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Abstract
The inferior temporal cortex (ITC) contains neurons selective to multiple levels of visual categories. However, the mechanisms
by which these neurons collectively construct hierarchical category percepts remain unclear. By comparing decoding accuracy
with simultaneously acquired electrocorticogram (ECoG), local field potentials (LFPs), and multi-unit activity in the macaque
ITC, we show that low-frequency LFPs/ECoG in the early evoked visual response phase contain sufficient coarse category (e.g.,
face) information, which is homogeneous and enhanced by spatial summation of up to several millimeters. Late-induced high-
frequency LFPs additionally carry spike-coupled finer category (e.g., species, view, and identity of the face) information, which is
heterogeneous and reduced by spatial summation. Face-encoding neural activity forms a cluster in similar cortical locations
regardless of whether it is defined by early evoked low-frequency signals or late-induced high-gamma signals. By contrast,
facial subcategory-encoding activity is distributed, not confined to the face cluster, and dynamically increases its heterogeneity
from the early evoked to late-induced phases. These findings support a view that, in contrast to the homogeneous and static
coarse category-encoding neural cluster, finer category-encoding clusters are heterogeneously distributed even outside their
parent category cluster and dynamically increase heterogeneity along with the local cortical processing in the ITC.
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Introduction
Humans recognize individual objects by sorting them into mul-
tiple categories, which are often hierarchically structured. For
example, a dog is recognized more specifically by its breed (e.g.,
Dalmatian) or more vaguely as a 4-legged animal, depending
on the context. The present study aims to clarify the mecha-
nisms by which the hierarchical structure of perceptual catego-
ries is reflected in the co-ordinated activity of neuronal
populations in the brain. Accumulating evidence suggests that
the inferior temporal cortex (ITC) in the ventral visual system
of primates contains neural correlates of different levels of cat-
egory recognition, ranging from ordinate-level categorization
(Rosch 1978; Wang et al. 1996; Haxby et al. 2001; Hung et al.
2005; Kiani et al. 2007; Sato et al. 2013) to subordinate-level dis-
crimination (Wang et al. 1996; Sugase et al. 1999; Kreiman et al.
2000; Quiroga et al. 2005; Kriegeskorte et al. 2008; Huth et al.
2012; Sato et al. 2013). Neuroimaging and electrophysiological
studies have indicated that there is a mosaic of brain regions
highly selective to distinct coarse categories, such as faces
(Kanwisher et al. 1997; Tsao et al. 2003; Tsao et al. 2006; ; Sato
et al. 2013), places (Epstein and Kanwisher 1998), and other
objects (Bell et al. 2011; Ku et al. 2011; Sato et al. 2013) in the
ITC. Animal studies have also shown that neuronal activity in
the ITC is selective to different subcategories of face, such as
faces from specific viewing angles (Wang et al. 1996) and faces
of particular animal species (Sato et al. 2013). Some neurons in
the anterior/medial temporal lobe have been found to be sensi-
tive to facial identities regardless of the viewing angle (Quiroga
et al. 2005). However, there has been little evidence about the
ways in which neuronal representations of facial subcategories
(facial species, views, and identity) are spatially and temporally
organized, or how subcategory-encoding neuronal clusters, if
any, are topologically related to the coarser face category-
selective cluster in the ITC. The present study examined these
questions in 3 steps.

First, we investigated whether neurons selective to facial
subcategories form discrete clusters in the ITC. Specifically, to
estimate the spatiotemporal clustering of neuronal activity
representing ordinate (face) and subordinate (facial view, spe-
cies, and identity) categories, we test whether multichannel
patterns of multi-unit activity (MUA), local field potentials
(LFPs), or electrocorticogram (ECoG) across a region in the ante-
rior ITC contain information sufficient to predict distinct levels
of the sought category, using a decoding-based approach. The
scale of spatiotemporal summation has been shown to vary
across spiking activities, LFPs, and ECoG by direct comparisons
in rodent (Helmchen et al. 1999), cat (Contreras and Steriade
1995), and macaque cortices (Belitski et al. 2008; Buzsaki et al.
2012). Thus, the difference in the amount of category informa-
tion extractable from respective recorded data would be
expected to reflect the spatiotemporal scale and uniformity of
category-specific neuronal clusters (Kamitani and Tong 2005).
Furthermore, comparison of decoding accuracy with simulta-
neously acquired MUA, LFPs, and ECoG may enable a reasonable
prediction about whether category information of a particular
level is enhanced or reduced by spatial summation up to several
millimeters and could aid the understanding of spatiotemporal
clustering of the neuronal activity encoding different levels of
category information in the ITC. For simultaneous acquisition of
MUA, LFPs, and ECoG data, we combined a high-density surface
field potential recording technique recently established in our lab-
oratory (Matsuo et al. 2011; Toda et al. 2011; Nakahara et al. 2016)

and a high-density microelectrode-array technique (Dotson et al.
2015).

Second, we estimated the frequency dependency and tem-
poral stability of category-specific IT architecture, again using
the decoding approach. Previous studies have indicated that
individual IT neurons can change their category preferences
over the visual response time course, developing a preference
for finer categories (Sugase et al. 1999) and sharpening stimulus
tuning (Tamura and Tanaka 2001; Brincat and Connor 2006).
However, little is known about whether category-selective IT
architecture defined by frequency-specific synchronous activity
is stable or changes dynamically during the visual response. In
early visual cortices, LFPs, particularly the stimulus-locked
early theta and initial transient high-gamma power (“evoked
activity”), mainly reflect the initial synaptic inputs to the gran-
ular cortical layer and the immediately following polysynaptic
activity within the local recorded region (Mitzdorf 1985, 1987;
Belitski et al. 2008). In contrast, high-gamma power in the later
period (“induced activity”) reflects further processing in the
local recurrent network (Buzsaki et al. 2012). Recent studies
have reported that low-frequency LFPs carry spike firing-
independent information in the primate primary visual cortex
(V1; Belitski et al. 2008). In the current study, we examined
whether high-frequency LFPs carry category-selective informa-
tion that is tightly coupled with output spike selectivity, and
whether low-frequency LFPs carry spike-independent category
information in the ITC, as in V1. For this purpose, we compared
category-level–specific information embedded in early evoked
LFPs, late-induced LFPs, and MUA. Further, by examining the
time–frequency specificity of the decoded signals, we tested
whether elaboration of categorical cortical representations
through local processing within the ITC, from the early
“evoked” low-frequency–dominant architecture to the late
“induced” high-frequency–dominant architecture, depends on
the level of category.

Interpretation of the spatial scale of different category clus-
ters in the ITC by differences in decoding accuracy with LFPs,
MUAs, and ECoGs is reasonable (see comparison of LFP, but not
ECoG, to multiple levels of spatially summated MUA signal in
macaque IT) (Kreiman et al. 2006), but suggestive. Thus, in the
third part of the paper, we aimed to clarify the spatial and tem-
poral factors contributing to the category-level–dependent
“spatiotemporal neuronal clusters” identified by the decoding
analyses. Specifically, we focused on the LFP-based IT architec-
ture encoding the face category and its subcategories. We cre-
ated coarse (ordinate) category including faces, and facial
species, view, and identity (subordinate) category selectivity
maps from early evoked low-frequency LFPs and late-induced
high-frequency LFPs, and examined whether the actual cluster-
ing of neuronal activity with similar category selectivity in cor-
tical space contributed to “spatiotemporal clusters.” Further, to
clarify the spatial relationship between cortical representations
of a parent category and its subcategories, we tested whether
the clustering of facial subcategory-selective channels and the
strength of channel-wise subcategory selectivity are greater
within the parent face category domain than outside. It has
been previously reported that the spatial reach of the recorded
neural signal depends not only on spatial configuration but
also on the temporal coherence of the source signals because
phase matching of synaptic activity affects the spatial summa-
tion of the signal (Linden et al. 2011; Einevoll et al. 2013). By
analyzing the phase of evoked LFPs, we investigated whether
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spatial patterns and temporal coherence both contribute to the
separation of species and view category information.

