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Abstract: A direct aspiration-first pass technique (ADAPT) has recently gained popularity for the
treatment of large vessel ischemic stroke. Here, we sought to create a machine learning-based model
that uses pre-treatment imaging metrics to predict successful outcomes for ADAPT in middle cerebral
artery (MCA) stroke cases. In 119 MCA strokes treated by ADAPT, we calculated four imaging
parameters—clot length, perviousness, distance from the internal carotid artery (ICA) and angle of
interaction (AOI) between clot/catheter. We determined treatment success by first pass effect (FPE),
and performed univariate analyses. We further built and validated multivariate machine learning
models in a random train-test split (75%:25%) of our data. To test model stability, we repeated the
machine learning procedure over 100 randomizations, and reported the average performances. Our
results show that perviousness (p = 0.002) and AOI (p = 0.031) were significantly higher and clot
length (p = 0.007) was significantly lower in ADAPT cases with FPE. A logistic regression model
achieved the highest accuracy (74.2%) in the testing cohort, with an AUC = 0.769. The models had
similar performance over the 100 train-test randomizations (average testing AUC = 0.768 ± 0.026).
This study provides feasibility of multivariate imaging-based predictors for stroke treatment outcome.
Such models may help operators select the most adequate thrombectomy approach.

Keywords: acute ischemic stroke; first pass effect; ADAPT; machine learning

1. Introduction

A direct aspiration-first pass technique (ADAPT) using large-bore catheters has
emerged as a thrombectomy strategy that can rapidly reperfuse the afflicted vessels after
acute ischemic stroke (AIS). Several studies and clinical trials have demonstrated that the
ADAPT alone was successful in achieving a final revascularization modified thrombolysis
in cerebral infarction (mTICI) 2b to 3 at a rate of 78%, with one or more attempts required
to achieve successful reperfusion [1–3]. However, data show that the first pass effect (FPE,
a modified treatment in cerebral ischemia-mTICI score of 2c and 3 after first pass) only
occurs in 27% of ADAPT cases [2]. This is significant, as FPE has been associated with
improved outcomes and lower peri-procedural complication rates [4].
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Predicting which cases would most benefit from ADAPT, i.e., where ADAPT achieves
FPE, would be highly valuable for selecting the proper thrombectomy approach. Sev-
eral retrospective studies have reported single clinical and image-based parameters that
correlate with successful aspiration-alone therapy [3,5–7]. However, many reports have
conflicting findings, with no independent validation to support predictive claims. In this
study, we test the feasibility of using combinations of measurable, pre-treatment imaging
characteristics to predict FPE for ADAPT thrombectomies. To do this, we implemented a
multivariate machine learning strategy with hold-out testing and model stability analyses.

2. Methods
2.1. Patient Population

This study was approved by the local Institutional Review Boards at the University at
Buffalo in Buffalo, NY, USA (study number 030-403427) and the University of South Florida
in Tampa, FL, USA (study number Pro00041063). Consecutive patients with acute ischemic
stroke in the middle cerebral artery (M1) that were treated with ADAPT between July
2018 and June 2020 were included in this study. We retrospectively collected the patient
images, both intra-procedural 2D digital subtraction angiogram (DSA) and CT imaging
(nCCT and CTA), and patient medical data from consecutive cases. Cases were excluded
if (1) ADAPT was not used as first pass technique, (2) the occlusion was not originating
from the M1 segment of the MCA, (3) intra-procedural 2D DSA was not available, (4) CT
imaging was not available, (5) the available CT imaging had significant artifacts, poor
contrast opacification (i.e., no opacification detected by expert neuroradiologist) or poor
definition of the clot (i.e., no hyperdensity sign on nCCT or missing collaterals, resulting in
ambiguous definition of clot, especially clot length) and (6) patient or treatment information
was missing.

2.2. CT Imaging

CT imaging was performed on an Aquilion ONE scanner (Canon Medical Systems
Corporation, Otawara, Japan). The tube voltage and tube current were set to 135 kVp and
370–600 mA for nCCT, respectively, and 120 kVp and 150–205 mA for CTA, respectively.
The reconstructed voxel sizes for the nCCT and CTA were set to 0.5 × 0.5 × 0.5 mm3 and
0.5 × 0.5 × 0.5 mm3, respectively. For CTA imaging, a dosage of 80 mL of Omnipaque
350 contrast was given at a rate of 5mL/s during CTA image acquisition.

