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ABSTRACT
Reinfection with SARS-CoV-2 is not frequent yet the incidence rate of it is increasing globally 
owing to the slow emergence of drift variants that pose a perpetual threat to vaccination 
strategies and have a greater propensity for disease reoccurrence. Long-term protection 
against SARS-CoV-2 reinfection relies on the induction of the innate as well as the adaptive 
immune response endowed with immune memory. However, a multitude of factors including 
the selection pressure, the waning immunity against SARS-CoV-2 over the first year after 
infection possibly favors evolution of more infectious immune escape variants, amplifying 
the risk of reinfection. Additionally, the correlates of immune protection, the novel SARS-CoV-2 
variants of concern (VOC), the durability of the adaptive and mucosal immunity remain 
major challenges for the development of therapeutic and prophylactic interventions. 
Interestingly, a recent body of evidence indicated that the gastrointestinal (GI) tract is another 
important target organ for SARS-CoV-2 besides the respiratory system, potentially increasing 
the likelihood of reinfection by impacting the microbiome and the immune response via 
the gut-lung axis. In this review, we summarized the latest development in SARS-CoV-2 
reinfection, and explored the untapped potential of trained immunity. We also highlighted 
the immune memory kinetics of the humoral and cell-mediated immune response, genetic 
drift of the emerging viral variants, and discussed the current challenges in vaccine 
development. Understanding the dynamics and the quality of immune response by unlocking 
the power of the innate, humoral and cell-mediated immunity during SARS-CoV-2 reinfection 
would open newer avenues for drug discovery and vaccine designs.
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Introduction

The novel coronavirus, SARS-CoV-2, which came into 
the limelight during December 2019 have resulted 
over 236 million cases worldwide and around 4.8 
million deaths as of 8th October 2021, according to 
the COVID-19 Map of the Johns Hopkins Coronavirus 
Resource Center. The landscape of immunological 
responses against SARS-CoV-2 infection is rapidly 
emerging in the context of disease pathogenesis, 
immunological response, virus evolution and vaccine 
development [1, 2] however an ongoing conundrum 
for clinicians and research scientists across the globe 
is the strength and durability of the immune response 
(Innate versus Cellular and Humoral Immunity). This 
issue of long term COVID-19 immunity gets further 
mystified by reinfection cases raising fresh concerns 
over the currently administered vaccines and their 
ef f icacy.  With two major outbreaks by 
Coronaviruses-SARS-CoV in 2002–2004, and Middle 
East respiratory syndrome (MERS-CoV) in 2012 [3], 
it was reported that cross-protective immunity might 
exist against SARS-CoV-2 [4, 5]. However, this belief 
of preexisting cross-reactive immunity has been a 
matter of debate since the start of the pandemic [6, 
7]. In general, immune memory is the primary source 
of long-term protective immunity [8, 9] and its rep-
ertoire/strength would help in determining protection 
against reinfection, disease risk, and vaccine efficacy. 
The immune response to viral infections can generally 
be classified into two categories with regard to the 
duration of the response – infections associated with 
(1) short-term and (2) long-term immunity. Sterilizing 
immunity develops against viruses such as measles 
and mumps wherein the infection induces a robust 
and long-lasting immunity while infections with flu 
and cold viruses result in short-term protection, and 
repeat infections, both host immune defense as well 
as the virulence attributes of the virus playing piv-
otal roles.

Infection caused by seasonal coronaviruses confers 
short term immunity [10] indicating that the novel 
SARS-CoV-2 falls in the first category of viral infec-
tions as investigations have revealed that COVID-19 
infections induce immunity only for a short duration 
of 6–8 weeks. SARS-CoV-2 reinfections were a rare 
phenomenon a few months ago, pointing to the fact 
that SARS-CoV-2 infection may provide some level 
of protection against reinfection however, this scenario 
is now slowly changing as increasing evidence of 
greater number of reinfections emerge all over the 
world. Earlier studies on human and non-human 

primate models documented elevated levels of neu-
tralizing antibodies against SARS-CoV-2 spike protein 
that offer considerable protection against reinfection 
[11–14]. Natural immunity developed after 
SARS-CoV-2 infection could be as effective as those 
with vaccination as primary infection declined risk 
of reinfection by 84% in 7 months in a large multi-
centric SARS-CoV-2 Immunity and Reinfection 
Evaluation study in the United Kingdom [15]. The 
rate of suspected reinfection was reported to be 1.9% 
in the UK SIREN study and 4.5% in Indian ICMR 
study [15, 16]. However, the possibilities of an expo-
nential increase in reinfection rates may not be ruled 
out with waning immunity and evolving genetic 
mutants of SARS-CoV-2. The recent emergence of 
SARS-CoV-2 variants, within a span of a few months, 
especially in the UK (20I/501Y.V1, VOC 202012/01, 
or B.1.1.7) [17], the South Africa (20H/501Y.V2 or 
B.1.351) [18],and the Brazil (P.1) [19] variants strongly 
points toward rapid emergence of quasi species. It is 
tantalizing to speculate, albeit with a strong certainty, 
that the error prone RNA dependent RNA polymerase 
introduces mutations in genes targeted by the host 
immune response, a point of evidence is failure of 
the Astra Zeneca/Oxford vaccine to protect against 
the South African variant [20, 21]. Further evidence 
came from a Brazilian study that documented for the 
first time, a reinfection case where the patient recov-
ered from the first SARS-CoV-2 infection got rein-
fected with a new viral variant harboring E484K spike 
mutation, well known for its infectivity and immune 
escape from neutralizing antibodies [22]. Additionally, 
a sudden surge in the novel SARS-CoV-2 strains har-
boring mutations (N440K, E484K, and V911I) in India 
and their rapid circulation in different states across 
the Indian continentis a cause of worry [23] (Figure 1). 
This raises serious concerns over reinfection as mul-
tiple mutations in the spike protein may lead to 
immune evasion. As the number of reinfection cases 
continue to rise, it is crucial to analyze the genetic, 
immunological and clinical profile of the reinfected 
individuals along with characterization of the viral 
genomes to understand the role of host and viral 
factors.

The dynamic behavior of SARS-CoV-2 infection, 
assessment of reinfection rates, impact of genetic vari-
ants on immune memory kinetics and its implication 
on global vaccination drive are some of the key areas 
highlighted in this review. This review will also 
address the potential challenges in immune memory 
development againstSARS-CoV-2 infection, and pres-
ent perspective for the development of novel 
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COVID-19 vaccine strategies in light of the increased 
SARS-CoV-2 reinfection cases.

Reinfection: a natural phenomenon

Reinfection is a natural phenomenon since ancient 
times. Across the vertebrate host species, evolution of 
the adaptive immune system, both humoral as well 
as cell mediated immunity, had surely been fine-tuned 
by reinvading microbes. The presence of innumerable 
antigen specific B and T cells, both resting as well as 
circulating immune memory cells capable of enhanc-
ing huge repertoire, is a clear proof of these events. 
In general, reinfection is defined as second time expo-
sure of a person with the same or a different variant 
of the pathogen/virus after a period of recovery from 
illness [24] as shown in Figure 2. However, consid-
ering the over 236 million recorded SARS-CoV-2 cases 
globally as of now, the total number of documented 
SARS-CoV-2 re-infection and breakthrough infection 
cases worldwide is not that high. The expanding 
COVID-19 vaccine coverage may further reduce the 
chances of SARS-CoV-2 re-infection and breakthrough 
infection.

The reinfection has been defined in different ways 
by different agencies and authors:

1.	 The Center for Disease Control and Prevention 
[25] uses the following investigative criteria to 
define reinfection with SARS-CoV-2:

2.	 Detection of SARS-CoV-2 RNA (with Ct values 
<33 if detected by RT-PCR) >90 days after the 
first detection of viral RNA whether or not 
symptoms were present and paired respiratory 
specimens from each episode that belong to 
different clades of virus or have genomes with 
>2 nucleotide difference per month.

3.	 Cases in which detection of SARS-CoV-2 RNA 
is present 45–89 days apart are considered rein-
fections if the second symptomatic episode had 
no obvious alternate explanation for the 
COVID-19-like symptoms or a close contact 
w i t h  a  p e rs on  k now n  to  h ave 
laboratory-confirmed COVID-19 and paired 
respiratory specimens are available with the Ct 
values < 33 and sequence diversity noted above.

4.	 The European CDC has proposed whole-genome 
sequencing and phylogenetic analysis to 

Figure 1. S chematic representation of the genetics and natural evolution of SARS-CoV-2: SARS-CoV-2 virion is covered by three 
different proteins (S, M, E) and the genome RNA comprises of the 5′UTR consisting of frameshift ORF1a and ORF1b that forms 
16 NSPs and the 3′-end encodes for 4 structural proteins (S, N, M, E) and 9 accessory proteins (Orf3a, Orf3b, Orf6, Orf7a, Orf7b, 
Orf8, Orf9b, Orf9c, Orf10). Four genetic variants of SARS-CoV-2 called as VOCs which includes the B.1.671.2 (Delta variant, first 
report from India), B.1.1.7 (alpha variant, first report from Britain), B.1.351 (beta variant first report from South Africa) and P.1 
(gamma variant first report from Brazil) have evolved due to mutations in the 5′ UTR. Abbreviations: Spike glycoprotein (S); 
Membrane (M); envelope (E); N (nucleocapsid protein); Open reading frame (ORF); Untranslated Region (UTR); Nonstructural 
Proteins (NSPs); Variant of Concern (VOC)
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confirm diagnosis of SARS-CoV-2 reinfection 
however, the access to these expensive resources 
might not be the possible in developing coun-
tries [25]. Likewise, efforts were also made by 
Yahav et  al. who proposed three different cri-
teria (laboratory, clinical and epidemiological) 
to redefine SARS-CoV-2 reinfection as the 
definition might differ based on different situ-
ations [24].