Materials and Methods
Animals

Two Japanese macaque monkeys (Macaca fuscata), 1 male
(9.5 kg) and 1 female (5.7 kg), provided by the National
BioResource Project “Japanese Monkeys” by MEXT Japan, were
used for the experiments. All experiments were performed in
accordance with the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals. The experimental
protocol was approved by the Niigata University Institutional
Animal Care and Use Committee.

Task and Stimuli

Monkeys were trained in a visual fixation task (Fig. 1A) to keep
their gaze within a 2–3° fixation window, while a 0.2–0.3° fixation
spot was displayed on a 22-inch cathode ray tube monitor
(Mitsubishi Electric, Tokyo, Japan) at a viewing distance of 57 cm.
After 300ms of stable fixation, a stimulus image was presented
for 300ms, followed by a 600–900-ms blank interval. Two or three
stimuli were successively presented in a single fixation session.
Monkeys passively viewed the stimulus set and were rewarded
with a drop of apple juice for maintaining fixation over the entire
duration of the trial. Eye movements were captured with an
infrared camera system (i-rec https://staff.aist.go.jp/k.matsuda/
iRecHS2/index_e.html, date last accessed December 14, 2017) at
a sampling rate of 60Hz. The behavior of animals was controlled
by an in-house program written in MATLAB (Mathworks, Natick,
USA) and OpenEx (TuckerDavisTechnologies (TDT), Alachua, USA)
running on a Windows PC and a multicore digital signal processor
(RZ2, TDT), which make up a multichannel acquisition system
(System3, TDT). Stimuli were presented via the ViSaGe System
(CambridgeResearchSystem, Rochester, UK), which was controlled
by another in-house MATLAB program that also feeds stimulus
timing to TDT with a transistor-transistor-logic (TTL) pulse.

Anatomical MRI

To acquire structural images of the monkey brains, we used a 4.7-T
MRI scanner with 100-mT/m actively shielded gradient coils and a
volume radiofrequency (RF) coil (Biospec 47/40; Bruker, Ettlingen,
Germany). High-resolution, T1-weighted structural images were
scanned using a 3D MDEFT (modified driven equilibrium Fourier
transform) sequence (voxel = 0.5 × 0.5 × 0.5mm3). Throughout
the MRI session, we maintained the monkeys under anesthesia.
Anesthesia was introduced with an intramuscular injection of
medetomidine/midazolam (30 μg/kg and 0.3mg/kg, respectively)
and ketamine (0.5mg/kg) before MRI scans. During acquisition of
MRI, anesthesia was maintained with continuous intravenous
infusion of propofol (5–10mg/kg/h) and intramuscular injections
of xylazine (1mg/kg) as needed. Glucose-lactated Ringer’s solution
was given intravenously (5ml/kg/h). Heart rate, oxygen saturation,
and blood pressure were continuously monitored.

Recording Electrodes

The multimicroelectrode array used for MUA and LFP recording
was customized from a commercially available semichronic
microdrive system (SC60-1; Gray Matter Research, Bozeman,
USA). The array consisted of 60 microelectrodes arranged in a
grid configuration with 1.2-mm interelectrode spacing (Fig. 2A).

Each microelectrode was 75-μm-diameter iridium coated with
Parylene-C (Poly(chloro-para-xylylene)) having typical imped-
ance of 0.5MΩ measured at 1 kHz. ECoG electrodes were pre-
pared via micromachine techniques using 0.25-μm-thick gold
wiring and 10-μm-thick Parylene-C insulation with the record-
ing contacts exposed in a 100 × 100 μm square shape (Fig. 2C,
Supplementary Fig. S1B). ECoG contacts were arranged in a grid
shape matching the spatial configuration of the multimicroe-
lectrode array (Fig. 2A inset, Fig. 2C). The lead wires and
Parylene-C insulation were aligned in columns with slits
between them (Fig. 2C, Supplementary Fig. S1B). A pair of cable
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Figure 1. Visual stimuli and the presentation paradigm. (A) Two to three stimuli

were presented during a passive fixation task. (B) Stimulus set consisting of differ-

ent categorical levels. The coarse category set included faces, face parts, bodies,

body parts, and inanimate objects. The fine categories were the face images used

in the coarse category subdivided into species, views, and identities. The species

category set included human faces and monkey faces with frontal view angle and

gaze direction. The view and identity sets included human faces of 5 identities in 3

viewing angles. (C) Stimulus set used for monkey C, with the coarse category struc-

ture for faces, face parts, bodies, body parts, and inanimate objects that correspond

to the coarse categories of the stimulus set for monkey H shown in (B).
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bundles led from the ECoG probe to two 0.025-inch pitch 36-pin
connectors (Supplementary Fig. S1B, C; #A8828-001-vv; Omnetics,
MN, USA). Additional details on the ECoG-manufacturing process
have been described previously (Takeuchi et al. 2005; Toda et al.
2011). Gold–Parylene-C ECoG electrodes were attached to the

bottom of a silicone artificial dura (Fig. 2A), which resembled the
design of the “artificial dura” used in in vivo optical imaging tech-
niques (Arieli et al. 2002). Small protrusions of the insulation film
were inserted into the slits on the brim of the artificial dura and
fixed using a small amount of silastic rubber for mechanical
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Figure 2. Simultaneous ECoG, MUA, and LFP recording system for the macaque ITC. (A) ECoG electrodes attached to the bottom of a silicone “artificial dura,” titanium

chambers, and the microdrive are shown in their order of placement on the animal’s head. Also see Figure 2 and Supplementary Figure S1. (Inset) Schematic drawing of

ECoG (yellow) and microelectrode (black) spatial configurations on the cortex. Electrodes were placed on area TE of the ITC, covering the IT gyrus and extending marginally

below the anterior medial temporal sulcus (AMTS). The area in red corresponds to the Parylene-C insulation film, which is transparent (see photograph in C). (B) The elec-

trode assembly accessed the IT gyrus at a position and angle pre-allocated by an anatomical MRI scan. (C) Surface of the electrode assembly seen from below. The region

marked by a white square on the left is magnified on the right. Open arrowheads indicate ECoG contacts. Closed arrowheads indicate microelectrodes used for MUA and

LFP recordings, which penetrate the slits in the Parylene-C insulation and the overlaying silicone membrane. (D) Representative visual responses of ECoG, LFP, and MUA

from the same (adjacent) recording site. ECoG and LFP responses are shown in average waveforms (left) and normalized power spectrograms (right). MUA responses are

converted to spike density functions (Materials and Methods). Top right are stimulus images; colored frames do not appear as part of the stimulus but represent a corre-

spondence to the response waveforms and the response spectrograms. Shaded areas behind the waveforms and vertical dotted lines on the spectrograms show the stimu-

lus presentation periods. Scale bars, 25.4mm (A), 5mm (A inset), 20mm (B), and 1mm (C right).
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stability (Fig. 2A). ECoG probe and microelectrode array were
assembled together and implanted onto the cortical surface on
area TE of the IT cortex (Fig. 2A, B).