2.3. ADAPT Procedure and Outcome Determination

Both centers employed a similar ADAPT treatment approach for the first MT pass [8,9].
In brief, a long sheath was placed into the distal cervical internal carotid artery. Follow-
ing that, a large bore 0.068–0.072” aspiration catheter (6 F Sofia (MicroVention/Terumo,
Aliso Veijo, CA, USA), Jet 7 (Penumbra Inc., Alameda, CA, USA), React-71 (Stryker, Kala-
mazoo, MI, USA)) was advanced over the 0.025–0.035” microcatheter and 0.014–0.016”
microwire (J-shaped Synchro2 (Stryker, Kalamazoo, MI, USA)) close to the proximal aspect
of the clot. Aspiration was then performed via connection to a continuous aspiration
pump. In cases where aspiration alone was not successful, stent retriever thrombec-
tomy was performed next, in conjunction with continuous aspiration via the large-bore
aspiration catheter.

Treatment success for our study was assessed on DSA immediately after the first
pass ADAPT procedure using the mTICI score, based on the degree of reperfusion in the
territory downstream of the occlusion: mTICI 2b (50–89% reperfusion), mTICI 2c (90–99%
reperfusion) or mTICI 3 (100% reperfusion) [10]. First pass effect (FPE) was defined as
having achieved mTICI scores of 2c or 3 at the end of the first use of MT [4].
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2.4. Image Analysis

Image analysis was performed to calculate perviousness, clot length, angle of interac-
tion (AOI) and the distance of clot from the ICA terminus. As shown in Figure 1A–D [6,9,11],
they were computed as follows:
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Figure 1. Clot image measurements and univariate analysis. (A) The coronal view of CTA, is used
to measure clot length (a) using the largest extension of the filling defect on CTA. (B) Non-contrast
computed tomography (nCCT) and computed tomography angiography (CTA) are co-registered,
and 2–3 regions of interest along the clot area are used to calculate average density in Hounsfield
units (HU) for each image. Perviousness is then calculated as the difference in HU values between
CTA and nCCT (x-y). (C) To measure the distance from ICA terminus to the proximal end of the clot
(b), a cumulative measured axial, coronal and sagittal CTA view was performed (not shown) to give
adequate representation of distance on the axial CTA image alone. (D) On 2D digital subtraction
angiography, the angle of interaction is measured as the angle between the aspiration catheter and
the clot (dotted lines) from pre-thrombectomy working projections (z). This was then checked
against final post-thrombectomy images. (E) A bar graph (error bars = standard error) of parameters
normalized to the average value of the no-FPE group. Clot length, perviousness and angle of
interaction were statistically different between the group that achieved FPE and the group that did
not. (F) For each parameter, we performed ROC analysis to assess its ability in predicting FPE. Clot
length and perviousness had the best AUCs, followed by angle of interaction and distance from
the ICA. Abbreviations: AUC = area under the curve, CTA = computed tomography angiography,
Dist. = distance, DSA = digital subtraction angiography, FPE = first pass effect, HU = Hounsfield
units, ICA = internal carotid artery, Len. = length, nCCT = non-contrast computed tomography,
ROC = receiver operating characteristic. * denotes statistical significance, p < 0.05.
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We calculated clot length as previously described (Figure 1A) [9,12]. To define the
clot region, we identified the largest extension of the filling defect on CTA. This was then
manually measured on the optimal coronal CTA view (i.e., the plane that included the
majority of the clot region). In cases of clot extending into multiple MCA bifurcation or
trifurcation branches, the longest clot length was used for calculations. Cases where there
were no hyperdensity signs on nCCT or an absence of collaterals on CTA were excluded
because the clot length was ambiguous and could not be computed.

We calculated clot perviousness as described elsewhere (Figure 1B). Ref. [13,14] For
clots that were hyperdense on nCCT, the CTA and nCCT images were placed side-by-side
to identify the clot region. For clots that were not hyperdense on nCCT, the CTA and the
corresponding nCCT images were co-registered using the open source software, 3D Slicer
(https://www.slicer.org/, accessed on 15 April 2021), which implemented the BRAINSFit
algorithm for mutual-information rigid registrations of whole-brain 3D images [15]. Next,
2–3 regions of interest in the clot region on both nCCT and CTA were chosen and their
Hounsfield units (HU) were averaged. Perviousness was calculated as the difference
between average HU from CTA and nCCT.

