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ABSTRACT

‘Locked nucleic acids’ (LNAs) are known to intro-
duce enhanced bio- and thermostability into
natural nucleic acids rendering them powerful
tools for diagnostic and therapeutic applications.
We present the 1.9 A X-ray structure of an ‘all LNA’
duplex containing exclusively modified -b-2'-0-4'C-
methylene ribofuranose nucleotides. The helix illus-
trates a new type of nucleic acid geometry that
contributes to the understanding of the enhanced
thermostability of LNA duplexes. A notable
decrease of several local and overall helical param-
eters like twist, roll and propeller twist influence the
structure of the LNA helix and result in a widening of
the major groove, a decrease in helical winding and
an enlarged helical pitch. A detailed structural com-
parison to the previously solved RNA crystal struc-
ture with the corresponding base pair sequence
underlines the differences in conformation. The sur-
rounding water network of the RNA and the LNA
helix shows a similar hydration pattern.

INTRODUCTION

Nucleic acids that are targeted against specific molecules
in cellular metabolism like tumor markers, viruses or gene
defects have great potential for applications in
oligonucleotide-based drug design. These applications
comprise diagnostic approaches and clinical therapies.
There is a need for the stabilization of nucleic acids,
since natural RNA and DNA molecules are highly sensi-
tive against nuclease digestion and often possess low
thermal stability. Great effort is spent in the development
of modified oligonucleotides that maintain the Watson—
Crick base pairing ability and tertiary structure
interactions.

During the last years, special interest has been focused
on nucleotide analogues that exhibit the N-type sugar
puckering and possess the overall A-RNA-type conform-
ation. Examples are 2'-alkylated RNAs like 2'-O-
methyl-RNA (1), 2'-F-RNAs (2), phosphoramidate-
RNAs (1) and the ‘locked’ nucleic acid family (3). A
high increase in thermostability could be demonstrated
for nucleic acids, which were substituted by locked nucleo-
tide building blocks containing the 2'-O-4'C-methylene-f3-
p-ribofuranose (3). The melting temperature is increased
by +2 to +10°C per LNA monomer in an oligoribo-
nucleotide hybridized to RNA (3). A comparative study
using different modifications in a nucleic acid could be
demonstrated by substituting the Tenascin-C aptamer
TTA-1 with several of the common modifications. The
in vitro thermostability was described to be in the follow-
ing order: 2'-F/2’-OMe < RNA/RNA < 2-OMe/
2-OMe < 2’-F/LNA < RNA/LNA < 2-OMe/

LNA <LNA/LNA (4).

LNAs are widely used in the field of nucleic acids
research, covering a broad range of applications. For
example, locked nucleic acid (LNA) building blocks are
employed to improve targeting, specificity and stability of
aptamers (4,5), utilized in DNAzymes to increase targeting
and cleavage efficiency (6,7), used in miRNA silencing in
direct antagonist (8) and LNAzyme approaches (9),
functionalized as molecular beacons (10), applied to
enhance RNA in situ hybridization (11,12), employed for
transfectant-independent delivery of oligonucleotides (13)
and used in antisense (7,14) and siRNA approaches (15,16).

A variety of structural investigations have been
undertaken to analyze the structure and the conformation
of nucleic acids, which were substituted by LNA building
blocks. Also, LNA/DNA or LNA/RNA heteroduplexes
have been investigated with respect to their 3D structure,
their hybridization behavior and thermostability criteria.
The studies could provide detailed information of the local
geometric parameters of the mix-mer helices and of the
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heteroduplexes. Structural investigations using 2'-0-4'C-
methylene-B-p-ribofuranose LNA-RNA mix-mers
hybridized to RNA showed that introduction of single
LNA nucleotides in double strands maintains the RNA
A-type nucleic acid conformation, whereas the use of a-
L-2-0-4'C ribofuranose LNA-DNA mix-mers hybridized
to DNA helices results in the B-type geometry (17,18).