True reinfection in case of SARS-CoV-2 needs 
more clarity and a clear distinction should be made 
from prolonged viral shedding and reactivation. Viral 
shedding is very common for respiratory viruses such 
as influenza wherein the virus replicates inside 
patient’s body and is released into the environment 
for a long period of time. Recently, Li et  al. reported 
prolonged shedding of SARS-CoV-2 RNA with a 
median duration of 53 days and a maximum of 
83 days in 36 patients [26]. Additionally, Yuan et  al. 
showed that 14.5% (25/172) of discharged COVID-19 
patients had positive RT PCR test after a negative 
RT-PCR test [192]. SARS-CoV-2 RNA shedding stud-
ies are still in their infancy as the virus has recently 
transgressed the host species barrier. Silent spread 
of SARS-CoV-2 infection by asymptomatic patients 
for an extended period of time has been supported 
by many studies [27–29]. Moreover, there is a strong 
possibility that the reverse-transcription PCR 
(RT-PCR) might give false negative results due to 

different sampling source, kit’s sensitivity/specificity 
and the sampling procedure [30, 31] (Figure 2). It 
has also been demonstrated that stool samples were 
found positive in many cases after the respiratory 
samples tested negative for RT-PCR, indicating pro-
longed viral shedding and potential transmission via 
fecal-oral route [26, 32]. In fact, gastrointestinal tract 
has been reported to act as a reservoir for 
SARS-CoV-2 when the nasal and throat swab test 
negative for SARS-CoV-2 [33–36]. To define true 
reinfection cases, isolation of the complete virus, 
phylogenetic analysis of the isolated strains from dif-
ferent episodes, proof of virus infectivity in both 
episodes by virus culture from multiple specimens, 
time elapsed between two episodes and immunolog-
ical characteristics at both time points will enable a 
clear vision of reinfection pathology [25, 37]. The 
odds of reinfection cases to be viral reactivation is 
also a possibility. Latency is commonly reported for 
herpes viruses like cytomegalovirus (CMV) and 
Epstein Barr virus (EBV)and also in Human 
Immunodeficiency Virus [38, 39]. Coronaviruses, 
although not known for latency, its genome consist-
ing of many unknown and yet to be explored func-
tional genes, have exhibited strange traits in human 
pathogenesis. Ye et  al. reported the first possible case 
of viral reactivation in 9.1% discharged patients pre-
viously diagnosed with COVID-19 [40]. Likewise, 
Yadav et  al. in a recent finding showed reactivation 
of SARS-CoV-2 in a child with neuroblastoma after 

Figure 2.  Potential risk factors for SARS-CoV-2 reinfection. In a healthy population exposed to SARS-CoV-2, many individuals 
develop COVID-19 symptoms with different levels of disease severity. Three primary testing strategies namely RT-PCR, Rapid 
Antigen Testing and Immunoglobulin (Ig) ELISA differing in specificity, sensitivity and speed of testing are the preferred methods 
for diagnosing SARS-CoV-2 infection. Infected individuals with mild severity usually recover within 7-10 days but viral persistence 
may last for a longer duration. Waning immunity post infection, evolution of novel genetic variants and old age are some of 
the major risk factors for SARS-CoV-2 reinfection.
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recovering fully from the first infection. Genetic anal-
ysis showed that the virus isolated from the two 
episodes were not distinctly different, a possible case 
of virus reactivation during the course of chemother-
apy [41]. Interestingly, Siqueira et  al. added another 
dimension to the prevailing dilemma and reported 
existence of multiple viral variants in dynamic fre-
quencies during the first clinical episode, with variant 
selection over time in SARS-CoV-2 infections [42]. 
Yet, it is still hard to clearly distinguish reactivation 
from reinfection and many different criteria’s/param-
eters should be taken into account while diagnosing 
SARS-CoV-2 reinfection cases.

In most of the SARS-CoV-2 reinfection cases, 
reinfection was caused by different viral clades sug-
gesting that the immunity generated against one 
variant did not provide full protection against 
another viral variant. However, the reinfection case 
reported from the State of Nevada, US) [43], infec-
tion was caused by the viral strain responsible for 
both episodes, and there could be many other cases 
not yet published where the reinfecting strain might 
be similar to the first variant. Genome sequencing 
is a pre-requisite to define reinfection cases how-
ever, only about 5% of samples are sequenced as 
sequencing is a big expensive task. In most of the 
reported cases of SARS-CoV-2 reinfection cases, the 
antibody titers in infected patients declined over a 
period and offered only partial protection, most 
patients with repeat infections, recovered after the 
second exposure, immunocompetent young patients 
with no comorbidity had a milder reinfection epi-
sode while elderly immunocompromised individuals 
with comorbidities were more vulnerable to develop 
severe disease pathology. Further evidence in sup-
port of this came from a recently published 
population-level observational study from Denmark 
where Hansen et  al. used the national PCR-test data 
from 2020 to estimate protection toward repeat 
infection with SARS-CoV-2. They reported that the 
first SARS-CoV-2 infection confers approximately 
80–83% protection in people younger than 65 for 
about six months while the level of protection is 
lower for people ≥65 at approximately 47% [44]. 
The findings are in concordance with other cohort 
studies from the UK, Qatar and the USA that 
reported reinfection to be a rare phenomenon [45–
47]. An interesting observation about the reinfected 
individuals was that they did not have detectable 
antibodies even after the onset of symptoms, imply-
ing the absence of robust neutralizing antibody 
response in the first exposure that could have 
resulted from down play of the host immune system 

or from the presence of a strong virus induced 
immune regulation [48, 49]. There could be com-
bination of host’s innate and adaptive immunolog-
ical as well as viral factors that may drive severity 
of symptoms following re-infection. It includes the 
extent of long-term transcriptional, epigenetic and 
functional reprogramming to reduce innate inflam-
matory response during re-infection; sufficient res-
ervoirs of specific memory like NK cells, memory 
T and B cells and their rapid expansion following 
reinfection; the presence of neutralizing antibodies 
in sufficient titers in blood and respiratory tract 
during re-infection; the specificity of neutralizing 
antibodies that may cross-reactive with variants; 
non-healed respiratory tract integrity and germinal 
centers; Immune-senescence and others. These fac-
tors will be discussed in detail within the upcoming 
chapters of this review.

It is also important to mention that besides these 
documented reinfection cases, undocumented mild or 
asymptomatic cases may also exist. SARS-CoV-2 RNA 
Testing on nasopharyngeal specimen by RT-PCR is 
done for screening asymptomatic reinfection, similar 
to that for screening SARS-CoV-2 infection. The dura-
tion of negative time period between two positive 
tests should differ by 45–89 days as per CDC guide-
line. Population-based survey in Qatar estimated that 
only 9.3%(95% CI: 7.9–11.0%) had a documented 
PCR-confirmed infection prior to antibody testing, 
suggesting reinfection (undocumented infections) 
could possibly be ten-fold higher than documented 
[50]. Hence, it is important to comprehend the 
patho-physiology of Covid-19 reinfection to better 
understand the protective immune response. Studies 
must be designed to delineate the factors responsible 
for host immune protection as well as a clear under-
standing of how the virus establishes a reinfection in 
the partially protected individuals.

Host virus interaction (the host immune 
response)

Innate immune response

Response to viral infection
The innate immune system acts as a frontline warrior 
and offers triple-layer protection (physical barrier, 
cells, molecular factors) against invading pathogens. 
Mucous secretion and production of anti-microbial 
compounds by epithelial cells lining the upper respi-
ratory tract [51] help in preventing infection. However, 
if the pathogen is able to breach this physical barrier, 
then to counteract viral replication and limit the viral 
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spread, the second layer of protection comes into 
action. It is made up of innate immune cells such as 
dendritic cells that express pattern recognition recep-
tors (PRRs) and recognize the pathogen-associated 
molecular patterns (PAMPS) [52–54]. Toll-like recep-
tors (TLRs), retinoic acid-inducible gene I (RIG-I)-like 
receptors (RLRs), and nucleotide-binding oligomeri-
zation domain (NOD)-like receptors (NLRs), are 
important PRRs [55, 56]. This event triggers a cascade 
of downstream signaling pathways leading to induc-
tion of nuclear transcription factors, in particular 
nuclear factor κB (NF-κB), interferon response factor 
3 (IRF3), and IRF7 [57]. They eventually stimulate 
the expression of type I and III interferons (IFNs) 
and other proinflammatory cytokines (IL-1β, IL-6, 
IL-8, IL-12, and tumor necrosis factor [TNF] as shown 
in Figure 3 [53, 58, 59]. Type I IFNs further increase 
expression levels of endosomal TLRs, including TLR3, 
TLR7, TLR8, and TLR9. IFNs mediate the recruitment 
of other immune cells such as neutrophils, natural 

killer cells and also help in activating the adaptive 
immune system [60].