The distance of the proximal end of the clot from the ICA terminus was calculated
on CTA images (Figure 1C). We assessed the standard CTA image projections (i.e., axial,
coronal and sagittal views) in order to identify the optimal projection on which the distance
between the clot and the end of the ICA was captured. This distance on CTA was then
manually measured.

We measured the AOI (angle of interaction) between the clot and the aspiration
catheter, as described elsewhere (Figure 1D) [6]. In brief, the AOI is calculated as the angle
between the major axes of the aspiration catheter and the clot using 2D DSA. Optimal,
in-plane projections are used to identify the axes where the catheter and the clot lie.

2.5. Univariate Statistical Analysis

In our dataset, the patients were divided into two groups based on the achievement of
FPE after ADAPT. First, we performed univariate statistical analyses to assess differences
in patient clinical parameters and clot-related image features (clot length, perviousness,
distance from the ICA and interaction angle) between patients with first pass effect and
those without first pass effect. For categorical variables, we performed the Fisher’s exact
test to test for significance. For continuous variables, Sharpiro–Wilk (SW) tests were first
performed to test each continuous parameter for normality. Then, in order to test signifi-
cance, we performed a Student’s t-test (for parameters that were normally distributed) or a
Mann–Whitney U-test (for parameters that were not normally distributed). Pearson corre-
lation analysis was performed and the correlation coefficient and p-value reported to test
the collinearity between the imaging parameters. DeLong’s test was performed to compare
ROCs. Results were reported as mean ± standard error (SE). A parameter was considered
significant if p < 0.05. For each image-based feature, we also plotted the receiver operator
characteristic (ROC) curve, and calculated the area under the ROC curve (AUC) in order to
measure its performance in predicting FPE. All analyses except DeLong’s test were per-
formed in MATLAB (v.2020a, MathWorks, Natick, MA, USA). DeLong’s test was performed
in MedCalc Statistical Software (v.19.2.6, MedCalc Software Ltd., Ostend, Belgium).

2.6. Multivariate Machine Learning Analyses

In order to determine if a combination of imaging parameters could better predict first
pass effect than each individual metric, we performed multivariate machine learning (ML)
analyses. We first divided our dataset randomly into a training and testing cohort using
a 75%:25% split (n = 89 and n = 30 cases, respectively), maintaining equal proportions of
cases that did and did not achieve FPE. Then, prior to ML, the input data were standardized
to a median of 0 and an IQR of 1 based on the training data, to facilitate faster and more
accurate convergence of the models. In the training dataset we trained logistic regression
(LR), linear discriminant analysis (LDA) and support vector machine (SVM—with a linear

https://www.slicer.org/
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kernel) classifiers in the scikit-learn ML library in Python v3.7.4. To minimize overfitting,
we implemented a 10-fold cross-validation (CV) in the training cohort for hyperparameter
optimization in the chosen algorithms. The final model that used all four measured param-
eters was trained in the complete training dataset with the hyperparameters optimized
using 10-fold CV. To estimate their performance, we calculated their training accuracy,
sensitivity, specificity and AUC (with 95% CI from CV). The models were then tested in the
hold-out testing cohort to determine their true performance, via calculation of their testing
accuracy, sensitivity, specificity and AUC (with 95% CI from CV).

To assess the improvement in performance of multivariate models over the individual
metrics themselves, we performed univariate ‘model training’ in the training dataset for
these parameters. In brief, we performed ROC analysis for each of the 4 parameters on the
training cohort and computed the optimal cutoff for FPE prediction using the Youden’s
J index. To compare to model performance, we recorded the univariate training ROCs and
training accuracy, sensitivity and specificity. We also assessed individual metric predictions
in the testing cohort, and reported the testing accuracy, sensitivity and specificity there
as well.

2.7. Model Stability Testing

As these results may be dependent on the specific randomization of training and
testing, we tested the stability of these models by repeating the multivariate ML procedure
across 100 randomizations of training/testing. For this analysis, the average training
and testing accuracy, sensitivity, specificity and AUC (with 95% CI) across the 100 ran-
domizations were calculated and compared to the performance of the models in the
single randomization.