Coherent with these results, investigations of
heteroduplexes consisting of fully modified LNA strands
hybridized to either RNA or DNA, showed that the 2’-O-
4’ C-methylene-B-p-ribofuranose LNA strand bound to
RNA adopts an A-RNA-type conformation, whereas the
binding to DNA induces a mixed N- and S-type sugar
puckering (19). Accordingly, the 2'-0-4'C-methylene-o-1.-
ribofuranose LNA binds to DNA in a B-DNA-type con-
formation (20). All structural studies show that the 2'-O-
4’ C-methylene-B-p-ribofuranose ‘locks’ the LNA in the
C3-endo conformation, which is discussed to influence
the geometry of the phosphate backbone and to orient
the duplex in a way towards a more efficient base
stacking (3). Molecular dynamics simulations yielded
first insights into an ‘all LNA’ duplex structure based
upon these data (21). Our work, presented here, contrib-
utes to the understanding of this widely used class of mol-
ecules by providing the lacking piece of information in the
series of RNA/RNA, RNA/LNA, LNA/LNA structure
investigations and computer modellings.

Concerning the surrounding solvent water network in
nucleic acids, it is well accepted that the extensive solv-
ation of the minor groove in RNA molecules is governed
by specific hydration of the ribose 2'-OH group (22). It is
also nowadays understood that the hydration of RNA
plays an important role in RNA-protein interactions
and that the extensive solvent content of the minor
groove has a special function for the respective RNA
(23). For LNA, it is assumed that the 2’-oxygen atom of
the 2'-0-4'C-methylene-B-p-ribofuranose is involved in
the hydration of the minor groove (19). Molecular
dynamics simulations provided a first insight into water
structure and dynamics of an LNA duplex (21).

Here, we present the crystal structure of an ‘all LNA’
helix at 1.9 A resolution. As we intended to undertake
comparative crystallographic studies between LNA and
RNA, the sequence was derived from a tRNAS
acceptor stem microhelix, the structure of which has
been solved recently to 1.2 A resolution (24). The local
and overall geometric parameters of the LNA helix
reveal a novel nucleic acid conformation with geometric
parameters different to those known for RNA or DNA.
Furthermore, the hydration patterns for the comparable
LNA and RNA crystal structures are presented.

MATERIALS AND METHODS
Crystallization and acquisition of X-ray diffraction data

The 7mer LNA helix was derived from the Escherichia coli
tRNAS" aminoacyl stem microhelix, which has been
crystallized previously (24) and originated from the
tRNAS" isoacceptor with the data base ID: RS 1661
(25). For the comparative structure analysis, the LNA

was constructed to contain exclusively LNA building
blocks by maintaining the base sequence of the
RNA, except the U to T and C to m°C exchange in
standard LNA  synthesis. The LNA sequence
5-(m’C-m°C-T-m°C-A-m°C-m°C)*-3",  5+(G-G-T-G-A-
G-G)™-3' corresponds to the sequence of the natural
RNA: 5-(C-C-U-C-A-C-C)-3, 5-(G-G-U-G-A-G-G)-3'.
The sample preparation, LNA hybridization and the
crystallization screening was performed as described pre-
viously (26). The best LNA crystals appeared after 34
days using the following procedure and conditions: 1 pl
of the 0.5mM aqueous LNA solution was used and
combined with 1pul 40mM sodium cacodylate, pH 5.5,
20mM cobalt hexamine, 80 mM sodium chloride, 20 mM
magnesium chloride, 10% (v/v) 2-methyl-2.4-pentanediol
(MPD) on a cover slide and equilibrated against 1 ml of
35% (v/v) MPD in Linbro Plates (ICN Biomedicals Inc.,
Ohio, USA) using the hanging drop vapour diffusion tech-
nique at 294K (26). The X-ray diffraction data were
recorded at the Elettra Synchrotron (Trieste, Italy) beam
line XRD1 at a wavelength of 1.000A. We recorded
data between 80 and 1.9 A resolution, which were pro-
cessed and scaled using the programs DENZO and
SCALEPACK from the HKL-2000 package (27).

X-ray structure determination and refinement

As crystal disorder may occur within crystals of short
oligonucleotides (28,29), we analyzed the data applying
the Padilla and Yeates algorithm (30). The calculations
showed the curve of a theoretically untwined crystal, so
we had no indications for merohedral twinning. Molecular
replacement calculations were performed using the
program PHASER (31) within the CCP4i program suite
(32). As a search model, we constructed an artificial LNA
duplex by keeping the base sequence of the RNA, but
replacing the natural ribonucleotides by standard LNA
building blocks (Figure 1). Structure refinement was
calculated with the program REFMAC (33) and calcula-
tion of electron density maps was performed with FFT
(34). Both programs were used as implemented in the
CCP4i package (32). X3DNA was applied for calculating
the local and overall geometric parameters. Graphical rep-
resentations were done with the programs PYMOL
(www.pymol.org) and RASMOL (35).
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Figure 1. A guanosine nucleotide shown as LNA with the 2'-O-4'C-
methylene-B-p-ribofuranose sugar moiety (A) and as RNA with the
natural occurring ribose (B) The arrow indicates the 2'-O-4'C-methy-
lene group (colored orange) in LNA nucleotides.