SARS-CoV-2 infection: Spread from upper to lower 
respiratory tract
SARS-CoV-2 infection begins when the spike glyco-
protein trimer [2] of the virus binds to the 
angiotensin-converting enzyme 2 (ACE2) highly 
expressed by the nasal epithelia lining the URT and 
decreased levels in the lower respiratory tract (LRT) 
as depicted in Figure 3 [61–63]. Nasal-associated lym-
phoid tissue (NALT) in the URT serve as an inductive 
site for the initiation of the mucosal immune response 
(Figure 3) and for active virus replication during the 
early days of infection [64]. The existence of a 
well-organized mucosa-associated lymphoid tissue 
(MALT) like tonsils, adenoids, Waldeyer’s ring in the 
URT inhibits the majority of the respiratory invaders 
however, a few that are able to enter the sacrosanct 

Figure 3. R ole of Mucosal and Gut Immunity in SARS-CoV-2 Infection: As shown in the schematic representation, the upper 
respiratory tract (URT) have specialized lymphoid structure called Nasal Associated Lymphoid Tissue (NALT). The mucosal epithelial 
cells covering NALT express high levels of ACE2 receptors which facilitates binding of spike protein of SARS-CoV-2. The lamina 
propria consisted of a mixed population of T cells, B cells, NK cells, macrophages and dendritic cells while the lower respiratory 
tract (LRT) is possibly an immune-privileged site as a single layer of pneumocytes forms the healthy alveolus and has very few 
immune cells in the vicinity. Type 1 and type II pneumocytes express ACE2 receptors and SARS-CoV-2 infection damages the 
respiratory epithelium, widening the interstitium followed by accumulation of fluid in the alveoli along with cellular debris. 
Immune cells such as neutrophils, macrophages migrate from blood vessels to infected alveolus and leads to hyperinflammation/
cytokine storm, thrombosis along with disruption of the “Gut-lung axis.” The gut associated lymphoid tissue (GALT) consists of 
multi-follicular Peyer’s patches, plasma cells, T cells present in the lamina propria, and mesenteric lymph nodes. Dendritic cells 
capture microbial antigen and carry it through lamina propria, submucosa to draining mesenteric lymph node where they 
interact with helper T cells (Th cells). Th cells differentiate into Th1, Th2, regulatory T cells (Tregs), Th17 cells and memory T cell 
pool which then migrate to the gut and respond against SARS-CoV-2 infection.
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space induce severe inflammation resulting in acute 
red hepatization of the lungs as seen in S. pneumoniae 
or H. influenza pneumonia infections [65, 66]. On 
the other side, the lower respiratory tract (LRT) is 
(almost) an immune-privileged site, and the alveoli 
have evolved into a highly specialized organ for blood 
gas exchange. The walls of alveoli contain an extensive 
network of blood vessels and are made of a single 
layer of cells protected by a few immune cells circu-
lating through the interalveolar space (pulmonary 
capillaries). Lack of an organized lymphoid structure 
makes it one of the most susceptible binding sites for 
SARS-CoV-2 where the virus is capable of causing 
substantial damage. Goblet cells that lubricate lungs 
by mucous production, and ciliated cells that clear 
the debris from the lungs are the preferred sites for 
virus binding and replication as they display the high-
est expression levels of the ACE2 gene in the URT 
(Figure 3) [62, 67–69]. Many other receptors including 
Neuropilin-1 have also been suggested as entry points 
for SARS-CoV-2, however, their role in COVID out-
come or immune dysregulation is still under investi-
gation [70, 71]. ACE2 receptors are not exclusive to 
the lungs, they are also expressed by other tissues as 
well, including the heart, kidney, pancreas, brain, and 
gastrointestinal (GI) tract [69, 72].

SARS-CoV-2 infection: Impaired innate immune 
response
Upon binding, the virus enters inside the host cell by 
receptor-mediated endocytosis as shown in Figure 4 
followed by RNA release into the host cell cytoplasm, 
production of viral proteins, and formation of repli-
cation/transcription complexes [72, 73]. The important 
PRR involved in recognizing SARS-CoV-2 is yet to 
be determined, previous findings on SARS-CoV points 
to endosomal TLR3 and TLR7 as well as RIG-I to be 
the potential candidates [74, 75]. The innate immune 
system gets activated through these PRRs which then 
turns on NF-kb signaling cascade in monocytes, plas-
macytoid dendritic cells (DCs), and macrophages. An 
in-silico study predicted that TLR4 possesses a strong 
binding affinity to S protein and is also one of the 
most efficient innate immune receptors for induction 
of inflammatory responses [76]. The pathogenic role 
of TLR4 in inducing excessive inflammation in 
COVID-19 patients has also been further confirmed 
by other groups [72, 77, 78]. Similarly, pro-inflammatory 
cytokines such as IL-2, IL-6, TNF-a, GM-CSF, and 
IFN-γ are produced in higher amounts in severe 
COVID-19 patients [79, 80], and IL-6 correlated pos-
itively with disease severity [81, 82]. Once activated, 

many different innate immune players come into 
action, for instance, enhanced peripheral blood neu-
trophil/lymphocyte ratio is regarded as a strong pre-
dictor of mortality [83–85]. Neutrophil infiltration in 
pulmonary capillaries leads to acute capillaritis, 
extravasation into the alveolar space, and immuno-
thrombosis/capillary leak syndrome in other organs 
[86] (Figure 3). Other innate immune cells including 
macrophages, monocytes, and NK cells have been 
found to be equally affected by SARS-CoV-2 infection 
[80] although a connecting link between these events 
has not been found yet. This innate-immune mediated 
damage results in the accumulation of protein-rich 
edema fluid within the pulmonary interstitium and 
alveoli eventually leading to hypoxia [87, 88] 
(Figure 3).

SARS-CoV-2 infection: Innate immune evasion
To promote its own replication and transmissibility, 
SARS-CoV-2 deploy several tactics to evade host anti-
viral defense. One way is by shutting down the host 
cellular machinery and the evidence for this came 
from an in-vitro and in-vivo study where SARS-CoV-2 
evaded the immune response using its nonstructural 
protein 1 (Nsp1) that blocked retinoic acid-inducible 
gene I–dependent innate immune responses and 
inhibited host cellular translational machinery [89]. 
Besides that, many different SARS-CoV-2 genes by 
inhibiting the translocation of IRF-3 and/or NFkB to 
the nucleus act as strong suppressors of the innate 
immune response. Furthermore, modulation of den-
dritic cell function, dysregulation of IFN-γ production, 
exhaustion of NK cell-mediated cytotoxicity [90] and 
antigenic variation [91] are some other ways to escape 
the innate immune defense. Likewise, hyperactivation 
of the complement cascade by SARS-CoV-2 triggers 
a vicious cycle of “hypercytokinaemia” [92, 93] that 
aids in elevating levels of pro-inflammatory modula-
tors, such as C3a and C5a [94–96] (Figure 4) and 
increases the susceptibility to develop the severe acute 
respiratory distress syndrome [97]. Therefore, this 
modulation of the innate antiviral response induced 
by both host and viral factors gives a good head start 
to the viral replication in the URT and 
hyper-inflammation in the lungs, resulting in condi-
tions that lead to COVID-19 severity. Additionally, 
hyper-inflammation in the respiratory bronchioles will 
increase the probability of airway collapse and open-
ing, further increasing virus-laden aerosol generation 
[98]. As supported by recent investigation though 
lacking perfect experimental data, it is highly likely 
that the droplets and aerosols exhaled from the alveoli 
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Figure 4.  Comparative immunological response (Innate vs adaptive) in SARS-CoV-2 infection and reinfection. SARS-CoV-2 attach 
to ACE2 receptor highly expressed by the respiratory epithelium that eventually results in epithelial cell damage as the virus 
replicates and these damaged cells in turn activates different part of the immune system. Following activation, immune cells 
differentiate into dendritic cells and macrophages. SARS-CoV-2 antigens acts on endosomal TLR3 and TLR7 which then turns on 
NF-κB signaling cascade in monocytes, plasmacytoid dendritic cells (DCs), and macrophages to produce Type 1 interferon for 
activation, differentiation and expansion of CD4+ T cells. There is also production of pro-inflammatory cytokines such as IL-6 
and activation of complement cascade with release of C3a and C5a. Neutrophils via extracellular traps and reactive oxygen 
species cause mucositis, capillaritis, thrombosis and capillary leak syndrome. Antigen presenting cells carrying viral antigen 
interact with T cells and activate adaptive immunity. CD8 + T cells perform cytotoxic function while CD4+ T cells differentiate 
into Tfh, Th2, Th1, Th17 and Tregs. Tfh and Th2 facilitates B cell proliferation which further differentiate into antibodies producing 
plasma cells. CD4+/CD8+ T and B cells undergo extensive exhaustion leading to lymphocytopenia during an active SARS-CoV-2 
infection, however, few cells still undergo clonal expansion to form memory cell pool [63]. During SARS-CoV-2 reinfection tha-
thappens possibility by different viral clade or a virulent strain, the innate immune cells might have trained immunity to limit 
viral replication. However, there are many unanswered immunological questions during SARS-CoV-2 reinfection [1] Is there an 
induction of trained immunity during SARS-CoV-2 reinfection? If yes, then how would the trained immune cells behave during 
high viremia and in the presence of highly virulent SARS-CoV-2 strain? [63] How is the NF-κB signaling cascade and production 
of type 1 interferons regulated during the second encounter? [3] What are the epigenetic changes and how they impact the 
immune response during reinfection? [4] What component determines disease severity: immune tolerance or trained immunity? 
SARS-CoV-2 reinfection might result in heightened activation, differentiation and expansion of the T and B cell memory pool 
triggering adaptive immune response. The magnitude and breadth of the secondary humoral immune response necessary to 
contain SARS-CoV-2 reinfection needs further investigation.
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are more infectious than the droplets from the other 
airway sites and these droplets/aerosols possibly help 
in the airborne route of SARS-Cov-2 transmission 
[99–101].

