teams give very similar performance in 
terms of time to bedside – within about 10 min 
of each other. Our next step is to work with our 
clinical collaborators to identify configurations 
that provide both good performance in terms of 
time to bedside, during both winter and non- 
winter, and are also pragmatic to implement 
given existing infrastructure. For instance, it 
would not be sensible to advocate changing 
many locations (and the fixed costs associated 
with such a move) for a marginal gain of a few 
minutes. This process will also be informed by the 
findings from the other strands of the DEPICT 
project such as family experience (Evans et al., 
2019). Finally, the successful development of this 
framework in close collaboration with clinical 
teams, and with interest from policy makers in 
the national Paediatric Intensive Care Society, 
should lead to increased use of these operational 
research methods to inform not just future con-
figuration options for PICRT services but also 
future decisions about the further centralisation 
(or not) of paediatric intensive care service more 
generally.
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