Melting curves

The melting curves of the tRNAS" microhelix and the
corresponding ‘all LNA’ duplex were recorded on a
Hewlett Packard Diode Array spectrophotometer 8452A
in the following buffer: 1.73 mM disodium hydrogen phos-
phate, ImM potassium dihydrogen phosphate, pH 7.2,
100 mM sodium chloride and 0.1 mM EDTA at an RNA
or LNA concentration of 5.0uM. The absorption at
260nm was measured as a function of temperature
within a range of 10-90°C and steps of 1°C increase per
minute. The T, values were obtained from the maxima of
the first derivatives of the melting curves.

RESULTS AND DISCUSSION
Crystallographic data and crystal packing

The crystallization of the LNA duplex has been reported
previously (26). Within the molecular replacement calcu-
lations, the rotation function gave a Z-score of 9.6 and the
translation function a Z-score of 18.5. As expected, ac-
cording to the calculated Mathews coefficient and the
solvent content (Table 1), we detected two LNA
duplexes per asymmetric unit. No clashes could be
recognized between symmetry-related molecules. The re-
finement calculations and the addition of solvent mol-
ecules, one magnesium ion, one cobalt hexamine and
one cacodylate molecule dropped the initial R/Rfe. Of

Table 1. Data collection and refinement statistics

LNA duplex crystal

Data collection

Space group 2
Cell dimensions
a, b, ¢ (A) 77.91, 40.74, 30.06
o B,y (°), 90.00, 91.02, 90.00
Resolution (A) 80.00-1.90 (1.93-1.90)
Rinerge 7.3 (21.7)
1/ ol 19.7 (1.0)
Completeness (%) 98.0 (97.2)
Redundancy 4.8 (3.8)
Refinement
Resolution (A)
Number of reflections 7382
Rwork/Rfree 22.4 (264)
Number of atoms/a.u.
Nucleic acid 628
Magnesium 1
Cobalthexamine 1
Cacodylate 1
Water 100
B-factors
LNA 30.9
Magnesium 18.4
Cobalthexamine 28.2
Cacodylate 86.1
Water 38.2
RMSD i
Bond lengths (A) 0.016
Bond angles (°) 3.371

Values in parentheses are for highest-resolution shell.
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37.6/37.0% to final values of R/Rpee 22.4/26.4%
(Table 1). We detected 314 LNA atoms per single helix
and a total of 100 solvent water molecules within the
asymmetric unit. Since the geometrical parameters of all
nucleotides show a high similarity (Supplementary Data),
we conclude the lack of distortions at the ends of the
investigated helices. An overall structure of the previously
solved RNA helix with corresponding sequence and the
LNA duplex structures are presented in Figure 2A. A rep-
resentative 1.9 A 2F-F, electron density map of the LNA
structure is illustrated by showing the region of the base
pair  (Ts-As)" with the PB-p-2-0-4C-methylene
ribofuranose moiety and several associated solvent mol-
ecules (Figure 2B).

The stacking of the two LNA helices is influenced by a
cobalt hexamine (Figure 3A), which is located in the inter-
face between the two duplexes. Two LNA helices in the
asymmetric unit stack on top of each other building
so-called endless rows of helices. The stacking behavior
is in a ‘tail-to-tail’ manner, as the 3'-(G; — m’Cgg)"-5’
base pairs, which represent the lower ends of the helices,
face each other. The cobalt hexamine is coordinated to the
bases (G7)™ and (Gg)" of each duplex in a defined network
of contacts. Four amino groups of the hexamine are
directly coordinated to the exocyclic oxygen O6 and the
endocyclic nitrogen N7 of the (G7)" of both LNA helices.
Two amino groups of the cobalt hexamine contact the
(Ge)" nucleotides of both strands either via a bridging
water molecule or directly to the exocyclic oxygen O6
and the endocyclic nitrogen N7. In summary, the crystal
packing of the LNA duplexes is favored by hydrophobic
interactions of the ‘tail-to-tail’ guanosine stacking and is
further facilitated by interactions with the cobalt
hexamine, which acts like a bridge between the two
helices. A comparison of the crystallographic parameters
between the previously solved RNA structure (24) and the
here presented LNA structure demonstrates significant
differences in crystal packing, although the RNA and
LNA crystallize under identical conditions (24,26). The
tRNAS" microhelix crystallizes with one RNA helix per
asymmetric unit, whereas the molecule packing consists of
two molecules per asymmetric unit for the LNA duplex.
The diffraction limit for the RNA crystals showed a reso-
lution of 1.2 A compared to 1.9 A for the LNA data. In
addition, the pattern of metal bindings differ, as the RNA
revealed two magnesium binding sites, whereas the LNA
complexes one cobalt hexamine, one magnesium ion and a
cacodylate molecule.