With the emergence of the new SARS-CoV-2 vari-
ants, it is essential to better understand the innate 
immune response not only localized in the respiratory 
tract but also at other locations such as the GI tract. 
In a recent ex-vivo investigation, Chu et  al. demon-
strated robust activation of the innate immune 
response against SARS-CoV-2 infection in the human 
intestinal tissue including the activation of both type 
I and type III interferons [102]. However, this response 
has been found to be largely attenuated in human 
lung cell lines [103, 104], lung organoids [105], ani-
mals [104], and patient lungs [104].

SARS-CoV-2 reinfection: Are we missing the 
“trained immunity”?
Immune memory, a classical feature of adaptive 
immunity now also envelopes innate immunity as 
emerging evidence supports the notion that innate 
immunity can maintain memory, termed as “trained 
immunity or innate immune memory” and plays a 
key role in improving host protection against reinfec-
tion [106, 107]. Prior exposure to vaccines such as 
Bacille Calmette–Guérin (BCG) or pathogenic com-
ponents have been shown to trigger trained innate 
immunity conferring cross-protection against many 
different infections [108, 109]. An integrated network 
of epigenetic rewiring and metabolic reprogramming 
allow innate immune cells such as myeloid and natural 
killer (NK) cells to remain in a “trained” state by 
allowing increased accessibility to proinflammatory 
genes, facilitating a heightened immune activation and 
long-term protection against reinfection (Figure 4) 
[51, 107, 110–112]. Investigations deciphering the 
clinical and immunological profile of SARS-CoV-2 
reinfection cases are still in their early phases as most 
of the research efforts are primarily directed toward 
unlocking the SARS-CoV-2 immune paradox. During 
an asymptomatic/mild SARS-CoV-2 reinfection as is 
the case in most of the re-infected patients, the innate 
immune response is expected to respond to the viral 
antigen in a very similar fashion as the first challenge 
(Figure 4) however, the critical factors that would 
determine the outcome of the response definitely rely 
on the viral load, the virulence of the viral strain, 
and the strength of the innate immune memory. In 
a cohort of patients re-infected with SARS-CoV-2, 
Fintelman-Rodrigues et  al. reported enhanced innate 
immune response during the first episode but, 

insufficient to provide protection against reinfection. 
From this preliminary investigation, it is clear that 
reinfection is a natural phenomenon that occurs fre-
quently than previously thought and re-challenge may 
be necessary to achieve full protection against the 
virus though more conclusive studies are required to 
prove it [113].

In the case of children, it has been observed that 
they show a good level of resistance against 
SARS-CoV-2 infection globally possibly due to a 
highly efficient trained immunity developed through 
heavy vaccination against viral infections such as 
measles, mumps, rubella, and influenza [114, 115]. 
Along the same line, Yao et  al. reported induction 
of long-lasting trained immunity in alveolar macro-
phages following acute respiratory viral exposure in 
mice models [116] pointing to the fact that trained 
immunity is very much active even in the lungs. 
However, in the case of SARS-CoV-2 reinfection, 
dysregulated activation of trained immunity possi-
bility leads to either hyper inflammation or immune 
tolerance, depending on whether trained immunity 
is amplified or dampened as shown in Figure 4. It 
is not clear to what extent this trained immunity 
will affect susceptibility to reinfections. In the con-
text of SARS-Cov-2 reinfection, the most important 
questions that need to be addressed are: what spec-
trum of innate immune cells develop trained immu-
nity and what is the duration, kinetics, and robustness 
of this immune response after the first challenge? 
Does the trained immunity differ significantly at 
different anatomical sites such as the gut or lungs? 
Precise mechanisms that allow trained cells to 
undergo epigenetic and metabolic reprogramming to 
induce an effective trained immunity should be eval-
uated during SARS-CoV-2 infection and reinfection 
(Figure 4). Clearly, more studies are needed to inves-
tigate the impact of trained immunity on SARS-CoV-2 
reinfection as they would lay a strong foundation 
for better vaccination strategies and effective ways 
to trigger long-lasting trained immunity against 
SARS-CoV-2.

Adaptive immune response

Response to viral infection
T cell mediated cellular immune responses and B 
cell-mediated humoral responses form an integral 
component of the adaptive immunity. Innate immune 
players such as DCs and macrophages, also referred 
to as antigen-presenting cells (APC) help in inducing 
this response. Secretory immunoglobulin A (s-IgA), 
IgM and IgG are major neutralizing antibodies present 
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at the mucosal sites lining the nasal cavity (NALT) 
and URT during primary viral infections. However, 
these mucosal antibodies persist for a much shorter 
period of time than serum antibodies, which might 
explain in part the reason for shorter immunity dura-
tion to mucosal pathogens in particular, SARS-CoV-2 
than systemic viral infections [117, 118]. Following 
antigen activation in the draining secondary lymphoid 
tissues, primed B and T cells migrate from NALT to 
lungs (BALT) where they further differentiate into 
antigen-specific, and memory cells. Within the B cell 
compartment, some activated B cells become 
short-lived plasma cells, while others become 
long-lived memory cells [119, 120]. Virus specific 
CD8+ T cells kill infected/abnormal cells through 
cytotoxic effector functions, and CD4+ T cells migrate 
to inflammatory sites to offer helper/effector functions 
(Th1/Th2/Th17), regulate inflammatory response 
(T-reg) and provide support to B cells (Tfh cells) 
(Figure 4) [121]. These long-lived antigen specific 
memory B/T cells can initiate strong recall responses 
with an accelerated kinetics during reinfection 
[122, 123].

SARS-CoV-2 infection: Impaired adaptive immune 
response
SARS-CoV-2 infection leads to a high level of het-
erogeneity in the breadth and magnitude of the adap-
tive immune response [9, 124]. Reduction in both 
CD4+ and CD8+ T cells (lymphopenia) along with 
functional impairment and elevated levels of activa-
tion/and or exhaustion markers are some of the key 
features of COVID-19 disease severity, which resolves 
w he n  p at i e nt s  re c ove r  [ 7 9 ,  1 2 5 – 1 2 9 ] . 
SARS-CoV-2-specific CD4+ and CD8+ T cells mem-
ory responses have been demonstrated in the majority 
of patients recovered from COVID-19 even in the 
absence of detectable circulating antibodies [130–
132]. Additionally, majority of SARS-CoV-2 specific 
CD4+ T cells exhibited a central memory phenotype 
while CD8+ T cells were skewed toward a more effec-
tor phenotype [1, 133, 134]. Notably, the frequency 
of regulatory T cells (T-regs) were reduced in severe 
COVID-19 patients with an exponential increase 
Th-17 population. Together, this dysregulation in the 
regulatory, the effector and the memory arm of the 
immune system shifts the subtle balance leading to 
severe inflammatory conditions, and perhaps also 
contributes to SARS-CoV-2 reinfection [135, 136]. To 
date, it remains largely unclear how well the 
SARS-CoV-2 T cell memory is established and how 
the memory T cells respond upon re-exposure to 
viral antigens. The magnitude and quality of 

secondary T cell immune response during reinfection 
will however depend on wide variety of factors like 
severity of primary infection [137], viral load [1], 
fraction of T cells converted into memory phenotype, 
time duration between primary infection and rein-
fection [43, 48, 138], status of co-morbidities [139, 
140] and other yet to be discovered factors. 
Furthermore, old age could also contribute to greatly 
compromise the generation of naive T cells and TCR 
diversity, in both CD4+ T cells and CD8+ T cell 
populations [141].