General Surgical Procedures

General procedures of the surgery largely overlap with those
described in a previous report (Matsuo et al. 2011). Anesthesia
was introduced with an intramuscular injection of medetomi-
dine (30 μg/kg) and ketamine (1mg/kg). Animals were artificially
respirated with oxygen and maintained in anesthesia with iso-
flurane (1–2%) during the surgeries. The venous line was
secured using lactated Ringer’s solution, and ceftriaxone
(100mg/kg) was dripped as a prophylactic antibiotic. Animals
received ketoprofen as an analgesic for 3 days, and the antibio-
tics were continued for 1 week after surgery. Oxygen satura-
tion, heart rate, and end-tidal CO2 were continuously
monitored (Surgi Vet; Smiths Medical PM Inc., London, UK)
throughout surgery to adjust the levels of anesthesia. Body
temperature was maintained at 37 °C using an electric heating
mat. The skull was fixed with a 3-point fastening device
(Integra Co., NJ, USA) with a custom-downsized attachment for
macaques and a vacuum-fixing bed (Vacuform, B.u.W.Schmidt
GmbH, Garbsen, Germany) was used to maintain the position
of the body. Following skin incision, zygomatic arch, temporal
muscle, and the upper portion of the mandible bone were
removed to facilitate the approach. A burr hole was opened in
the inferior temporal portion of the skull (Fig. 2B) by a perfora-
tor (Primado PD-PER; NSK, Tochigi, Japan) with an attachment
for infants (DGR-OS Mini 8/5mm R; Acura-Cut Inc., MA, USA).
Hemorrhage from the dura was controlled by a bipolar coagula-
tor (Bipolar SX-2001; Tagawa Electronic Research Institute,
Chiba, Japan).

Implant Surgery

We implanted the chronic recording device from the temporal
side (Fig. 2A, B). An artificial dura that has the ECoG probe
attached to its bottom (Fig. 2A, Supplementary Fig. S1A, D) was
placed onto the surface on area TE of the IT cortex, covering
the IT gyrus and extending slightly below AMTS (Fig. 2A, B),
through a window on the dura. A 3-piece metal chamber sys-
tem was used as the interface between the skull and electrode
arrays. The bottom chamber (Fig. 2A, Supplementary Fig. S1A, C)
fit tightly to the craniotomy window that was made on the skull.
Titanium anchor screws were placed on the skull, and dental
resin firmly attached the chamber to the skull. Canals on the
inner wall of the chamber and the protruding ridges on the outer
wall of the cylindrical part of the artificial dura aligned the ECoG
probe and the microelectrode array. The middle chamber was
slowly inserted into the inner wall of the cylindrical part of the
artificial dura (Fig. 2A, Supplementary Fig. S1A, D), whereas the
wall of the artificial dura was securely held up with a 5-0 nylon
thread. ECoG lead wires exited through an opening located
between the 2 chambers (curved arrows on the ECoG probe in
Fig. 2A, Supplementary Fig. S1D), and the 2 chambers were firmly
attached by screws. The opening made for the ECoG wire was
later closed with a quick-curing silastic rubber (kwik-sil; WPI,
Sarasota, USA). The microdrive was inserted into the second
chamber, and the third piece of the chamber was firmly screwed
to the second piece, thereby attaching the microdrive to the sec-
ond chamber. The microdrive and second chamber were pre-
cisely aligned by a pin located on the microdrive and a hole
located on the second chamber. The electrode assembly accessed

the IT cortex at a pre-allocated position and angle, which were
determined via an anatomical MRI scan (Fig. 2B). The sharp irid-
ium microelectrodes used for MU and LFP recordings penetrated
through the silicone membrane and went through the slit in the
Parylene-C insulation (Fig. 2C). ECoG contacts and microelec-
trodes were arranged in the same spacing and configuration but
shifted by half of the spacing distance. Electrodes were placed on
area TE of the IT cortex, covering the IT gyrus and extending
slightly below AMTS (Fig. 2A, B).

Daily Recordings

Daily recording experiments included 2 steps. First, the ani-
mal’s head was fixed in the chair and the quality of multi-unit
recording from the microelectrodes was quickly examined
qualitatively on the basis of the signal-to-noise ratio (S/N) of
the signal. We adjusted the depth of the electrodes that had
poor recording quality. However, to minimize the working time
of the animal and the risk of pushing down the cortex, we
adopted the following strategy when choosing the electrodes
that were to be manipulated. In the initial 2 weeks of the exper-
iment, up to 15 electrodes were manipulated per day. In later
sessions, we took the history of recording quality into account;
electrodes with a poor S/N history were left untouched, and
electrodes with an intermediate S/N history were adjusted, per-
suading only to the level matching that of the preceding
recording sessions. This allowed us to limit the electrode
adjustment time to 1–1.5 h per day.

Stimulus Image Set

The stimulus set consisted of images that belonged to 1 of 3
discrete “coarse” categories (face, body, and inanimate object)
and 2 additional categories, namely modified face (parts-scram-
bled face and face part) and body part (hand) (Fig. 1B). Images
that belonged to the face category were further divided into
subcategories (Fig. 1C) that overlapped partially. One was the
“species” category, which consisted of the human face group
and the macaque face group. Another was the “view” category,
which consisted of human face images with 3 different views,
with each view having 5 different identities. The same image
set was also used as the “identities” category, which was set up
by grouping the images into different identities, with each
identity having 3 different views.

Data Analysis Part 1: Data Acquisition, Frequency
Spectrum

Data Acquisition
MUA, LFP, and ECoG data were simultaneously recorded using
the TDT System3. MUA and LFP were recorded from the 60 pen-
etrating microelectrodes, and ECoG was recorded from the 60
surface-contact electrodes. Signals were fed to headstage
amplifiers (ZC 32 and ZC64, TDT) and a preamplifier/digitizer
(PZ2, TDT) and then fed into the digital signal-processing mod-
ule (RZ2, TDT). For multi-unit data, the signal was band-pass
filtered between 300 Hz and 5 kHz, and the time points at which
the waveform exceeded 3.7 × the standard deviation (SD) of the
signal were stored as multi-unit time stamps. For LFP and ECoG
data, the signal was initially stored in wide band (no digital fil-
tering). Acquired data were analyzed with in-house programs
that run on MATLAB. Visually evoked MUA was converted to
spike density function using kernel optimized for the spiking
rate of each of the respective stimulus condition (Shimazaki
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and Shinomoto, 2010; Fig. 2D). A multi-unit was considered to
be visually responsive if the firing rate in the visual stimulation
period and that in the prestimulus period differed with statisti-
cal significance (P < 0.05, 2-sample Kolmogorov–Smirnov test,
corrected for multiple comparisons using the Bonferroni
method by the number of stimuli).

Features of MUA
We used the frequencies of spiking activity of MUA as input
features for classification. Unless stated otherwise, spike rates
from multiple electrodes and time windows were combined.
We used MUA signals during a period from −50ms to 600ms
relative to the stimulus onset in each trial. The signal at each
microelectrode was sampled using a 100-ms time window that
was shifted by 50ms, and the spike rate in each time window
was calculated. The spike rates of all microelectrodes and the
12 consecutive time windows were used as the input features
to a decoder. The features used for characterizing the time
course of decoding accuracy were limited to a single time win-
dow. The spike rates of all electrodes in a single 100-ms sliding
time window were used. The time window was slid by 25ms,
and the decoding accuracy was calculated as a function of
time. The spike rates of a single electrode from the 12 time win-
dows were used for characterizing the decoding accuracy of
each single electrode. We excluded the MUA data that did not
yield significant visually evoked response, as defined by pair-
wise Kolmogorov–Smirnov (P < 0.05, corrected by Bonferroni
method with the number of stimulus images) between the
prestimulus period and the evoked period.