3. Results
3.1. Patient Population

A total of 119 patients were included in the study. Overall patient characteristics of the
dataset have been reported in Table 1. Of the 119 cases (71 from Buffalo, NY, and 48 from
Tampa, FL) included in the study, 53 patients (44.5%) achieved FPE (i.e., mTICI of 2c and
3 after first pass). Seventy patients (58.8%) were female and the mean age of the cohort was
72.8 ± 1.4 years. There was no significant difference between patients with and without FPE
in terms of gender proportions, mean age, comorbidities, IV tissue plasminogen alteplase
(TPA) administration, laterality proportions and LVO location proportions (see Table 1).

Table 1. Comparison of baseline characteristics of groups with and without FPE.

FPE (n = 53) No FPE (n = 66) p-Value

Demographic and Clinical Data

Male, n(%) 21 (39.6) 28 (42.4) 0.852Female, n(%) 32 (60.4) 38 (57.6)
Age, (mean ± SE) 75.7 ± 2.0 70.5 ± 1.9 0.076

Hypertension, n(%) 42 (79.3) 49 (74.2) 0.663
Diabetes mellitus, n(%) 14 (26.4) 18 (27.3) 1.000

Dyslipidemia, n(%) 24 (45.3) 32 (48.5) 0.854
Congestive heart failure, n(%) 6 (11.3) 10 (15.2) 0.599

Atrial fibrillation, n(%) 17 (32.1) 32 (48.5) 0.092
Current smoker, n(%) 7 (13.2) 7 (10.6) 0.777
Previous stroke, n(%) 9 (17.0) 17 (25.8) 0.273

Treatment Details

IV-tPA, n(%) 33 (62.3) 30 (45.5) 0.065

Stroke Presentation

Right-sided occlusion, n(%) 33 (62.3) 34 (51.5) 0.268Left-sided occlusion, n(%) 20 (37.7) 32 (48.5)
MCA M1 occlusion, n(%) 44 (83.0) 44 (66.7) 0.058MCA M2 occlusion, n(%) 9 (17.0) 22 (33.3)

Clot density-nCCT, HU (mean ± SE) 42.5 ± 1.5 41.2 ± 1.3 0.540

Image-Based Parameters (All parameters normally distributed based on SW test)

Clot length, mm (mean ± SE) 9.79 ± 0.57 12.05 ± 0.58 0.007 †

Clot perviousness, HU (mean ± SE) 37.60 ± 3.74 24.92 ± 2.02 0.002 †

Distance from ICA, mm (mean ± SE) 11.64 ± 1.01 14.37 ± 1.28 0.083
Angle of interaction (mean ± SE) 149.1 ± 3.11 139.77 ± 3.32 0.031 †

HU = Hounsfield units, ICA = internal carotid artery, ICA = internal carotid artery, IV = intravenous, n = number, nCCT = non-
contrast computed tomography, MCA = middle cerebral artery, SE = standard error, tPA = tissue plasminogen activator. † Indicates
significance (p < 0.05).
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3.2. Shorter Length, Higher Perviousness and Larger AOI Are Associated with FPE

Figure 1E shows that cases that achieved FPE had significantly shorter clots (9.79 ± 0.57 mm
vs. 12.05 ± 0.58 mm, SW-test, p = 0.021, t-test p = 0.007), higher perviousness (37.60 ± 3.74 HU
vs. 24.92 ± 2.02 HU, SW-test, p < 0.001, t-test, p = 0.002) and larger AOI (149.91 ± 3.11◦

vs. 139.77 ± 3.32◦, SW-test, p < 0.001, t-test, p = 0.031) compared to those that did not
achieve FPE. Cases of FPE also tended to have a shorter distance from the ICA terminus
(11.64 ± 1.01 mm vs. 14.37 ± 1.28 mm, SW-test, p = 0.004, t-test, p = 0.083), albeit this
difference was not statistically significant. Figure 1F demonstrated the ROC curves for
each of these parameters across the entire dataset. Individually, no parameter performed
above an AUC of 0.65. Clot length and perviousness had the highest predictive ability
for FPE with AUC = 0.644 and AUC = 0.642, respectively. AOI and distance from the ICA
had AUC = 0.620 and AUC = 0.593, respectively. Before multivariate model training, we
performed univariate collinearity testing, and found no linear correlations between any
variable pairs (see Supplemental Figure S1).