Like the T cell compartment, the humoral compo-
nent has also been shown to be significantly affected 
by the SARS-CoV-2 infection [142, 143] and is char-
acterized by a marked expansion of the plasmablasts 
and depletion of IgM memory B cells [144] in 
extremely severe cases. Studies have confirmed that 
detectable levels of IgM, IgG and IgA could be found 
in the blood circulation up to 8 months after the first 
exposure, and neutralizing antibodies though decline 
over time but remain detectable post 6 months of 
infection [9, 145]. Interestingly, Gaebler et  al. showed 
dynamic evolution of the memory B cell response 
during the first six months post SARS-CoV-2 infec-
tion. Persistence of antigen in the tissues resulted in 
antibody evolution via somatic mutations with 
increased neutralization potency. This evolution of the 
memory B cells would lead to a highly robust and 
effective immune response upon reinfection [146]. 
Breton et  al. highlighted maintenance of polyfunc-
tional SARS-CoV-2 specific memory immune cells 
and antibodies following natural infection [147, 148]. 
The stable maintenance memory B cell pool could 
provide an alternative way to help mitigate subsequent 
infections, although the kinetics of reinfection and 
protective potential of memory B cells in SARS-CoV-2 
immunity are yet to be determined.

SARS-CoV-2 reinfection: “puzzling” immune 
memory
Despite an effective, multi-faceted immune memory 
generated by SARS-CoV-2 infection as mentioned 
above, there have now been more than 70 cases, along 
with 36000 suspected cases of SARS-CoV-2 reinfection 
worldwide. Reinfection cases reported from India and 
their characteristics are summarized in Table 1. A 
significant under-reporting of SARS-CoV-2 reinfec-
tions has also been observed as the stringent criteria 
set by the scientific journals for reporting of reinfec-
tion cases cannot be applied in every health setting 
owing to the lack of resources to sequence viral 
genome in all reported infections [149]. Moreover, 
the current belief that reinfection is a rare 
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phenomenon is possibly an understatement as indi-
viduals with asymptomatic or mild reinfection may 
not come for testing. A recent study from Brazil esti-
mated a high risk of reinfection, approximately 7% 
in health-care workers [150], and the rate of reinfec-
tion was reported to be 4.5% in SARS-CoV-2 infected 
individuals by another epidemiological study from 
India [16]. However, there is a complete paucity of 
immunological data on SARS-CoV-2 reinfection, 
hence, there is a need for more studies to investigate 
which responses (humoral versus cellular) are better 
correlates of immune protection against SARS-CoV-2 
reinfection.

The reinfection case from Hong-Kong [48] reported 
that the levels of IgG rise rapidly within 5–7 days 
during the second encounter [48] and the neutralizing 
antibody response observed in the reinfection case 
from Belgium [138] possibly downgraded the severity 
of reinfection. Interestingly, reinfection with all four 
seasonal coronaviruses has been shown to induce a 
short-lasting immunity for as little as 6–12 months 
measured in terms of a rapid decline in the antibody 
titters [10] therefore, it is important to investigate 
whether SARS-CoV-2 would also follow the same 
antibody dynamics like other coronaviruses or not. 
Another key point to be highlighted is that the 
SARS-CoV-2 strains in almost all reinfection cases 
were different from the primary strain that might 
have allowed the virus to evade the humoral as well 
as the cell mediated immunity. For instance, the spike 
protein mutants of SARS-CoV-2 (e.g., emerging Brazil 
and South Africa variants) have been shown to escape 
efficiently form the majority of neutralizing antibodies 
produced by long-lasting memory B cells [151]. 
Furthermore, memory B cell response wane over time, 
much before memory T cell response, favoring rein-
fection [152]. This clearly points to the fact that both 
waning immunity and novel emerging SARS-CoV-2 
variants are the root cause of the SARS-CoV-2 rein-
fection. Therefore, based on the published literature, 
there could be two possible scenarios following natural 
SARS-CoV-2 infection; 1) a high level of protection 
may result in the prevention of subsequent infection; 
2) a dysregulated immune response, virulent viral 
strain and a strong viral replication, would potentially 
lead to reinfection with a severe clinical outcome 
(Figure 4). During an asymptomatic or mild episode 
of SARS-CoV-2 reinfection, the immune system may 
respond in a very robust manner by activating dif-
ferent compartments of the adaptive immune system. 
Neutralizing antibodies might respond immediately 
by secreting high levels of IgA or IgG at the mucosal 
sites. Activated memory B and T cells present in the 

tissues or lungs proliferate rapidly and amplify the 
cascade of the immune cells by increasing the levels 
of neutralizing antibodies as well as cytokines such 
as IFN-γ thereby reducing the disease severity and 
viral replication. Preliminary studies in macaques rein-
fected with the identical SARS-CoV-2 strain showed 
that a primary infection with SARS-CoV-2 protects 
against subsequent reinfection as the response was 
found to be driven by the memory cell component 
with an enhanced neutralizing antibody response [153, 
154]. However, in severe cases of SARS-CoV-2 rein-
fection, reported from the US, the Netherlands, 
Ecuador and India, a whole host of reasons might 
have contributed to disease severity. For example, 
antibody-dependent enhancement which occur due to 
preexisting non-neutralizing antibodies that interact 
with complement components/or virions could 
enhance subsequent infection thereby increasing the 
COVID-19 disease severity, however its clinical role 
in COVID-19 pathology is yet to be established 
[155, 156]

Immune system disruption is another potential 
way by which the virus can counter-attack the 
immune barrier. In that context, Kaneko et  al. 
reported complete absence of germinal centers in the 
post mortem thoracic lymph nodes and spleens of 
severely ill COVID-19 patients suggesting that the 
long-term development of memory/protection may 
be difficult as the patients were unable to generate 
highly effective, long-lasting antibodies that would 
fight the virus for years [157]. It is therefore possible 
that many of the SARS-CoV-2-infected population 
with low immune memory would be vulnerable to 
reinfection. Thus, it is crucial to understand the 
kinetics and interrelationship of the four major play-
ers of the protective immunity: memory CD4+ T 
cells, and/or memory CD8+ T cells, memory B cells 
and antibodies to identify the durability, specificity 
and kinetics of memory cell response against 
SARS-CoV-2 infection. On a last note, there is also 
an urgent need for studies focused on the mucosal 
immune response besides humoral and cell-mediated 
immunity as mucosal surfaces in the upper (NALT) 
and lower respiratory tract (BALT) are the prime 
targets of SARS-CoV-2, memory response at these 
sites could prevent viral entry, and systemic viral 
transmission.

SARS-CoV-2 genetic variants: the viral storm

Viruses are evolving since the dawn of life as the 
process follows the same Darwinian principles of evo-
lution for life, involving natural selection, genetic 
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variation and survival of the fittest [158]. SARS-CoV-2 
is also following its natural trajectory just like any 
other virus and it does not have any special animosity 
toward human beings. The virus first crossed the spe-
cies barrier possibly by jumping from bats to human 
[159] and it is now continuously evolving to adapt 
and have better transmissibility. SARS-CoV-2 is a 
30 kb size single stranded positive sense RNA virus 
as shown in Figure 1 having 88% homology with 
bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79.5% 
homology with SARS-CoV and around 50% with 
MERS-CoV [160–162]. SARS-CoV-2 genome encodes 
multiple genes including structural: S (spike), E (enve-
lope), M (membrane), N (nucleocapsid); nonstruc-
tural: ORF1a, ORF1b; and accessory genes:ORF3a, 
ORF6, ORF7a, ORF7b, ORF8 and ORF10 [163] 
(Figure 1). World’s largest database of novel corona-
virus genome sequences, The Global Initiative on 
Sharing All influenza Data (GISAID) has shown that 
the mutation rate of this novel virus is comparatively 
slower than other viruses such as HIV yet it has 
resulted in several major strains over time [164]. Some 
mutations in the receptor-binding domain of the 
virus’s spike protein have allowed better binding 
capacity to host cells [164, 165].

During the early COVID-19 pandemic, D614G 
substitution in the spike protein was reported at mul-
tiple geographical locations [164]. This eventually 
impacted the SARS-CoV-2 infectivity and D614G 
variant then became a dominant mutation globally 
replacing initial Wuhan strain by June 2020 [164]. 
Although more infectious, D614G variant (now 

associated with B.1 lineage; https://cov-lineages.org/
lineages/lineage_B.1.html) alone was not more virulent 
than initial Wuhan strain nor affected vaccine effi-
ciency [164, 166]. CDC has devised and regularly 
updates a federal classification system for SARS-CoV-2 
variants that identify and defines four classes of vari-
ants: variants being monitored, variants of interest, 
variants of concern (VOC), and variants of high con-
sequence based on disease severity, transmissibility, 
impact on diagnosis, treatment strategies/vaccines 
[167]. As of Oct 4 2021, there are no variants of high 
consequence. B.1.526 (New York), B.1.525 (New York), 
P.2 (Brazil) were previously designated as variants of 
interest but now there are no designated variant of 
interest. Variant of concern occupied the center stage 
because of increased transmissibility, more severe dis-
ease and reduced neutralization by antibodies. 
Designated VOC include delta variants (B.1.617.2 and 
AY lineages) which were first identified in India. 
B.1.1.7 (Alpha, United Kingdom), P.1 (Gamma, Japan/
Brazil), B.1.351 (Beta, South Africa), B.1.427 (Epsilon, 
California) and B.1.429 (Epsilon, California) which 
were previously VOC are now classified as variants 
being monitored along with others like B.1.617.1(kappa), 
B.1.617.3, P.2(zeta), B.1.621(mu), B.1.621.1 (mu), 
B.1.525 (eta) and B.1.526 (lota). However, WHO has 
a slightly different designation for these variants as 
shown in Table 2. B.1.1.7 UK were shown to be more 
contagious (>50%) and lethal than the wild form. 
B.1.351 South African strain and B.1.1.28 Brazil strain 
had E484K mutation that possibly conferred escape 
immunity against previous natural infection or vaccine 

Table 2.  Currently designated Variants of concern, Variants of interest and Variants under Monitoring by World Health Organization 
(as on 4th Oct. 2021).