Features of ECoG and LFP Signals
For classification, we used the mean amplitudes and spectral
powers of the ECoG/LFP signals as input features. To compare
the decoding performance with that obtained using MUA, we
excluded the data from the ECoG (LFP) electrodes that overlay
(matched) the microelectrodes that did not yield good MUA sig-
nals. We used ECoG/LFP signals during a period from −50ms to
600ms relative to the stimulus onset in each trial. Unless stated
otherwise, the mean amplitudes and spectral powers from
multiple electrodes and time windows were combined. Two
types of features were computed from ECoG/LFP signals: one
was the total power summed across the frequency spectrum,
while the other was the wavelet power separately obtained for
respective frequencies. To obtain the total power, the signal at
each electrode was sampled using a 100-ms time window that
was shifted by 50ms, and the spectral powers of the 101 fre-
quency bands (10–1000 Hz, with 10-Hz intervals) in each time
window were calculated using Fast Fourier Transform. The
mean of all the frequency powers was taken as the “total
power” of the time window, and the total powers from all elec-
trodes and the 12 consecutive time windows were used as the
features of input into a decoder (Fig. 3B, C). To obtain the wave-
let power, the original signal was convoluted with a Gabor
(Morlet) wavelet, with the sinusoidal carrier frequencies in
theta (4 Hz), alpha (12 Hz), beta (24 Hz), low gamma (40Hz), and
high gamma (80 Hz). DC was the mean of the squared raw volt-
age values within the time window. The wavelet at each fre-
quency had a Gaussian envelope width (σ) that was equal to
the cycle period (frequency−1) of the carrier and had tail trunca-
tion at 2σ of the Gaussian envelope (double of the carrier cycle
period). The spectrograms obtained after the power of each fre-
quency was normalized to the power observed in the prestimu-
lus period (−200 to 0ms) are shown in Figure 2D. The mean of

the total power from the time bins in the range of 50–450ms
was used in multidimensional scaling (MDS) analysis (Fig. 3A).
In the analysis performed to compare stimulus selectivity and
decoding accuracy between frequency bands, the power of
each frequency was binned within the 100-ms time window
that was shifted by 50ms. For stimulus selectivity analysis
(Supplementary Fig. S2) and for generating the category selec-
tivity d′ map (Fig. 5), the response of the respective frequency
band was the mean of time bins in the 50–450-ms range, col-
lected for each channel. Stimulus selectivity was compared
between the trial-averaged data of respective measurement
methods. The d′ map was generated using the mean of odd
trials to compute the preferred category and using the even
trials to compute the d′ of the preferred category.

For frequency-dependent decoding analysis (Fig. 4A), power
from all electrodes and the 12 consecutive time windows for
the respective frequencies was taken as the features of input
into a decoder. The features used for characterizing the time
course of decoding accuracy were limited to a single time win-
dow (Figs. 4B and 6A, B). The mean amplitudes and powers of
all electrodes from a single 100-ms sliding time window that
was slid by 25ms were used, and the decoding accuracy was
calculated as a function of time. Phase-locking value (PLV) of
the theta frequency was computed from the theta wavelet
phase response (Fig. 6C). First, the phase of each channel at a
fixed post-stimulus time point was plotted as unit-length vec-
tors in the complex plane. Then, the PLV was computed as the
length of a vector-sum (resultant vector) of these channel-wise
theta phase vectors in the complex plane. Statistically signifi-
cant difference of the PLV values was evaluated by Mann–
Whitney U-test for species (human/monkey) categorization and
by Kruskal–Wallis test for facial view (right/center/left) catego-
rization. Pair-wise difference between the facial views was
tested with post-hoc Bonferroni–Dunn method. The fixed post-
stimulus time point was set to 75ms after the stimulus onset,
where difference between the LFP and ECoG time course
reached its maximum slope.

Data Analysis Part 2: Decoding

Decoding Analysis
Using a neural decoding approach, the efficacy of extraction of
visual object information from single-trial signals was com-
pared between ECoG, LFP, and MUA. The decoding performance
of each signal method was evaluated by pair-wise decoding
analysis. We selected a pair of object categories and selected
the trials in which the images included in those 2 categories
were presented. Using those trials, a binary classifier (decoder)
was trained to predict the category of a presented image on a
trial-by-trial basis and was tested (Kamitani and Tong 2005).
We applied this procedure to all pairs of the 3 coarse categories
(face, body, and inanimate object); modified face and body part
were not included in the decoding analysis because they do not
fully qualify as the face or body category. All pairs of the 3 view
categories, all pairs of the 5 identity categories, and the pair of
the 2 species categories were decoded similarly. Each binary
decoder consisted of a linear support vector machine (Vapnik
1998) implemented by LIBSVM (Chang and Lin 2011). Before
decoder training, we used a feature-normalization procedure
and a feature-selection procedure. In the feature-normalization
procedure, the values of each feature were z-transformed using
the sample mean and SD calculated using the training data set.
In the feature-selection procedure, the dimensionality of the
feature vector was reduced by selecting informative features on
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the basis of univariate analysis (F-statistics) applied to the
training data set. We ranked the features according to the
F-value that indicated differential responses to the categories,
and the top 100 features were used as input into the decoder.
In cases in which the number of original features used for clas-
sification was equal to or less than 100, we omitted this
feature-selection procedure and used all features. Decoding
performance was evaluated by cross-validation analysis. To
evaluate generalization performance for category classification
across different exemplars, we ensured that trials that corre-
sponded to the same visual stimuli were not included in the
training and test data sets (Vindiola and Wolmetz 2011). For
each category pair, we randomly selected N exemplars per cate-
gory. N was set to the number of the exemplars of the category
that had fewer exemplars than the paired category. We divided

the N × 2 exemplars into N groups, each of which contained 2
exemplars from the 2 different categories and divided the cor-
responding trials into N groups. (N − 1) groups were then used
to train a decoder, and the remaining group was used to evalu-
ate the trained decoder. This procedure was repeated until the
trials from all N groups were tested (N-fold cross-validation),
and the percentage of correct classification was calculated.

Decoding with Spatial Shuffling
For spatial shuffling, we shuffled the original wavelet power
response vectors (ECoG and LFP) or the spike rate response vec-
tors (MUA) in the spatial domain by exchanging the channel label
for each stimulus presentation trial. The range of spatial shuffling
varied from 4 to 60 channels (Supplementary Fig. S5B). We
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quantified the drop in decoding performance on the basis of the
difference in performance in the condition without shuffle and the
condition with a maximum 60-channel shuffle (Supplementary
Fig. S5). The maximum drop in decoding performance and the drop
rate (sharpness of the drop) were quantified in the samemanner as
that in the spatial shuffling. We also quantified the drop rate of
decoding performance with regard to shuffling. The decoding per-
formance was fit with a curve that was defined as y = A exp(−Bx) +
C (Supplementary Fig. S5A; x, size of the subarea used for shuffling;

y, classification performance; A, B, and C, constants [A > 0, B > 0,
and C > 50], B is the decay constant), using Matlab Curve-Fitting
Toolbox.

Decoding with Trial Shuffling
To characterize the effect of correlations among channels, we
performed the decoding analysis with trial-shuffled data. See
Majima et al. for a detailed explanation on the effect of trial

B

A

C
o
rr

e
c
t 
ra

te
 (

%
)

Coarse View

Identity

Chance

ECoG

LFP

0 100 200 300 400 500 600

MUA

Time (ms)

DC

0 100 200 300 400 500 600

0 100 200 300 400 500 600

highγγ

0 100 200 300 400 500 600

50

75

100

0 100 200 300 400 500 600

θ

100 200 300 400 500 600

0 100 200 300 400 500 600

Species

50

75

100

50

75

100

50

75

100

50

75

100

50

75

100

50

75

100

0

Coarse View

Species

Frequency bands

C
o

rr
e

c
t 

ra
te

 (
%

)

ECoG

LFP

MUA

Chance

Identity

50

60

70

80

90

100

50

60

70

80

90

100

D
C

θ β low
-γ

high-γ
α all

D
C

θ β low
-γ

high-γ
α all

Figure 4. Recording method- and frequency-dependent category decoding performance. (A) Feature vectors were raw event-related potential (displayed as DC) and respective

wavelet frequency powers (Materials and Methods). Decoding performances were separately computed for coarse, view, species, and identity categories for the respective fre-

quencies. Note that the number of features before feature selection was identical across methods and frequencies, with the exception of the “all” condition. An equal number

of features were selected across frequency bands, including the “all” condition. Each line color represents the performance of each recording method, which is denoted in

the caption. Error bars and red shadings around the MUA lines indicate the 95% confidence limit, assuming binomial distribution. (B) Time course of category decoding per-

formance across recording methods (ECoG, LFP, and MUA) and frequency bands (high-gamma, theta, and DC bands). Each colored line represents performance in each cate-

gory denoted in the caption. The details of the feature extraction and the decoding methods were equivalent to those described in Figure 3, with the exception that features

from the corresponding time bins were used at each time point (Materials and Methods). Shadings show the stimulus presentation period.