Structure and conformation of the LNA duplex

The crystal structure of the ‘all LNA’ 7mer helix presents
a nucleic acid geometry that cannot be compared to the
canonical A- and B-type nucleic acid conformations. The
LNA duplex geometry can rather be brought in vicinity to
the structures of glycol nucleic acids (36), peptide nucleic
acids (PNAs) (37) or Homo-DNA (38). We can describe
the LNA duplex as a right-handed antiparallel helix main-
taining the Watson—Crick base pairing and a 2’-exo con-
formation for all nucleotides. Nevertheless, the LNA
possesses overall helical parameters that induce a
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Figure 2. (A) Overall crystal structures of the RNA helix (24) (3gvn.pdb, left) and the LNA helix (2x2q.pdb, right) (B) Representative 2F,-F
electron density map of the ‘all locked” LNA duplex at 1.9 A resolution showing the base pair (T3-A70)". Water molecules are presented by blue dots

and distances are pointed out in A.

Figure 3. Metal ion binding sites in the LNA duplex. (A) The cobalt hexamine acts as an ‘anchor’ between the two duplexes in the asymmetric unit.
The amino groups of the cobalt hexamine contact the guanosine nucleotides either directly or via water molecules. (B) The hexacoordinated
magnesium ion is associated to water molecules and to the bridged 2’-oxygen of two symmetry equivalent 2'-O-4'C-methylene-B-p-ribofuranose

sugars.

non-standard nucleic acid geometry. The predominant
features of the LNA helix geometry comprise deviations
in the local and overall helical parameters (Table 2).
Compared to RNA helices, we detected a decrease in the
helical twist, roll and propeller twist. The helical LNA
twist shows average values of 26°, instead of 32° as
known for RNA. The roll is decreased from 7-8° to ~4°
and the propeller twist is decreased from 10-12° to ~7°.
These parameters facilitate a widening of the major
groove, which shows values of 24-25A in diameter, as
compared to 16A observed for a standard A-RNA
duplex. On the other hand, the LNA minor groove com-
prises 15 A in diameter as compared to the 19 A found for
RNA. All values for slide and rise are slightly increased in

the LNA structure. The altered geometric parameters
induce a large hollow cave in the middle of the duplex
viewing down the helical axis. In LNA, with a twist of
26° we observed 14bp per turn as compared to 11bp
per turn in RNA. Due to the enlarged helical rise of
3.2A and the unwinding of the helix resulting from the
decreased twist angles, the LNA possesses a pitch of 39 A
instead of 29 A for RNA (Table 3).

The backbone torsion angles of the LNA duplex
resemble the values of RNA-type nucleic acids and fall
into the sc™, ap ', sc’, sc" ap and sc” conformation (for
the angles o, B, v, 9, &, {). The x-values around the glyco-
sidic bond show a high conformity and have the ap " con-
formation. As expected, all sugar residues in the LNA
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Table 2. Overall geometric helical parameters of selected helices (i) tRNA™ microhelix, generated from yeast tRNAF™ (1ehz.pdb) (40), (ii)
tRNAS" microhelix (3gvn.pdb) (24), (iii) RNA-LNA hybrid (1h0q.pdb) (19), (iv) the ‘all LNA’ duplex, represented by the two duplexes per

asymmetric unit (2x2q.pdb)