Designation WHO label
Pango 

lineage GISAID clade
Nextstrain 

clade Country of origin
Date of 

designation

Variants of 
concern 
(VOC)

Alpha  B.1.1.7 GRY 20I (V1)  United Kingdom 18th Dec. 2020
Beta  B.1.351  GH/501Y.V2  20H (V2) South Africa 18th Dec. 2020
Gamma  P.1  GR/501Y.V3  20J (V3) Brazil    11th Jan. 2021
Delta  B.1.617.2 G/478K.V1  21A India 11th May 2021 

Variants of 
Interest

Lambda C.37 GR/452Q.V1 21G Peru 14th Jun. 2021
Mu B.1.621 GH 21H Colombia 30th Aug. 2021

Variants Under 
Monitoring

R.1 GR – Multiple countries 7th Apr. 2021
B.1.466.2  GH – Indonesia 28th Apr. 2021 
B.1.1.318 GR – Multiple countries 02th Jun. 2021
B.1.1.519 GR 20B/S.732A Multiple countries 02th Jun. 2021
C.36.3 GR – Multiple countries 16th Jun. 2021
B.1.214.2 G – Multiple countries 30th Jun. 2021

Epsilon B.1.427 
B.1.429

GH/452R.V1    21C United States of 
America 

6th Jul. 2021

B.1.1.523 GR – Multiple countries 14th Jul. 2021
B.1.619 G 20A/S.126A Multiple countries 14th Jul. 2021
B.1.620 G – Multiple countries 14th Jul. 2021
C.1.2 GR – South Africa 1st Sep. 2021

Kappa B.1.617.1 G/452R.V3  21B India 20th Sep. 2021
Lota B.1.526    GH/253G.V1 21F  United States of 

America
20th Sep. 2021 

Eta B.1.525  G/484K.V3  21D Multiple countries  20th Sep. 2021 

https://cov-lineages.org/lineages/lineage_B.1.html
https://cov-lineages.org/lineages/lineage_B.1.html
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induced immunity [168, 169]. India witnessed a huge 
surge in daily cases in early May 2021 (>4,00,000 
cases/day) possibly due to delta variant B.1.617.2. The 
delta variant became globally predominant during 
July-Sept. 2021. Itwas among the variants with highest 
spike mutations and it was first declared as a variant 
of concern by Public Health England on 7th May 
2021 [170]. The list of major genetic variants of 
SARS-CoV-2 and their impact on virulence as well 
as on vaccine induced immunity is shown in Table 3.

Emerging genetic variants could be associated with 
reinfections and could cause an elevation in COVID-19 
cases globally. Manaus city of Brazil achieved 76% 
COVID-19 sero-prevalence in October 2020, but it 
experienced second COVID-19 wave in Dec 2020–Jan 
2021 [19]. 42% of COVID-19 patients in Manaus and 
51% of COVID-19 patients in Amazonas state had 
E484K P.1 lineage in mid Dec 2020 [171, 172] E484K 
P.1 lineage drastically increased to 91% in Jan 2021 
in Amazonas state, and E484K spike mutation has 
been found in at least 3 Brazilian reinfection cases 

[22, 173, 174]. It may not necessarily mean that only 
genetic variants of SARS-CoV-2 would cause reinfec-
tion as coronaviruses, in general, are known to cause 
reinfection multiple times in a year [175]. These syn-
chronic, monophyletic set of lineage-representatives 
have been defined as clades [176]. Although 
SARS-CoV-2 reinfection clade has been shown to be 
different in most of the reported reinfection cases but 
in few exceptional cases, for instance, the reinfection 
case from Nevada case, same clade was found in both 
the first and second episode of infection with a vari-
ation of 6 single nucleotides and 1 multi nucleotide 
in its non-spike genes [43]. Likewise, reinfection with 
the same SARS-CoV-2 clade has also been reported 
from India [177].

The evolving SARS-CoV-2 variants are raising seri-
ous concerns, although these variants may not affect 
the RT-PCR based diagnosis as most PCR test kits 
detect multiple non-spike targets (i.e., genes for 
ORF1ab, RNA-dependent RNA polymerase, N protein, 
E protein). Yet, it is imperative to continuously 

Table 3. L ist of emerging COVID-19 variants and their potential impact on virulence and vaccine induced immunity.
 
Emerging 
COVID-19 variants Origin Gene/Mutation

Important amino acid 
replacement Impact on virulence and vaccine

B.1 Unknown A23403G D614Gin spike protein Increased infectivity but no effect on severity of 
disease or vaccine efficiency

20A.EU1, B.1.177 Spain C22227T, C28932T, 
G29645T

A222V and D614G in spike 
protein

Increased infectivity; Slightly less effective 
neutralization by antibodies.

20A.EU2 France C4543T, G5629T, G22992A S477N in spike protein modest increase in infectivity and ACE binding
Cluster 5 

variant/B.1.1.298
Denmark del69_70 Y453F, I692V, M1229I in 

spike proteins
Convalescent sera showed reduced neutralization 

activity; enhanced ACE-2 affinity; 
Human cases rare

B.1.1.7 UK 14 non-synonymous; 6 
synonymous and 3 
deletions

E484K, N501Y, D614G, 
P681H, (7 mutations and 
2 deletion in spike protein)

Enhanced ACE-2 binding PLUS 50% increased 
infectivity PLUS modestdecline in neutralization 
activity of sera from previous SARS-CoV-2 
exposure/post vaccination

B.1.351 South Africa 12 non-synonymous 
mutations and two 
deletion

E484K, N501Y, K417N, 
D614G, A701V 
(9 mutations and 1 
deletion in spike protein)

Enhanced ACE-2 binding PLUS 50% increased 
infectivity PLUS significant decline in 
neutralization activity of sera from previous 
SARS-CoV-2 exposure/post vaccination

B.1.1.28/P.1 Brazil 17 non-synonymous 
mutations; 1 deletion; 4 
synonymous mutations

E484K, K417N/T, N501Y, 
D614G 
(12 mutations in spike 
protein)

Enhanced ACE-2 binding PLUS increased infectivity 
PLUS significant decline in neutralization 
activity of sera from previous SARS-CoV-2 
exposure/post vaccination

P.2 Brazil 10 mutations E484K, D614G Decline in neutralization activity of sera from 
previous SARS-CoV-2 exposure/post vaccination

B.1.526 New York, USA 15 mutations and 1 
deletion

E484K, D614G, S477N, 
A701V

Decline in neutralization activity of sera from 
previous SARS-CoV-2 exposure/post vaccination

B.1.525 New York, USA 12 mutations and 5 
deletions

E484K, D614G, Q677H, 
F888L

significant decline in neutralization activity of sera 
from previous SARS-CoV-2 exposure/post 
vaccination

B.1.427 California, USA 11 mutations L452R, D614G, S13I, W152C, 20% higher infectivity; 
declined neutralization activity of sera from post

B.1.429 California, USA 10 mutations L452R, D614G, S13I, W152C, 20% higher infectivity 
 
declined neutralization activity of sera from post 
vaccination

B.1.617.2 India 25 mutations T19R, G142D, E156G, 
del157/158, L452R, T478K, 
D614G, P681R, D950N

Highly transmissible to become the predominant 
variant globally.  
 
Potentially declined neutralization activity of 
sera from post vaccination

Note: D614G enhanced infectivity; N501Y enhanced ACE-2 affinity and E484K enhanced escape from antibody neutralization.
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evaluate and monitor routine PCR tests as new vari-
ants emerge to prevent the risk of false negative 
COVID-19 diagnosis.

COVID-19 vaccines

Although the process of vaccine development needs 
years of research and testing before being marketed, 
yet the COVID-19 epidemic in 2020 embarked the 
scientists around the globe to race against the time. 
At present, more than 70 vaccines have entered clin-
ical trials on humans and nearly 20 have touched the 
final testing stage. A dozen vaccines now have been 
authorized around the globe; many more are still in 
their development phase. The messenger RNA (mRNA) 
based coronavirus vaccines “Comiranaty” and 
“Moderna” targeting the spike protein announced by 
Pfizer-BioNTech and Moderna-National Institute of 
Health (NIH) have an efficacy rate of 90% and 94.5% 
respectively. Both the vaccines got their emergency 
use authorization in the United States in December 
2020. Another DNA-based vaccine approach was 
adopted independently by Gamealeya Research 
Institute (Russia), the University of Oxford in collab-
oration with AstraZeneca, Johnson & Johnson, and 
CanSino Biologics in partnership with the Academy 
of Military Medical Sciences, China respectively. 
Herein “Sputnik V,” “AZD1222,” (also known as 
“Covishield”), “Ad26.COV2.S” and “Convidecia” were 
developed by genetically modifying adenoviruses that 
carry genes encoding the spike protein against 
SARS-CoV-2. A vaccine based on the inactivated form 
of coronavirus was followed independently by the 
Beijing Institute of Biological Products (“BBIBP-CorV”), 
Sinovac Biotech (“CoronaVac”), and Bharat Biotech 
in collaboration with the Indian Council of Medical 
Research and National Institute of Virology, India 
(“Covaxin”). These vaccines have been reported to 
have an efficacy rate of 72.51%, 50.38%, and 81% 
respectively [178]. In February 2021, the World Health 
Organization (WHO) announced the emergency use 
of the AstraZeneca vaccine in adults and the vaccine 
is now being administered in many countries across 
the globe.

