
sensors

Article

SELAMAT: A New Secure and Lightweight Multi-Factor
Authentication Scheme for Cross-Platform Industrial
IoT Systems

Haqi Khalid 1,* , Shaiful Jahari Hashim 1,*, Sharifah Mumtazah Syed Ahmad 1, Fazirulhisyam Hashim 1

and Muhammad Akmal Chaudhary 2

����������
�������

Citation: Khalid, H.; Hashim, S.J.;

Syed Ahmad, S.M.; Hashim, F.;

Chaudhary, M.A. SELAMAT: A

New Secure and Lightweight

Multi-Factor Authentication Scheme

for Cross-Platform Industrial IoT

Systems. Sensors 2021, 21, 1428.

https://doi.org/10.3390/s21041428

Received: 20 November 2020

Accepted: 26 December 2020

Published: 18 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer and Communication Systems Engineering, Faculty of Engineering,
Universiti Putra Malaysia, Serdang 43400, Malaysia; s_mumtazah@upm.edu.my (S.M.S.A.);
fazirul@upm.edu.my (F.H.)

2 Department of Electrical and Computer Engineering, College of Engineering and Information Technology,
Ajman University, Ajman 346, United Arab Emirates; m.akmal@ajman.ac.ae

* Correspondence: haqikhalid1@gmail.com (H.K.); sjh@upm.edu.my (S.J.H.)

Abstract: The development of the industrial Internet of Things (IIoT) promotes the integration of the
cross-platform systems in fog computing, which enable users to obtain access to multiple application
located in different geographical locations. Fog users at the network’s edge communicate with
many fog servers in different fogs and newly joined servers that they had never contacted before.
This communication complexity brings enormous security challenges and potential vulnerability
to malicious threats. The attacker may replace the edge device with a fake one and authenticate
it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we
propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT
systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC
algorithm for efficient encryption keys management and secure communication between the edge
nodes and fog node servers to establish secure mutual authentication. The scheme was tested for
its security analysis using the formal security verification under the widely accepted AVISPA tool.
We proved our scheme using Burrows Abdi Needham’s logic (BAN logic) to prove secure mutual
authentication. The results show that the SELAMAT scheme provides better security, functionality,
communication, and computation cost than the existing schemes.

Keywords: multi-factor authentication; fog computing; industrial IoT; fog node; cross-platform

1. Introduction

The Internet of things (IoT) has gained tremendous popularity in the last decade with
the advent of many powerful, low-cost devices such as sensors, RFIDs, etc., coupled with
various communication media. Recently, the implementation of IoT in industries with
Cyber-Physical System (CPS) as a part of the world of production and network connectivity
is known as Industrial IoT (IIoT) [1]. The integration combines industrial devices equipped
with communication, sensors, and Internet-connected actuator modules [1]. The devices
are responsible for sensory data capture, environmental and industrial conditions tracking,
and raw goods transport. However, it is estimated that the industrial IoT market will hit
$123.89 billion by 2021 [2]. Industrial IoT (IIoT) can significantly enhance communication,
efficiency, scalability, time savings, and cost savings for industrial sectors. Interoperability
between devices and machines using different protocols with different architectures and the
security of such protocols and data generated with these devices is the primary concern for
IIoT [2–4]. As has been stated, industrial devices capture, store, transmit, or exchange large
amounts of highly sensitive consumer information. The attacker can intercept and alter
this transmitted data. These attacks threaten confidentiality in the information collected

Sensors 2021, 21, 1428. https://doi.org/10.3390/s21041428 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5760-1398
https://orcid.org/0000-0003-1880-5643
https://doi.org/10.3390/s21041428
https://doi.org/10.3390/s21041428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041428
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1428?type=check_update&version=2

Sensors 2021, 21, 1428 2 of 32

and transmitted, leading to less trust in the entire system [5]. Therefore, it is essential to
implement essential security features, such as confidentiality and integrity. Constrained
devices, however, are the primary security considerations for IoT and IIoT applications.
These devices are typically limited in computing power, storage capacity, and energy
consumption. Therefore, it is a challenge to use some high computational cryptographic
algorithms, which usually require more computation costs [1,6,7]. The National Institute of
Standards and Techniques (NIST) reports that the fog computing architecture consists of
three layers of edge devices, fog nodes, and a cloud layer. The edge device is the initial layer
of fog architecture [8]. It is used to collect data and environmental monitoring by various
industrially smart IoT devices (sensors and actuators). The fog nodes are context-conscious
and support a shared data and communication system. The last layer consists of the cloud
server, which stores data for potential use [9]. Services can be hosted in fog computing at
end devices such as access points, as shown in Figure 1.

Figure 1. Fog computing supporting a cloud base for smart end-devices [9].