Twist (°) Rise (A) Slide (°) Roll (A) x-Disp (A) P.Twist (°)
Generated tRNAP™ microhelix 32.54 + 7.23 2.67 +0.24 —1.47 £ 0.24 8.42 + 1.46 —3.97 £ 1.05 —12.17 + 6.73
tRNAS®" microhelix 32.46 + 3.76 2.64 £ 0.27 —1.68 + 0.34 6.61 = 1.80 —4.25+1.25 —10.46 + 4.95
1HOQ LNA-RNA hybrid 28.98 + 4.06 2.72 £0.11 —2.24 +0.24 6.07 + 6.03 —5.40 + 0.88 —12.84 + 3.64
LNA 1 tRNAS" microhelix 25.97 + 1.49 2.81 = 0.04 —2.49 + 0.24 4.08 + 1.67 —6.60 + 0.43 —6.65 + 3.91
LNA 2 tRNAS" microhelix 26.13 + 1.53 2.84 £ 0.05 —2.47 +0.21 4154223 —6.47 + 0.43 —7.45 +2.84

All data were calculated using the program ‘3DNA’ (41). x-Disp. is the abbreviation for x-Displacement and P.Twist is the Propellertwist.

Table 3. Average helical parameters for artificially constructed RNA
as compared to the RNA/LNA duplex (1h0q.pdb) (19) and the ‘all
LNA’ duplex (2x2q.pdb)

BP/Turn Twist (°) Rise (A) Pitch (A)
RNA 11 32 2.6 29
RNA/LNA 12 29 2.7 32
LNA 14 26 2.8 39

crystal structure are distributed in the 2’-exo conform-
ation. The stability of the backbone in the LNA helix is
a consequence of the chemical properties of the 2'-0-4'C-
methylene-B-p-ribofuranose moiety, as this sugar is
known to ‘lock’ the molecule in the 2’-exo conformation
(3). The alteration of the geometric helical parameters of
the LNA helix apparently induces a more efficient base
stacking, as several values like twist, roll and propeller
twist are decreased and lead to a more efficient hydropho-
bic interaction between the bases. This geometric arrange-
ment results in a predominant enlargement of the major
groove in coherence with a decrease of the minor groove
and an enlarged pitch, maintaining the canonical Watson—
Crick base pairing.

Hydration of the LNA duplex

The extensive hydration of the RNA minor groove is
facilitated by the specific hydration of the ribose 2’-OH
group (22). We investigated the arrangement of water
molecules in the LNA duplex with special interest
focused on the environment of the 2’-0-4’C-methylene-3-
p-ribofuranose. We present a snapshot of hydrated nu-
cleotides in the LNA as compared to the corresponding
RNA (Figure 4). The first base pair, (G1-m°C72)", shows
a similar hydration of the LNA minor groove as known
for RNA (Figure 4A). Water oxygen atoms contact the
exocyclic O2 of the cytidin and the N3 and N4 of
the guanosine by concomitant building of a network to
the solvent molecule. Contacts are facilitated by 2’-oxygen
of the guanosine LNA sugar. In analogy, another solvent
molecule that is involved in the water network is in
contact to the 2’-oxygen of the cytidine. The distribution
of water molecules in the minor groove of the LNA duplex
follows the general pattern of RNA hydration, as can also
be demonstrated for the base pairs (G4-m°C69)"
(Figure 4A) and (G2-m>C71)" (Figure 4B). The solvent
molecules interact in an RNA-like fashion with the
2'-oxygen of the 2'-O-4C-methylene-B-p-ribofuranose,

which serves as a hydrogen acceptor similar to the
2’-OH group in RNA. The presence of the 2’-oxygen in
the 2/-O-4' C-methylene-B-p-ribofuranose sugars in LNA
helices allows the specific arrangement of water
networks and allows an extensive hydration of LNAs as
commonly described for RNA molecules (22). A direct
comparison between LNA and RNA hydration is
demonstrated in Figure 4B, where we exemplarily
present the hydration of the LNA (m’C2-G71)" base
pair and the corresponding region in the RNA structure,
C2-G71.

The distribution of water molecules in the major groove
of the LNA follows the general pattern of RNA hydration
as well. Since we focused our interest on the hydration of
2'-oxygen atoms, we present pictures of base pairs with
complete solvent saturation within the minor groove.
However, we also observe a similar hydration pattern
between LNA and RNA major grooves within other
base pairs (data not shown) that display a more
complete distribution of water oxygen atoms for this
region.