As the development and distribution of vaccines 
accelerated globally, the virus also continues to 
accrue mutations in its genome. In a recent yet-to-be 
peer-reviewed study, Wibmer et  al. showed that 
SARS-CoV-2 501Y.V2, another novel lineage of the 
coronavirus harbored mutations in nine parts of its 
spike protein and this lineage completely escaped 
from neutralizing antibodies in COVID-19 

convalescent plasma. This novel strain that emerged 
rapidly during the second half of 2020 has been 
reported to be extremely resistant to neutralizing 
antibodies elicited by previous circulating viral 
strains and highlighted the prospect of reinfection 
with antigenically distinct variants. They have also 
been predicted to have reduced efficacy against 
spike-protein-based vaccine-induced antibodies 
[179]. Some of these mutations provide fitness 
advantage and rapid transmission of the particular 
viral clade [164], such as the viral variant with an 
Asp614Gly spike substitution and the recently dis-
persed variant of concern from the United Kingdom 
(B.1.1.7) [180]. Results from a recent pre-print study 
indicates that the Oxford-AstraZeneca vaccine effi-
cacy is preserved against the B.1.1.7 variant of 
SARS-CoV-2 [181]. However, another pre-print study 
from South Africa refuted the previously made 
claims by reporting the efficacy of the same vaccine 
(AZD1222) to be only 21.9% against the original 
strain causing mild or moderate COVID-19, and 
10.4% against the viral B.1.351 variant [20]. Despite 
these controversial reports, the vaccine makers are 
still claiming the effectiveness of their vaccines 
against the emerging variants, however, efforts 
should be made in redesigning vaccines that are 
more effective against the variants. These variants 
pose the highest risk of reinfection as reports indi-
cate immune escape in documented reinfection cases 
with a viral variant at rates similar to uninfected 
people (Figure 3) [180]. As the virus continues to 
evolve, reinfection cases are also going to occur 
more frequently as the variants become more prev-
alent and adopt mechanisms in escaping the natural 
immunity generated against the previous infection 
[182]. Although, neutralizing antibodies against 
SARS-CoV-2 provides some level of protection 
against reinfection, however, a reduction in the neu-
tralizing potential against viral variants over time 
may indicate a reduced capacity to protect against 
repeat infections [183]. More specifically, there is 
no data available on how these novel viral variants 
and their mutations will impact vaccination and the 
rate of SARS-CoV-2 reinfection. The pressing ques-
tion whether reinfection occurs due to the inefficacy 
of the immune system or from the enhanced viral 
virulence acquired via SARS-CoV-2 genomic alter-
ations needs to be addressed by the scientific com-
munity. Hence, it is crucial to monitor virus 
evolution through genetic surveillance programs 
highlighting transmissibility, immune evasion, sever-
ity, and vaccine escape. It is also necessary to test 
the neutralizing ability of antibodies against virus 
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variants generated in response to vaccination and 
investigate the dynamic immune response in indi-
viduals infected with viral variants. This will allow 
better determination of the magnitude and breadth 
of immune response during reinfection and its pro-
tective effect on transmission. The efficacy of mRNA 
and adenoviral vector-based vaccines targeting the 
spike glycoprotein could be challenged by emerging 
variants and could impact the long-term immunity 
generated by natural infection and vaccination. 
Therefore, with new variants on the horizons, vac-
cine manufacturers have already begun developing 
booster shots/or second-generation vaccines, and the 
likelihood of having a bivalent or multivalent vac-
cine harboring both the original strain as well as 
the escape viral variants are far greater in the future. 
The current vaccines approved in various countries 
or in pipeline are tabulated in Table 4. The land-
scape of vaccination in India is shown in Figure 5.

Taken together, although the evolving virus is pos-
ing a challenge, it doesn’t necessarily imply the failure 
of scientists all over the world to produce an effective 
vaccine. The present vaccines although may prove 
less effective to the evolving virus, yet these are capa-
ble of neutralizing the virus to a certain extent. 
Additionally, these vaccines boost the immune sys-
tem: cell mediated as well as humoral immune 
response leading to reduction in severity of disease 
during reinfection.

The need to vaccinate children below 18 years

The question of COVID-19 vaccination in children 
below 18 years of age has vexed the scientists and 
health professionals all over the world since the 
COVID-19 vaccination program were initiated. One 
the one hand, relatively less severity, morbidity and 
mortality reported in children and young adults all 
over the world demands that the older people and 
most vulnerable population should get vaccinated first. 
On the other hand, children and young adults who 
although suffered from mild to moderate COVID-19 
disease during the pandemic could act as carrier to 
cause disease in older people. Since the results of 
studies in adults cannot be extrapolated in children, 
and the safety data of vaccination in children is yet 
to be made available, this population has to wait till 
the safety and efficacy of COVID-19 vaccination could 
be established. The issue that urges to vaccinate chil-
dren is education. Since the start of the epidemic, the 
educational institutions have been closed for the 
safety. However, the risk of transmission of COVID-19 
in educational institutions can be minimized by 

vaccinating the teachers and other staff working in 
the school.

Breakthrough infection and reinfection: the 
ground report

As of now, there are >1.07 lakh suspected cases and 
362 confirmed cases of SARS-CoV-2 re-infection 
(COVID-19 reinfection tracker; BNO news). The 
breakthrough infection following COVID-19 vaccines 
varies from country to country depending upon the 
type of vaccine administered. As in United States till 
27th September 2021, 22,115 breakthrough cases were 
reported after vaccinating >183 million people against 
COVID-19 (CDC, COVID-19 breakthrough cases 
investigations and reporting). Out of 22,115 break-
through cases, 5,226 (23.6%) were fatal. In India, 0.26 
million people tested COVID-19 positive after admin-
istration of 531.4 million vaccine doses as on 3rd 
August 2021. Among them, 0.17 million got break-
through infection in just one vaccine dose while 
87,049 breakthrough infections were reported after 
full vaccination (NCDC, Delhi).

The viral load is substantially reduced for break-
through infection occurring 12–37 days after the first 
dose of BNT162b2 mRNA vaccine as demonstrated 
in the analysis of the real-world data set [184] and 
thereby suppress the onward transmission. The quan-
tification of viral load and comparison with first infec-
tion is not available in majority of reinfection cases.

The age of the patient could be critically important 
in deaths during breakthrough infection where CDC 
reported that 86% deaths were in people aged 65 or 
more during breakthrough infection (CDC, COVID-19 
breakthrough cases investigations and reporting). This 
is contrary to SARS-CoV-2 infection and reinfection 
where deaths could be seen in a wide range of age. 
Unlike other age groups, people aged 65 or more may 
have substantially reduced generation of T cells which 
impairs the cellular immune response during the 
breakthrough infection.

The virulence of viral strain (same or different) 
plays an important role in deciding the outcome of 
breakthrough infection. The delta variant is associated 
with high viral load, prolonged PCR positivity and 
low levels of vaccine-induced neutralizing antibodies 
even if the symptoms are mild or asymptomatic 
dur ing breakthrough infect ion fol lowing 
Oxford-AstraZeneca vaccination [185]. It suggests that 
virulent strain may still cause onward transmission 
even after full vaccination. UK public health England 
has already warned of increased risk of COVID-19 
reinfection with the delta variant.
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The strength of host immunity is overall potent in 
breakthrough infection, so moderate or severe symp-
toms are rarely seen, and majority of studies have 
mostly reported asymptomatic and mild symptoms. 

The severity of the disease during possible reinfection 
declined or remained unchanged in 97.3% in a 
meta-analysis of 1128 patients [186]. However, severe 
symptoms were observed when the interval between 

Table 4.  Current COVID-19 vaccines under use and in pipeline.
Vaccine Name Manufacturer Vaccine basis Vaccine approval

Comirnaty  
(also known as tozinameran or 
BNT162b2)

Pfizer-BioNTech mRNA Approved in U.S 

mRNA-1273 or Spikevax Moderna mRNA Approved in Switzerland.
ZyCoV-D Zydus DNA Emergency use in India
Sputnik V  

(also known as Gam-Covid-Vac)
Gamaleya Research Institute Ad5 and Ad26 Emergency use in Russia

Vaxzevria  
(also known as AZD1222, or 
Covishield in India)

University of Oxford-AstraZeneca ChAdOx1 Approved for use in Brazil. 
Emergency use in other 
countries

Convidecia  
(also known as Ad5-nCoV)

CanSino Biologics- 
Academy of Military Medical Sciences.