Alteration of Facial Subcategory Maps in IT Miyakawa et al. | 1423



shuffling to multichannel field potential data (Majima et al. 2014).
For category decoding with shuffled training data and original
test data, training data were shuffled across the trial for every N-
fold cross-validation procedure. For category decoding with shuf-
fled training and test data, the original data were first shuffled
across trial and processed for further decoding analyses.

Results
To explore and compare spatiotemporal organizations for ordi-
nate and subordinate categories in the ITC, we recorded neural
activity from 2 monkeys (Macaca fuscata) performing a passive
viewing task. In this task, the animal must maintain fixation
while 2 or 3 visual stimuli from a hierarchically categorized stim-
ulus set were sequentially presented (Fig. 1A). Visual stimuli were
classified into 3 “coarse (ordinate)” categories (face, body, and

inanimate object; Fig. 1B), and the face category was divided into
subordinate categories (Fig. 1C) based on “species” (human faces
and macaque faces). Human face category was further divided
into “view” (3 different views of human faces) and “identity”
(5 individuals regardless of the view angles) subcategories.

Our novel electrode assembly enabled simultaneous high-
density recording of MUA, LFP, and ECoG from a 12mm ×
12mm local region in the anterior ITC (Fig. 2A, B). MUAs (Fig. 2D
top left) and LFPs (Fig. 2D middle) were recorded from the same
penetrating microelectrode array (Fig. 2C closed arrowheads;
see black spots in Fig. 2A inset for the spatial arrangement).
ECoG (Fig. 2D bottom) was recorded from the surface electrode
array (Fig. 2C open arrowheads; see yellow spots in Fig. 2A inset
for the spatial arrangement) that covered the same local corti-
cal region. The microelectrodes penetrated the slits in the ECoG
probe, avoiding electrode contacts and lead wires (Fig. 2C).
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Spatiotemporal Homogeneity of Category-Encoding
Neural Activity Depends on the Ordinate Level of the
Category

We compared the amount of category information obtained from
the multichannel patterns of visually evoked MUA, LFP, and ECoG
signals that record neural activity with different scales of spatial
and temporal summation. MDS and decoding-based analyses
were performed by extracting the same number of features from
the respective recorded data sets: total powers from ECoG and
LFP and mean firing rate from MUA (see Materials and Methods).
MDS revealed that with all the 3 recording methods the visual
responses to coarse categories (faces, bodies, and inanimate
objects) showed a clear tendency to form discrete clusters
(Fig. 3A). To estimate the spatiotemporal scale and homogeneity
of functional neuronal clusters representing multiple levels of
visual category, we examined how reliably the stimulus category
was decoded from single-trial ECoG, LFPs, or MUA using a linear

support vector machine (Vapnik 1998). The generalization accu-
racy for the coarse category classification (Fig. 3B) was well above
the chance level of 50% for all 3 recording modalities (see
Materials and Methods). In particular, the single-trial ECoG and
LFPs carried sufficient information for predicting the coarse cate-
gory with a correct classification rate of 88.9% and 92.0%, respec-
tively. These were significantly higher (P < 0.05 and P < 0.001,
chi-squared test corrected for multiple comparisons) than the per-
formance obtained using MUA responses (87.4%), indicating that
summation of neural activity in a certain spatiotemporal scale
enhanced the coarse category selectivity. However, for subordinate
category classifications, MUA was the best of the 3 recording
methods (Fig. 3C, brown bars) – MUA (69.2%) and LFP (64.3%) car-
ried significant facial identity information, whereas ECoG (51.5%)
did not (Fig. 3C right). The correct classification rates were 79.2%
(MUA), 75.5% (LFP), and 73.0% (ECoG) for facial view angles (Fig. 3C
left), and 82.2% (MUA), 79.5% (LFP), and 74.6% (ECoG) for facial spe-
cies (Fig. 3C middle).

The superiority of MUA suggests that subordinate categories
are encoded in finer and/or more heterogeneous spatiotemporal
patterns. For example, the activity of neighboring neurons may be
tuned to different individuals (identity), where they could be con-
sidered similar in a sense that both are tuned to the face category.
Otherwise, population neuronal responses selective to facial iden-
tities may be temporally incoherent. In any case, columnar or
larger scale spatiotemporal summation of neuronal activity may
result in substantial reduction of the subordinate category infor-
mation, whereas the coarser category information was relatively
preserved or enhanced. Decoding of the species and the view cate-
gories had characteristics that (1) differed from the coarse category
decoding in that performance with MUA was superior to ECoG
and (2) differed from the identity decoding in that ECoG showed
moderately but significantly above-chance decoding performance.
Because these 2 categories considerably have intermediately fine
and/or homogeneously patterned cortical representations, we call
them “intermediate categories” from here on.

High-Frequency LFPs Specifically Contains Spike-
Coupled Category Information

In the analyses so far described (Fig. 3), category decoders used
total power of ECoG and LFP discarding frequency-specific fea-
tures for comparison of the detectability by LFP, ECoG, and MUA
with an equal number of features. However, it is plausible that
powers in different frequency ranges carry qualitatively inde-
pendent information having affinity to distinct types of the
source neural signal (e.g., either input- or output-related signal
of the recorded cortical region). Here, we tested a possibility that
low-frequency LFPs carry spike-independent and input-biased
category information whereas high-frequency LFPs carry cate-
gory information tightly coupled to the output spike firing in the
ITC, as has been reported for evoked visual responses in the V1
(Belitski et al. 2008). We first examined correlations of stimulus
selectivity, rather than category selectivity, across the recording
modalities in different frequency ranges (Supplementary Fig. S2).
We found that the stimulus selectivity of theta-band (4Hz)
ECoG power strongly correlated with that of theta-band LFP (R =
0.81, P = 1.8 × 10−35). High-gamma-band (80 Hz) ECoG and LFP
exhibited a significant (R = 0.38, P = 2.0 × 10−6) but weaker correla-
tion. In contrast, MUA correlated strongly with high-gamma-band
LFP (R = 0.61, P = 2.5 × 10−16), but not significantly with theta-band
LFP (R = 0.029, P = 0.72), theta-band ECoG (R = 0.010, P = 0.90), or
high-gamma-band ECoG (R = 0.049, P = 0.56). This method-
specific and frequency-specific correlation, observed in 2
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monkeys across channels (Supplementary Fig. S2B), indicates that
LFP carried MUA-coupled stimulus information in the high-
frequency powers, but not in the low-frequency powers. To
address whether the method and frequency dependency found in
the stimulus selectivity is also found in the category selectivity,
we decoded multiple level of categories from the stimulus-evoked
ECoG and LFP in each frequency range separately (Fig. 4A). For
ECoG-based coarse category decoding, the correct classification
rate was highest when low-frequency components such as DC
and theta power were used (Fig. 4A top left, black line). In higher
frequency ranges, the performance was above the chance level
but was less accurate, with beta power giving the minimum per-
formance. Although the overall frequency profile of LFP-based
coarse category decoding (Fig. 4A top left, gray line) was similar
to that of ECoG (Fig. 4A top left, black line), the classification rate
with high-gamma LFP was notably higher than high-gamma
ECoG, and comparable to the performance with theta LFP. This
finding implies that the high-gamma LFP contains MUA-coupled
category information, which the high-gamma ECoG does not
contain. In facial identification with LFP, the maximum classifi-
cation rate was obtained with high-gamma component (Fig. 4A
bottom right, gray line), which is also consistent with the idea
that high-gamma LFP carried fine category information coupled
with MUA.