Thermostability data

As has been reviewed, an increase of +2 to +10°C can be
observed per LNA building block added in RNA strands
hybridized to RNA (3). We investigated the
thermostability of the ‘all LNA” duplex and the corres-
ponding RNA duplex by measuring the melting curves.
The RNA 7mer homo duplex with the sequence
5'-(C-C-U-C-A-C-C)-3' | 5-(G-G-U-G-A-G-G)-3' shows
a Ty, of 45°C, whereas the LNA with the corresponding
base sequence 5-(m’C-m’C-T-m’C-A-m°’C-m’C)"-3’ /
5-(G-G-T-G-A-G-G)"-3' possesses a T, of >90°C,
which is above the range of a feasible measurement.
This is consistent with the so far published and reviewed
observations (3), as the investigated LNA duplex here
showed an increase in the melting temperature of >4°C
per LNA building block.

CONCLUSIONS

The summative increase in the melting temperature of
RNA duplexes by subsequent introduction of LNA
building blocks and the maintenance of Watson—Crick
base pairing properties of LNA/RNA duplexes highlights
the LNAs as powerful tools in therapeutic and diagnostic
applications (39).
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A

Figure 4. The hydration of LNA as demonstrated by the base pairs (A) (G1-m°C72)" (top) and (G4-m’C69)" (bottom). (B) Comparison of
hydration in the LNA and RNA duplex by showing the LNA base pair (G2-m°C71)" (top) and the corresponding RNA base pair G2-C71
(bottom). Water oxygen atoms are presented by blue dots and distances are pointed out in A. For better comparability, numbering of LNA

bases was chosen to be identical to the tRNA-derived RNA sequence.

The LNA duplex crystal structure, presented here,
reveals a nucleic acid conformation, which differs signifi-
cantly from the canonical A- and B-type nucleic acid
geometries. In order to clarify the helical differences
between RNA, the RNA/LNA heteroduplex and the
LNA duplex, we extended the helices to a maximum of
28 bp by taking advantage of the regular helical structure
of nucleic acids, as done previously (36,37). We present the
overall geometry by side view and top view in a Calladine—
Drew Plot (Figure 5A). Additionally, the space filling
models were elongated to a length of 46 bp (Figure 5B).
The LNA duplex structure can be characterized as a
‘stretched helix” with an extended major groove that
goes in coherence with a decrease in the dimensions of
the minor groove and an enlarged helical pitch. The
LNA duplex possesses roughly 14 bp per helical turn in
contrast to the 11bp per turn in RNA (Table 3). The
decrease in helical parameters like twist, roll, propeller
twist and the partially observed interstrand stacking in
the LNA duplex result in improved hydrophobic inter-
actions between the bases and thereby increase the
stacking energies of the nucleotides. As nucleobases
possess conjugated double bonds, we interpret that the
unwinding of the LNA helix as compared to RNA
enlarges the sum of all n—n interactions within the
stacked nucleotides by concomitantly maintaining the
strong Van der Waals bonding between the surfaces of

the bases. The sugar residues in the LNA duplex all lie
in the 2’-exo conformation that is a property of the A-type
nucleic acid geometry. Also, the phosphate and backbone
arrangement in the LNA helix resembles that of an A-type
structure. This is in concert with previously published
results, as the chemical properties of the 2'-O-4'C-
methylene-B-p-ribofuranose moiety are known to ‘lock’
the structures into the 2'-exo conformation (3,39).
Furthermore, we can confirm and extend the findings of
a previously published molecular dynamics simulation of
LNAs (21). The LNA’s helical parameters are similar in
both, the computer-based and the crystallographic studies,
resulting in a unique LNA conformation.

Interestingly, the structure of an RNA/LNA
heteroduplex (17) is a geometric intermediate between
the RNA and the ‘all LNA’ conformation (Tables 2 and
3; Figure 5). There is a consecutive order in the structural
changes from the geometry of an RNA duplex via the
conformation of an RNA/LNA heteroduplex to the fold
of an ‘all LNA’ duplex.

ACCESSION NUMBERS

Protein data bank: coordinates and structure factors for
the LNA duplex, derived from the tRNAS" microhelix,
have been deposited with the accession code 2X2Q.PDB.
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RNA/LNA

Figure 5. Calladine-Drew plot (A) of idealized RNA, the RNA/LNA hybrid (derived from 1h0q.pdb) and the LNA (2x2q.pdb) with two helical
turns each. Left: RNA (22 bp), middle: RNA/LNA (25bp) and right: LNA (28 bp). Base pairs are presented as gray-blue rectangles and the helical
winding is pointed out by the curved red line. Side view (top) and top view (bottom). Space filling models of the same helices (B) with 46 bp per

duplex. Details are described in the text.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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