Ad5 Approved for use in China

Ad26.COV2.S Johnson & Johnson Ad26 Emergency use in Andorra, 
Australia, Bahamas, other 
countries

EpiVacCorona, Aurora-CoV Vector Institute peptides Approved for use in Turkmenistan.
ZF2001, Zifivax Anhui Zhifei Longcom-Institute of Medical 

Biology at the Chinese Academy of 
Medical Sciences

Adjuvant-RBD Emergency use in China, 
Uzbekistan.

Soberana 2, or PastoCoVac (in 
Iran)

Finlay Vaccine Institute spike protein fused to a standard 
tetanus vaccine

Emergency use in Cuba, Iran, 
Nicaragua

Abdala Center for Genetic Engineering and 
Biotechnology of Cuba

RBD Emergency use in Cuba, 
Nicaragua, Venezuela, Vietnam.

BBIBP-CorV Beijing Institute of Biological 
Products-Sinopharm

inactivated Approved for use in Bahrain, 
China, United Arab Emirates.

CoronaVac (formerly PiCoVacc) Sinovac Inactivated Approved for use in China.
Wuhan Vaccine Sinopharm-Wuhan Inactivated Approved for use in China.
Covaxin (also known as BBV152 A, 

B, C)
Bharat Biotech- 

Indian Council of Medical 
Research-National Institute of Virology

inactivated Emergecy use in India

QazVac Research Institute for Biological Safety 
Problems

inactivated Early use in Kazakhstan, 
Kyrgyzstan

COVIran Barekat Shafa Pharmed Pars inactivated Emergency use in Iran.
CoviVac Chumakov Center inactivated Early use in Russia.
Vaccines in pipeline
AG0302-COVID19 AnGes-Osaka University-Takara Bio DNA
HGC019 Gennova Biopharmaceuticals-HDT Bio self-amplifying RNA
COVID-eVax Takis Biotech-Rottapharm Biotech, DNA
DS-5670 Daiichi Sankyo-University of Tokyo mRNA
EXG-5003 Elixirgen Therapeutics RNA
EG-COVID Eyegene mRNA
ChulaCov19 Chulalongkorn University mRNA
Covigenix VAX-001 Entos Pharmaceuticals DNA
CORVax12 OncoSec Immunotherapies loop of DNA that encodes both 

the spike protein and IL-12
COVIGEN BioNet-Asia-Technovalia DNA
SCOV1, SCOV2 Scancell DNA
AdCLD-CoV19 Cellid  Ad5 and Ad35
BCD-250 BIOCAD  adenovirus-associated virus AAV-5
– ImmunityBio Ad5

Meissa Vaccines  RSV 
CVXGA1 University of Georgia-University of Iowa canine parainfluenza virus
COVID-19-EDV   EnGeneIC
  Soberana 1   Finlay Vaccine Institute    RBD
EuCorVac-19 EuBiologics protein
VBI-2902a VBI Vaccines virus-like protein shells
AKS-452 Akston Biosciences RBD
IVX-411 Icosavax-Seqirus RBD
QazCoVac-P Research Institute for Biological Safety 

Problems
protein

St. Petersburg Scientific Research Institute 
of Vaccines and Sera

protein subunit

Mambisa Center for Genetic Engineering and 
Biotechnology of Cuba

RBD

Source: The New York Times.
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infection and reinfection was shorter (less than 
2 months) in another analysis of 123 patients of repeat 
SARS-CoV-2 [187].

There is scarcity of information on the breakthrough 
infection in those recovered and having received at 
least one dose of vaccination. Such cases could be rare 
due to precautions taken to ensure suitable time inter-
val of 2–3 months between COVID-19 infection and 
first vaccine dose. In such cases, even the first dose 
of vaccine can rapidly activate the memory response. 
Further, among previously infected individuals, the 
non-vaccinated ones are associated with 2.34 times the 
odds of reinfection in comparison to the fully vacci-
nated ones [188]. This emphasis the need to vaccinate 
all adults irrespective of their past exposure.

Conclusion

As stated by Vardhana and Wolchok, COVID-19 is a 
case of innate immune hyper activation and adaptive 
immune dysregulation [189]. The road to a robust 
protective immune response against Covid-19, appar-
ently, is fraught with potholes of reinfections. 
Enhancement of repertoire of the adaptive immune 
response is solely based on repeated exposure to the 
same or similar pathogenic microorganisms fulfilling 
Darwin’s hypothesis of survival of the fittest. The 
recent increase in SARS-CoV-2 reinfections, even in 
fully vaccinated individuals, is a cause for major 

concern. Rapid antigenic drift in emerging variants 
combined with the decline of post-covid-19 antibodies 
within a short span of 6–8 months may confuse 
immunological memory and the existence of comor-
bidities like chronic obstructive airways disease with 
reduced ciliary function, age-related senescence, 
uncontrolled diabetes may pause major risk to rein-
fection also. Failure of the respiratory immune system 
in neutralizing the virus resulting in escape into the 
alveoli, a highly specialized organ with reduced 
immune components, will always remain a challenge. 
The fact that ACE2 receptors, the binding ligand of 
the virus, are expressed in the alveolar epithelial cells 
is another complicating matter since some viral par-
ticles of SARS-CoV-2 may continuously escape to 
alveoli even when most of them are trapped in URT. 
Innovative ways that may prime mucosal immune 
response associated with the respiratory tract, both 
innate as well as the adaptive immune system, is the 
need of the hour to prevent SARS-CoV-2 reinfections. 
Therefore, it is crucial to have worldwide surveillance 
programs for emerging variants that are likely to cause 
immune evasion and delineate the viral attributes 
responsible for modulating the protective immune 
response in the host. Involvement of the gastrointes-
tinal tract in the transmission of SARS-CoV-2 infec-
tion has garnered a lot of attention from the scientific 
community in the recent days. Besides fever and cold 
that are the most commonly reported symptoms of 

Figure 5. L andscape of vaccination in India.
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COVID-19, an increasing number of individuals had 
been presenting with nausea, vomiting and diarrhea 
suggesting that SARS-CoV-2 is slowly evolving with 
enhanced tropism for the gastrointestinal tract [190, 
191]. The intestinal mucosal with biggest surface epi-
thelium and its accompanying larger volume lymphoid 
tissues (both organized and diffuse) offer a level play-
ing field for the virus to compromise the mucosal 
immunity as well as amplify their spillover effect on 
the systemic immune response which could predispose 
individuals to reinfections many times over. From the 
diagnostic point of view, while the limited number 
of respiratory tract epithelial cells and their lymphoid 
tissue, in comparison to intestinal mucosa, may con-
trol the viral replication leading to a negative RT-PCR 
test, the war of the virus may still raze on in the 
intestinal tract shedding large number in the stool, 
favoring fecal-oral transmission. In addition, dysbiosis 
in gut microbiota by SARS-CoV-2 infection signifi-
cantly impacts the lung immunity by modulating the 
innate and adaptive immune responses, and it also 
influences the disease severity. In recovered COVID-19 
patients, this dysregulated gut-lung axis can play a 
prominent role in persistent inflammation increasing 
the likelihood of reinfection. The development of 
many highly efficacious vaccines over the last one 
hundred years has not fully strengthened our under-
standing of the immunological correlates of protec-
tion, baring a few e.g., pneumococcal vaccine 
(opsonophagocytic assay), Hepatitis B vaccine 
(Neutralizing antibodies). The emergence of a large 
number of variants across the globe, some more vir-
ulent with higher transmission rates, may derail the 
current vaccination strategies, and these new viral 
variants with their distinct capacity to evade poly-
clonal antibody responses could potentially increase 
the rate of SARS-CoV-2 reinfections. Therefore, search 
for a utopic broadly neutralizing antibody, as docu-
mented in certain long-term survivors of pediatric 
HIV-infected children is highly enticing. Detailed 
analysis of the complete genome of the SARS-CoV-2 
virus may delineate epitopes (both B and T cells) that 
could offer cross-protection against variants and pre-
vent reinfections; hence a vaccine composed of a 
cocktail of antigens may offer a ray of hope. Likewise, 
oral vaccination approach for instance the nasal spray 
along with other oral vaccines (virus-like particles 
(VLPs)/attenuated virus with modified genome) might 
boost the mucosal immune response with local mem-
ory B cells and tissue-resident memory T cells and 
may reduce the chances of repeat infections. Studies 
analyzing the clinical and immunological profile of 
SARS-CoV-2 reinfection cases should be integrated 

with vaccination follow-up investigations to thor-
oughly evaluate correlates of immune protection 
against SARS-CoV-2.

The light at the end of the tunnel, we ardently 
hope, is not far away with the arrival of more and 
more information regarding the host-viral relationship 
which may help to develop better strategies to prevent 
reinfection with this deadly virus. Patients who have 
recovered from documented COVID-19 are mostly 
protected but reinfection is still a possibility therefore, 
recovered people should comply with all the control 
measures as the fight against COVID-19 is a marathon 
and not a sprint. Till then, wearing a mask, sanitiza-
tion of the hands, social distancing, and following 
COVID-appropriate behaviors is the best way to keep 
the virus at bay.
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