3.3. Machine Learning Models Predict FPE with Good Accuracy

To test if multivariate ML models perform better than univariate FPE predictions, we
trained and tested LR, LDA and SVM algorithms with the four image-based parameters to
predict FPE. The optimal hyperparameters were computed using the 10-fold internal CV
on the training dataset and presented in Supplemental Table S1. As shown in Figure 2A,
the LR, LDA and SVM models achieved training accuracies of 75.0%, 70.6%, and 72.7%,
respectively. In general, the models had higher specificity (LR: 77.6%, LDA: 79.6%,
SVM: 71.4%) than sensitivity (LR: 71.8%, LDA: 59.0%, SVM: 74.4%). As shown in Figure 2B,
the AUC analysis for the trained models yielded ROCs of 0.788 (95% confidence interval–CI:
0.679–0.880), 0.783 (95% CI: 0.679–0.880) and 0.791 (95% CI: 0.662–0.866) for the LR, LDA
and SVM models.

In the hold-out testing cohort, the algorithms had similar accuracies and AUCs. The
most accurate model was LR (74.2%), followed by LDA (67.7%) and SVM (64.5%), as
shown in Figure 2C. Our ROC analysis demonstrated AUCs of 0.769 (95% CI: 0.544–0.896),
0.672 (95% CI: 0.483–0.860) and 0.794 (95% CI: 0.600–0.924) for the LR, LDA and SVM
models, respectively (Figure 2D). (See Supplemental Table S2 for equations of the mod-
els). Interestingly, the multivariate LR model outperformed any of the 4 univariate mod-
els derived based on their individual optimal cutoffs on the training dataset (refer to
Supplemental Figure S2).
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Figure 2. Multivariate machine learning analysis. (A) We trained three ML models (LR, LDA
and SVM) to use normalized values of all four parameters to predict FPE. In training, the models
performed with an accuracy of ranging from 70%–75%. (B) ROC analysis in the training dataset
demonstrated that the models had an AUC ranging from 0.78–0.79. (C) In testing, the models had
an accuracy ranging from 65%–74%, with the LR modeling performing the best. (D) The models
AUC in the testing dataset ranged from 0.67–0.79. Abbreviations: AUC = area under the curve,
FPE = first pass effect, LDA = linear discriminant analysis, LR = logistic regression, ML = machine
learning, ROC = receiver operating characteristic, SVM = support vector machines.

3.4. The Logistic Regression Model Is Stable over 100 Training/Testing Randomizations

To test the stability of the LR model, we repeated the ML workflow for LR over
100 randomizations of the training/testing split. For each randomization the optimal
hyperparameters were computed with the 10-fold internal CV on the training dataset. As
shown in Figure 3A, the LR model achieved an average training accuracy, sensitivity and
specificity of 71.7 ± 2.9%, 57.8 ± 7.3% and 82.8 ± 3.8%, respectively, over the 100 random-
izations. Furthermore, its average training AUC was 0.771 ± 0.026 (Figure 3B). Across the
100 random testing cohorts, the LR model performed with average testing accuracy, sensi-
tivity and specificity of 67.9 ± 3.6%, 51.8 ± 7.4% and 81.4 ± 6.1%, respectively (Figure 3C).
Its average testing AUC was 0.768 ± 0.026 (Figure 3D). Similar trends of results were ob-
served with SVM and LDA classifiers trained and tested on the same 100 random train-test
splits (see Supplemental Figure S3). As shown by the dotted lines in Figure 3A,C, the
single-randomization trained LR model had similar performance to that of the 100 ran-
domizations, although its accuracy and sensitivity tended to be higher. Nevertheless, the
testing and training AUC values of the model (from the single randomization), were well
within the AUC range calculated from the 100 randomizations.
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Figure 3. LR model stability across 100 randomizations of training/testing. (A) Across 100 different
randomizations of the selection of the training dataset, the LR model had an accuracy, sensitivity
and specificity of 0.717 ± 0.029, 0.578 ± 0.073 and 0.828 ± 0.038, respectively. This was similar
to the performance in the initial randomization, illustrated by the dashed lines. (B) The AUC
measured in the first randomization also fell within the standard error range across the 100 training
AUCs, 0.771 ± 0.026. (C) In the 100 different testing dataset randomizations the LR model had an
average testing accuracy, sensitivity and specificity of 0.679 ± 0.036, 0.518 ± 0.074 and 0.814 ± 0.061,
respectively. This was again similar to the testing results in the initial randomization, illustrated
by the dashed lines. (D) The testing AUC measured in the first randomization also fell within the
SE range across the 100 testing AUCs, 0.768 ± 0.026. Abbreviations: AUC = area under the curve,
FPE = first pass effect, LR = logistic regression, ROC = receiver operating characteristic.