Subordinate Category Decoding Depends on Recording
Method and Signal Frequency

The classification levels of coarse category were similarly high
regardless of whether low-frequency LFPs/ low-frequency ECoG
or high-frequency LFPs/MUA were used (Fig. 4A top left). In con-
trast, the classification level of intermediate category (facial spe-
cies and facial view) depended both on the spatial summation
specific to the recording method and on the frequency of the sig-
nals used as features for machine learning (Fig. 4A top right and
bottom left). Low-frequency components (e.g., theta power and
DC) of LFP and ECoG both classified the intermediate categories
significantly above chance. When the high-frequency component
(e.g., high-gamma power) was used, however, the classification
was significant with the less spatially summated LFP, but not sig-
nificant with the more summated ECoG (Fig. 4A top right and bot-
tom left). These results led us to a hypothesis that 1) for coarse
categories, the functional architecture based on high-frequency
LFPs may be similarly organized as those based on low-frequency
LFPs/ECoG and that 2) for the intermediate, species and view
categories, the low-frequency field signals form neural clus-
ters with intermediate spatiotemporal homogeneity whereas
the high-frequency field signals were relatively distributed or
heterogeneous, forming no electrocorticographically detect-
able homogeneous clusters, in the macaque ITC.

Double Dissociation of View and Species Decoding
Between Early Theta ECoG and Late High-Gamma LFP

There is an interesting contrast between the temporal profile of
the facial species decoding and facial view decoding. In the early
“evoked” period of the visual response (100–200ms after the stim-
ulus onset), where the initial synaptic inputs and polysynaptic
activity should dominate (Mitzdorf 1985), the correct classification
rate with theta ECoG (Fig. 4B top center) was higher for view
(green) than for species (blue). The classification rate with early
high-gamma ECoG (Fig. 4B top left) was much lower but exhibited
similar tendency. In this early evoked period, however, there was
no difference between view and species decoding with theta LFP

(Fig. 4B middle center) or high-gamma LFP (Fig. 4B middle left). In
contrast, in the late “induced” period of the visual response
(300–500ms after the stimulus onset), species decoding with
high-gamma LFP was slightly superior to view decoding (Fig. 4B
middle left). Superiority of species decoding to view decoding was
observed neither with high-gamma ECoG nor with theta LFP/
ECoG. These findings suggest that category information extract-
able from the activity of neural clusters in the ITC not only
depends on the method-specific spatial summation and the fre-
quency of neuronal synchrony but also on the latency, namely
the early “evoked” period and the late “induced” period, under-
scoring the necessity to scrutinize the category-specific functional
architecture of early evoked theta LFP/ECoG and late-induced
high-gamma LFP separately.

Mapping Category-Selective “Homogeneous Clusters” in
the Cortical Space

To test whether the category-encoding “spatiotemporally homo-
geneous neural clusters” implied by the decoding analyses corre-
spond to the actual clustering of neurons with similar category
selectivity in the cortical space, we examined spatial patterns of
category selectivity maps (d′ maps) generated from the early
low-frequency LFPs and the late high-frequency LFPs for both
monkeys (Fig. 5). We found that the category-specific decoding
performance with LFPs (Fig. 4) approximately corresponded to the
strength of channel-wise selectivity (d′ value depicted by the
diameter of colored circles in Fig. 5), which we speculate to reflect
a local, columnar-scale (several hundred micrometer) summation
of similar category-selective neuronal activity. In contrast, the
decoding performance with ECoGs appeared to reflect a larger,
across-channel (several millimeter) homogeneity of category
selectivity in early low-frequency LFP maps. Typically, the coarse
category maps exhibited a group of face-selective channels in the
anterior part of the chamber for monkey H (Fig. 5A top), and in
the dorsal part for monkey C (Fig. 5A bottom). The early theta-
defined view categorization map was dominated by a large “left-
view”-selective homogeneous region except for a small region in
the dorsal portion within the chamber (Fig. 5E left). Similarly, the
early theta-defined species categorization map exhibited a “mon-
key face” selective dorsal region for monkey H (Fig. 5B top left), or
a larger but weakly selective “human face” region for monkey C
(Fig. 5B bottom left). The late gamma-defined categorization maps
tended to have more distributed form for both view and species
categorization (Fig 5B, E left). Interestingly, the channels selective
to particular facial species, facial views, and facial identity
spanned not only within but also outside of the face-selective
region (see light-colored region in Fig 5B, E, and F).

These results suggest that not only the spatial clustering but
also spatially spanned homogeneity of low-frequency neuronal
activity is the physiological correlate of the “spatiotemporal
homogeneous clusters” implied by the decoding-based analysis.

Spatial Factors Partially Explain Dissociation Between
View and Species Decoding

Does the spatial clustering give a reasonable account on the
double dissociation of the view and species decoding between
the early theta ECoG and late high-gamma LFP? The left-view–

selective cluster in the view early theta d′ map (Fig. 5E left) was
larger but more heterogeneous than the human-selective clus-
ter in the species d′ map (Fig. 5B left). The larger spatial span of
the signal source is advantageous, but the heterogeneity of the
signal source is disadvantageous for decoding with ECoG
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signals that go through extensive spatiotemporal summation.
To quantify the net effect of larger but more heterogeneous
clustering of the view-selective signals in comparison to the
species-selective signals, we conducted decoding analysis
using spatially shuffled LFP data (Supplementary Fig. S5), where
the channel assignment within various-size subareas of the
chamber was randomly shuffled (Materials and Methods;
Supplementary Fig. S4A). As the shuffled area size increased,
the early theta LFP-based decoding performance decreased
more gradually for view than species, which was exemplified
by the smaller spatial decay constant (Fig. S4B inset). The
results indicate that the positive effect of the larger cluster
size overrode the negative effect of its heterogeneity, which
may explain why loss of the decoding performance with the
early theta ECoG compared with the early theta LFP was
milder for view than species categories (Fig. 4B top center,
Fig. 6A).

In the post-stimulus–induced period (after 300ms), decoding
performance with high-gamma LFP was higher for species than
for view (Fig. 4B middle left), whereas no species or view infor-
mation was detectable in high-gamma ECoG (Fig. 4B top left).
The spatial shuffle analysis confirms that the late high-gamma
LFP-based decoding was more robust for species than view, as
indicated by the smaller spatial decay constant (Fig. S4B).
These results are consistent with the late high-gamma d′ maps
showing a more mosaic-like distribution for view-selective
channels than species-selective channels (Fig. 5B, E).

Temporal Factors Contributing to Category-Selective
Functional Neural Clusters

We next evaluated the possibility that reasons other than the
spatial clustering, particularly temporal synchrony of neuronal
population, may also significantly contribute to the formation
of spatiotemporally homogeneous functional cluster sensitive
to decoding. To test this possibility, we analyzed phase-locking
of the evoked low-frequency LFP signals across channel, which
may reflect synchrony of the inputs in the recorded region
(Fig. 6C). The phase of the evoked theta LFP was investigated at
75ms after the stimulus onset, where the time derivative of the
differential between LFP and ECoG decoding performance
reached a maximum (Fig. 6B). The PLV (see Materials and
Methods) were significantly different across the view category
members (right/center/left; P = 4.2 × 10−7, Kruskall–Wallis test),
specifically between the right and center views (P = 0.0015, post-
hoc Bonferroni–Dunn test) and between the right and left views
(P = 2.9 × 10−7), but not between the center and left views (P =
0.19). The phase variability was not significantly different
across species category members (human/monkey; P = 0.069,
Wilcoxon test). These findings suggest that temporal synchrony
was another significant factor contributing to the higher decod-
ing accuracy for view compared with species using the early
theta ECoG.