3.5. Interpreting the Logistic Regression Model

The logistic regression model allows for direct calculation of the odds ratio (OR) for
each parameter based on the trained coefficients (refer Supplemental Table S2). Table 2
shows the odds ratio and the predicted percent change in positive outcomes in our dataset
(which had a positive outcome rate of 44.5%) with an increase in each parameter by
1 IQR [16]. For example, a 7 mm (1 IQR) increase in clot length, will decrease the rate of
positive outcomes in the dataset by 25.87%. Based on these findings, the most important
parameters were (in decreasing order), clot length, AOI, distance of the clot from the ICA
terminus, and perviousness. Based on the order of importance (from %change in outcome),
these metrics can be ranked into a simple decision tree (Supplemental Figure S4). The
output of each branch of the tree in Supplemental Figure S4 shows the predicted probability
of outcome for a ± 1 IQR deviation of each metric.
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Table 2. Statistics from the trained coefficients of the LR model.

Parameter. Odds Ratio Median IQR pchange

Clot Len. 0.2859 ± 0.0148 10 mm 7 mm −25.87%
Perviousness 1.6356 ± 0.0383 27 HU 24 HU 12.15%

Dist. From ICA 0.3852 ± 0.0142 12 mm 12.8 mm −20.92%
AOI 2.7292 ± 0.0382 150◦ 29◦ 24.06%

Odds ratio, training cohort median, training cohort inter-quartile range, and calculated %change in positive
outcome rate with unit IQR increase in each independent variable. Abbreviations: AOI = angle of interaction,
Dist. = distance, HU = Hounsfield units, ICA = internal carotid artery, IQR = interquartile range, Len. = length,
LR = logistic regression.

4. Discussion

In this study, we created a regression model that predicted FPE for ADAPT cases in
the MCA with an accuracy of 74.2% and an AUC of 0.77 stable across iterative ML analyses.
It is likely that this model worked well because the features it relied on, themselves, all
reflect different facets of successful or unsuccessful first pass attempts. Physical properties
of the clot may reflect the ease to which it can be rapidly removed from the vessel by
aspiration. In our data, FPE was significantly associated with smaller clot length (p = 0.007).
Guzzardi et al. also found that shorter clots were associated with better clinical outcomes in
ADAPT [1]. This may be because longer surface area clots have larger friction and adhesion
forces against the vessel, making them harder to retrieve and yielding worse thrombectomy
outcomes [17]. Similarly, higher perviousness was also significantly associated with FPE
(p = 0.002). Perviousness has been shown to be associated with greater proportions of fibrin
mesh and has been demonstrated to be related to the degree of recanalization with IV-tPA
administration alone [13,18]. It has been hypothesized that higher perviousness allows for
more tPA to pass through the clot, which could result in faster thrombus breakdown and
better recanalization [19]. Similarly, for ADAPT cases, greater penetration of the blood into
the clot material in those that are more pervious could enable the suction of distal blood,
which would benefit the removal of the clot.

The position of the clot in the cerebral vasculature may also influence the ease with
which it can be retrieved. Based on our data, the AOI between the clot and the aspiration
catheter was significantly greater in cases that achieved FPE (p = 0.031). Indeed, Bernava
et al. originally demonstrated that the final recanalization outcome and number of passes
until revascularization (rather than FPE) were significantly associated with greater angle of
interaction to the clot [6]. This is likely because, as the AOI approaches 180◦ (where the
aspiration catheter is coaxial to the clot), the entire aspiration force is applied to the clot,
which would lead to easier aspiration and more effective reperfusion. Additionally, we also
found that FPE occurred more often in cases where the clot was closer to the ICA terminus,
albeit the difference was not statistically significant (p = 0.083). While others have also
reported no difference in FPE across different clot locations, one could still speculate that
FEP could be related to shorter distance from the ICA because 1) distal clots may be more
susceptible to breakdown and/or loss from the catheter tip when it is being withdrawn
and 2) due to decreased contrast opacification, it may be difficult to visualize the location
of distal clots, thus resulting in suboptimal contact between the aspiration catheter and the
clot [5,20].