Facial Subcategory-Specific Alteration of Categorical
Architectures in the ITC

For the coarse category level, the face-selective domains in the
early low-frequency d′ map and the late high-frequency d′ map
overlapped (Fig. 5A) showing significant correlation (R = 0.62,
P = 2.7 × 10−8; Fig. 5C), supporting the hypothesis (1) that the
functional IT architecture for coarse category based on the
high-frequency LFPs is similarly organized as those based on
the low-frequency LFPs/ECoG. For the intermediate (facial

species and view) categories, the d′ category selectivity maps
defined by the early theta LFP and those defined by the late
high-gamma LFP were distinct (Fig. 5B, E). Neither the species
(R = 0.17, P = 0.18; Fig. 5D) nor the view (R = 0.24, P = 0.12;
Fig. 5G) categories indicated significant correlation between the
early and the late d′ values.

In the d′ maps of the early theta LFP, there was recognizable
spatial homogeneity (Fig. 5B left and Fig. 5E left). In contrast,
the d′ map of the late high-gamma LFP was more spatially het-
erogeneous (Fig. 5B right and Fig. 5E right). Specifically, species
maps exhibited clusters both smaller in size and weak in selec-
tivity (illustrated by small patches), indicating local mixture of
neuronal activity selective to distinct species (Fig. 5B right). To
quantify this alteration of category selectivity maps, we
counted the number of category-selective channels in the early
theta and the late high-gamma d′ map. The channels were con-
sidered category-selective if |d′|>1. For monkey C, human-
selective channels dominated in the early theta d′ map (monkey/
human = 0/29), but the dominance declined significantly in the
late high-gamma d′ map (monkey/human = 5/3, P = 0.00013,
Fisher’s exact test). For monkey H, on the other hand, monkey-
selective channels dominated in the early theta d′ map (monkey/
human = 6/0). The dominance also tended to decline, although
this change did not reach statistical significance (monkey/human
= 1/2, P = 0.083). The facial view map and the facial identity map
exhibited mosaic-like distribution of channels selective to differ-
ent views (Fig. 5E right) and to different identities (Fig. 5F), indicat-
ing extensive heterogeneity of category selectivity.

These results were consistent with the hypothesis (2) that
for the intermediate categories, the low-frequency field signals
are intermediately clustered and/or spatiotemporally homoge-
neous, whereas the high-frequency field signals were relatively
distributed and/or heterogeneous. The finding that the inter-
mediate category maps with the late high-gamma LFP did not
contain highly homogeneous clusters may explain why ECoG-
based decoding with a large-scale spatial summation was dis-
advantageous with late high-gamma signals.

Discussion
In the present study, we developed a method for estimating the
spatiotemporal clustering of neural activity by decoding simulta-
neously acquired MUA, LFP, and ECoG data. The results revealed
that neuronal signals selective to the facial view and species cate-
gories formed intermediately homogeneous spatiotemporal clus-
ters in the ITC, whereas signals selective to the facial identity
category did not form clear spatiotemporal cluster. The category
information extractable from LFP and ECoG data depended on the
temporal frequency of the neural synchrony and changed over
time between the early “evoked” period and the late “induced”
period. Specifically, low-frequency evoked LFP and ECoG data
contained correlated and spike-independent category informa-
tion, whereas the high-frequency–induced LFP data carried infor-
mation that was tightly coupled to spike firing. Importantly, in
contrast to coarse category maps, which had highly homoge-
neous clusters that were robust across early low-frequency sig-
nals and the late high-frequency signals, the facial view and
species category maps dynamically changed from moderately
homogeneous organization in early low-frequency signals to
more heterogeneous and distributed organization in late high-
frequency signals (see Figure 7 for schemas).

Face is a core category most frequently used for assessing
the categorical organization of the pattern/object vision system
(what pathway) in the macaque IT cortex. Thus, although the
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main findings of the present study are primarily on the categor-
ical architecture of the face category and its subcategories, we
believe that our conclusions provide significant insights into
the neural principle representing natural hierarchical object
categories in the macaque IT cortex. These findings suggest
that the category-level–dependent functional organization of
spike-coupled high-gamma signals is shaped through local cor-
tical circuits within the ITC.

Distributed Neural Organization for Perceptually
Hierarchical Categories

The visual stimuli in the current study were hierarchically struc-
tured so that faces of 5 individuals comprised the coarser “human
face” category, and human faces and macaque faces comprised
the coarsest “face” category. Here, we consider 2 potential models
of the topological relationship between the face-selective neuronal
cluster and the facial subcategory-selective neurons in the ITC.
First, a “hierarchical representation model,” a natural extension of
the taxonomy of perceptual categories, assumes that the ordinate-
level face category-selective neural cluster is a linear sum of the
facial subcategory-selective neurons. In other words, facial
subcategory-selective neurons are subpopulation of the parent
face-encoding cluster. An alternative “distributed representation
model” assumes nonlinear relationship between the parent cate-
gory and its subcategories, indicating that the facial subcategory-
selective neurons are distributed outside as well as inside the
face-selective neuronal cluster. Comparison of Figure 5A, B, E, and
F reveals that the facial subcategory-encoding sites (human
face-selective sites or left-view-selective sites) were not subpo-
pulations of the face-selective region. For example, a group of
left-view-selective sites in the d′ map with early theta signal was
found in the posteroventral region within the chamber (Fig. 5E
left), located outside the face-selective cluster (Fig. 5A top left).
Sites selective to monkey faces partially overlapped with the
face-selective cluster, but the peak position showed a postero-
ventral shift (Fig 5B top left). Likewise, some identity-coding sites
(Fig. 5F) located outside the parent human face-selective cluster,
particularly in the late high-gamma maps. Quantitative analyses
shown in Figure 5C, D, G, and H and Supplementary Figure S3
show no significant correlations between the face category selec-
tivity and facial subcategory selectivity except for facial view
selectivity defined with early theta signals in a monkey. Taken
together, our findings do not provide support for the hierarchical
representation model, but for the distributed representation
model. As the recording chamber was placed above the posterior
end of the anterior middle temporal sulcus with the center of
the chamber approximately 15mm (monkey C) and 18mm
(monkey H) anterior in Horsley–Clark stereotaxic coordinates,
the face-responsive area in our study likely corresponded to the
“AL face patch” (Tsao et al. 2008) and the “face-domain” (Sato
et al. 2013). Indeed, in the coarse category d′ maps obtained with
MUA and LFP recording, the face-selective sites spanned over
several millimeters on the cortical surface (Fig. 5A), consistent
with previous descriptions (Tsao et al. 2008; Sato et al. 2013). The
present results suggest that in addition to the mirror-symmetric
representation of side-view faces reported by Tsao et al., distrib-
uted representation outside the AL face patch may encode facial
view information. Similarly, additional information from a region
outside the AL face patch may encode the species of the target
face (Fig. 7B), as suggested by a previous report (Sato et al. 2013).
Tsunoda et al. previously suggested a nonadditive relationship
between neural representations of an object and representations
of its parts in the macaque ITC (Tsunoda et al. 2001). From these

findings, it is reasonable to suggest that such distributed and
nonlinear representation may be a general rule governing the
representation of category hierarchy in the ITC as well. The
current data indicate that subordinate-level facial information
is sparsely scattered within the ITC, spanning out of the
ordinate-level face-selective domain rather than discretely
clustering within it, as illustrated in a partially speculative
schema in Figure 7B.

Face

Body

A

B

Induced γEvoked θ

Coarse

Intermediate

Induced γ

Evoked θ

Human face
> Monkey face

Coarse
category

Face

Body

Figure 7. Schema showing transformation of category-selective functional maps

in area TE. (A) Stability and homogeneity of coarse- (upper) and intermediate-

(lower) level category-selective clusters in the evoked and induced period as

defined with the theta and gamma activity, respectively. Dark and bright patches

depict clusters for distinct categories. Contrast of the patches represents degree

of category selectivity. The coarse category-encoding cluster is homogeneous

and is stable across evoked and induced period. The intermediate category-

encoding cluster is homogeneous with weaker category selectivity in the evoked

period but becomes more heterogeneous over time. (B) Evoked theta (upper) and

induced gamma (lower) maps showing topological relationships between the

coarse category clusters (bounded by black lines) and the intermediate species

category clusters (bounded by cyan dotted lines; only the human face category is

depicted for clarity) in TE. Face-selective area have neurons responding to face

of specific species (human or monkey face) or to face irrespective of species

(depicted by face illustrations). Neurons preferring hairless skin-like texture over

haired fur-like texture can help differentiate human and monkey. Not only neu-

rons preferring face of a particular species but also combination of species-

nonspecific face (face illustrations) and skin/fur texture can differentiate human

from monkey, or vice versa. Note that fur/skin were not used as visual stimuli in

the present study but are shown here to indicate potential nonfacial cues to dis-

criminate between monkey faces and human faces.
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Effects of Temporal Coherence on Representation by
Spatially Summated Signals

A characteristic category-specific reduction of decoding accuracy
by spatial summation was found in the early evoked time win-
dow; view and species category information were decoded with
equivalent accuracy with early theta LFP in monkey H, but only
the performance of species decoding was reduced with early
theta ECoG (Fig. 6A). The results are consistent with the finding
that in the early evoked period, the neural population represent-
ing species subcategories exhibits relatively smaller but more
homogeneous organization than the population representing
view subcategories (Fig. 5B top left, Fig. 5E left). In addition to the
spatial configuration of neural activity, a temporal effect may also
have contributed to the robustness of view decoding in ECoG. An
analysis of temporal phase information revealed that the theta
signal for the right-view face arrived at the recorded region in a
less correlated manner than the center- and left-view faces
(Fig. 6C bottom). This may have provided right-view–specific sig-
nal reduction and robust distinction across views in the spatially
summated ECoG signal. We speculate that the nonlinearity men-
tioned in the preceding section have arisen, at least in part, from
the temporal structure of IT neural responses. This interpretation
is consistent with the idea that the spatial reach of the recorded
neural signal depends not only on the spatial configuration but
also on the temporal coherence of source signals, since phase
matching of synaptic activity affects the spatial summation of
the signal (Linden et al. 2011; Einevoll et al. 2013).

Contribution of Higher Order Correlation

In multichannel neural data, important information can be embed-
ded in higher order correlation across channels (Maynard et al.
1999). To address this issue, we conducted 2 types of decoding
analyses by manipulating the covariance structure of the data. In
the first analysis, we trained the category classifiers with trial-
shuffled data and classified the original data (Fig. 8A). This proce-
dure maintains the trial average but destroys the trial-wise
covariance structure of the training data. Thus, the outcome per-
formance may reveal the amount of loss that would occur if the
trial covariance was negligible in training the category classifiers.
Classification performance significantly decreased compared
with the original data, indicating substantial trial covariance in
the ECoG/LFP data (Fig. 8A). Several factors may explain this
covariance: 1) noise unrelated to neural activity, 2) visual stimu-
li–unrelated neural activity fluctuation, and 3) visual stimuli–
related neural activity fluctuation. The latter 2 factors could arise
from subthreshold membrane voltage fluctuations because MUA
performance was not affected by the shuffling procedure. In the
second analysis, we used trial-shuffled data for both training
and testing of the category classifiers (Fig. 8B). This second data
set resembles data obtained with single-unit recording experi-
ments, where serially acquired data are pooled for use in multi-
variate analysis. These data may be plotted as mean response
vectors but should not be plotted as trial-wise data unless zero
covariance is assumed (Hung et al. 2005). The classification per-
formance of coarse category and identity decoding in the shuf-
fled LFP data differed significantly from the original data, and
coarse category decoding in the shuffled ECoG data also differed
significantly from the original data (Fig. 8B). These results suggest
that the classification performance of simultaneously acquired
LFP data might be underestimated unless taking significant
information embedded in the higher order correlation across
channels into account.

We observed several phenomena that cannot be explained by
higher order correlation nor by temporal coherence. For example,
late high-gamma LFP-based decoding performance was higher for
species than view (Fig. 4B middle left), even though the channel-
wise d′ appeared to be higher for view compared with species
category (Fig. 5B right, 5E right). In addition, there was no clear
difference between view and species in higher order correlations.
A possible explanation is that there was more redundant infor-
mation across remote LFP recording sites for view than for species
category, giving rise to increased species decoding performance in
multivariate decoding analysis.

Implications for Brain–Machine Interfaces

ECoG is becoming an increasingly popular tool for brain–
machine interfaces because it is associated with minimal tissue
damage, long-term stability, large area coverage, and fewer eth-
ical barriers for human applications (Schalk and Leuthardt
2011). However, its brain-decoding capability compared with
that by neuronal spiking activity has not been studied in detail.
The current study demonstrates that the reliability of category
decoding by different recording methods depends on the type
of target category. ECoG-based decoding was surprisingly reli-
able for coarse category information. LFPs can reliably predict

*** 

*** 

* 

C
o

rr
e

c
t 

ra
te

 (
%

)

ECoG

LFP
M

UA

50

60

70

80

90

100

ECoG

LFP
M

UA
ECoG

LFP
M

UA
ECoG

LFP
M

UA

Coarse View Species Identity

Normal

Trial shuffled

A

B

*** 
** 

*** 

*** 
*** *** 

** 

50

60

70

80

90

100

C
o

rr
e

c
t 

ra
te

 (
%

)

Normal

Trial shuffled

ECoG

LFP
M

UA
ECoG

LFP
M

UA
ECoG

LFP
M

UA
ECoG

LFP
M

UA

Coarse View Species Identity

Figure 8. Category decoding with trial shuffling. (A) Decoding performance with

shuffled training data and original test data. The shuffled performance shows

the amount of loss when the classifier is built, neglecting a trial covariance

structure in the data. (B) Decoding performance with shuffled training and test

data. The shuffled data set resembles a case where a serially acquired data is

later pooled (e.g., pooled single-unit data) for use in multivariate analysis. *P <

0.05; **P < 0.01; ***P < 0.001, Chi-squared test with Bonferroni correction for mul-

tiple comparisons.

Alteration of Facial Subcategory Maps in IT Miyakawa et al. | 1429



multiple level categories including identity of the individual
faces. This is valuable because the current method of identity
decoding is not a simple discrimination of one particular stim-
ulus image from another (Hung et al. 2005) but accounts for the
generalization of personal identity regardless of viewing angle.
High-classification performance of LFP-based decoding is pre-
sumable because it can detect both high-frequency local oscil-
lations and across-area slow voltage synchronization. Although
acquisition of LFP signals relies on invasive microelectrode
penetration, it can be acquired stably for a long period. Overall,
the current results suggest that LFP-based decoding could pro-
vide a powerful neurophysiological and prosthetic tool for read-
ing out a wide range of targeted information from a small
cortical window.
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