Recent studies have identified other predictors of functional and reperfusion outcomes
after mechanical thrombectomy [21–23]. These primarily include demographic features,
medical history and preliminary stroke characteristics. For example, Alexandre et al., in a
retrospective, multi-center, observational study of 191 patients with posterior circulation
occlusion, found lower baseline NIHSS and higher ASPECTS (Alberta Stroke Program
Early CT Score) to be predictors of better functional outcome, and the use of larger bore
catheters as a positive predictor of successful reperfusion [21]. Focusing on FPE, Velagupadi
et al. investigated a cohort of 220 patients who underwent MT, and used demographic
characteristics, medical history and stroke characteristics for machine learning analysis
of first pass reperfusion prediction [22]. Testing various ML algorithms—SVM, Random
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Forest, Naïve Bayes, LR, and XGBoost, they reported an accuracy ranging from 60%–67% in
predicting FPE. Di Maria et al. also aimed to predict FPE using medical record data [23]. In
a cohort of 1832 patients, they found multiple features, including age, blood pressure and
location, were independent predictors of first pass reperfusion. These studies, although they
did not attempt to identify image-based FPE predictors, provide evidence that patient data
(like demographics and medical history) may also help in predicting FPE. Future studies
investigate how the addition of these features to our models could increase performance,
as warranted.

The overarching goal of this study was to test the feasibility using ML based solely
on imaging metrics to create predictive models of FPE for ADAPT cases. In comparing
the algorithms’ performance with univariate analyses of the individual parameters, it is
clear that combining the parameters led to better FPE prediction than could be achieved
by any individual parameter alone. While most were significantly different between cases
that did and did not achieve FPE, their AUCs across the entire dataset were generally poor,
ranging from 0.59–0.64. Their AUCs were equally poor in the training dataset, where they
fell to 0.51–0.56. Their low predictive ability, likely due to inter-sample variation in the
metrics, may be one reason for the non-significant and inconsistent results that have been
reported in the literature [9,11,24,25]. Taking a different approach than other studies, we
created classification algorithms that use discrete feature values from each case to predict
FPE, rather than simply assessing average differences across the two populations. This ML
strategy enabled us to create predictors that had substantially higher AUCs (as high as
0.79 (95% CI: 0.600–0.924) in the testing dataset). This shows that combinations of features,
which may be individually inconsistent, can generate stable predictions and accommodate
for potential inter-sample variability in the data. Such multivariate models are particularly
powerful when the parameters used in their model building are not correlated (collinearity
testing), as was the case in our dataset, where each parameter was both philosophically
and statistically related to different aspects of treatment outcome, thereby allowing for
better model performance [26].

Our study has several limitations. First, we only analyzed ADAPT, which could
have introduced bias towards cases preferentially selected for aspiration, e.g., those with
favorable anatomy. Choice of ADAPT over other strategies is dependent on other factors
(including personal experience and device availability) that could hinder the use of pre-
dictive models like the ones developed here. Second, these findings are only applicable
to patients with occlusions originating in the M1 segment of the MCA, since we excluded
patients with occlusions at other locations. Third, there are limitations to each parameter
we analyzed in this study. Clot length requires cases to have well-defined filling defects (see
inclusion/exclusion criteria), which may have biased our population. The perviousness
calculation may vary based on partial volume effects in the quantified regions, collateral
quality and atherosclerotic lesions in the vessel wall. Distance from the ICA terminus
was measured in this study on 2D CT planes. However, center-line analyses on 3D recon-
structions would offer a more accurate way to measure this parameter. AOI is tedious
to obtain from pre-treatment CT imaging, as it would require clot and proximal vessel
segmentation. Fourth, we did not include device-related parameters in our ML models.
For example, aspiration catheter bore diameter may increase model performance, as a
recent study showed it to be independently associated with FPE [27]. Future studies that
include MT device parameters along with imaging parameters are needed. Lastly, future
validation studies in larger, multi-center cohorts are needed to establish the predictive
ability of this model.

5. Conclusions

This preliminary study provided evidence that combinations of image-based parame-
ters could predict FPE in ADAPT cases. Our data showed that these ML models predicted
FPE better than individual metrics alone. In particular, a LR model showed a hold-out
testing accuracy of and AUC of 0.742 and 0.769, respectively. Combinations of parameters
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may give more stable FPE predictions by accounting for inter-sample variability in the in-
dividual parameters. This preliminary study provides the foundation for development of a
multi-variate imaging-based outcome predictor for ADAPT-treated large vessel occlusions.
Following rigorous validations in large, multi-cohort studies, such models may help the
operators select the most adequate MT approach for each individual patient.
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