Fog providers may be different parties because of various deployment solutions; the
existing infrastructure for fog can be used for wireless carriers (e.g., GSM) that control
home or cellular base stations. Fog infrastructure can also be developed by cloud ser-
vice providers needing their cloud services to the network edge. Because of the lack of
authentication services, a rogue fog node/service will be a fog device or fog instance,
which claims to be legitimate and attempts to control edge’s fog nodes [10]. For example, a
fog administrator may permit an insider attack not to instantiate a legitimate attack but
to instantiate a rogue fog instance. For example, in an insider attack, a fog administra-
tor can handle fog instances but can instead instantiate a rogue fog instance [9]. After
communication, an adversary can manage incoming or outgoing user or cloud requests,
capture or control user data stealthily, and initiate further attacks quickly. A fake fog
node or server is a serious threat to the security and privacy of user data. Likewise, in
2012, Fire-base Google was launched to allow a front-end application to connect directly
to a back-end database. However, they discovered that the Fire-base is vulnerable to the
Stuxnet attack due to the absence of authentication and authorization [11]. Thus, due to
an exposed interconnection between the edge devices and the fog node, authenticating
users/devices and ensuring platform security becomes a huge challenge. The devices

Sensors 2021, 21, 1428 3 of 32

often have a low computational capacity and low power consumption, particularly in the
IoT system, which requires reducing authentication and encryption costs while ensuring
information security [12]. Therefore, cross-platform authentication in cloud computing
has not been considered before, and this gives rise to the problem of trustiness between
cross-platforms in fog computing. Cross-platforms are places where multiple fog nodes
authenticate mutually and exchange data [13–17]. Hence, developing lightweight crypto-
graphic protocols to protect Industrial IoT devices against vulnerable attacks and satisfying
device constraints are needed.

Thus, we propose a secure and lightweight multi-factor authentication scheme for
cross-platform Industrial IoT systems (SELAMAT). The scheme intends to improve the
security and establish secure communication between the edge devices and fog nodes. The
SELAMAT scheme uses the AES-ECC algorithm to design an efficient key management
system. AES (Symmetric Key Encryption Scheme) for the ECC Message Encryption (A-
Symmetric Key Encryption Scheme) for the Secure Key Management mechanism is used in
combination with data hiding to provide strong encryption and decryption requirements
by using the advantages of both the cryptographic schemes. With our multi-factor authenti-
cation (MFA), three types of factors are used: Username/Password (something you know),
smart card (something you have), and biometric (Fingerprint). Our MFA secures the user
information from password guessing attacks, session attacks, and impersonation attacks.
It provides layered security, making access in the fog node more difficult for unauthorized
users to a target such as the physical location, device, network, application, or database.

2. Industrial IoT Security Requirements and Issues

The industrial Internet of things improves the efficiency, scalability, and security of
the industrial environment applications. In such sensitive applications, introducing the
resource-constrained IoT devices might bring essential security and privacy concerns.

2.1. Security Requirements

Several types of research [18,19] have underlined security requirements that must be
considered in IIoT, particularly fog nodes and sensors. We further identify the most critical
security and privacy requirements:

• Availability: The network infrastructure, devices (e.g., sensors), and fog nodes that
handle the control and optimization queries should be continually available. Besides,
unauthorized users should not deny allowing authorized users to handle queries.

• Confidentiality: The data and queries between edge nodes and fog nodes exchanged
are confidential and must not be revealed by unauthorized third parties.

• Integrity: The type of data sharing between edge devices and fog nodes improves
energy transmission decision making. For better decision-making, the integrity of
these data is fundamental. We also need to deal with injection attacks that aim to inject
false measures into the fog computing infrastructure that could interrupt decisions.

• Authenticity: Authentication of ubiquitous IoT connectivity is based on the nature
of Industrial IoT environments in which communication between equipment and
equipment Machine-to-Machine (M2M), between man and device, or between user
and other would be possible. The authorizations property allows only authorized
entities (any authenticated entity) to carry out certain network operations. It is
necessary to design a secure authentication scheme to prevent unauthorized users
from accessing the nodes.

• Non-repudiation: Any party in the system between the utilities’ fog node servers and
the edge nodes must not deny that they subsequently have not received such data or
control commands.

• Privacy: Fog computing infrastructure information includes fine-grained data about
users and even industrial machines. These data reveal information about the activities
of customers in industries and companies. It is compulsory to encrypt and make these
data untraceable.

Sensors 2021, 21, 1428 4 of 32

2.2. Security Issues

Fog computing should withstand some security challenges in the Industrial IoT setting.
We present the relevant ones as follows:

• Limitations of information system technology: The number of attacks is increasing
because many industries are interconnected with cloud computing, which may affect
the fog computing network’s availability. The integrity of data, confidentiality, and
privacy; spoofing servers; injection; DoS/DDoS attacks; impersonation attacks; and
replay attacks, among others, are just some examples of attacks.

• Data sensitivity and privacy: The information shared between the network node
and other fog nodes involves sensitive customer-specific information such as object
tracking, power consumption, real-time data streaming, and performance monitoring.
Neighbors should not leak this information while keeping it exploitable across fog
nodes.

• Lack of Authentication: Fog computing nodes must be securely designed. They must
verify information from a known source and ensure that it was not corrupted to avoid
introducing some threats. The weak authentication mechanism for industrial sectors
might allow attackers to impersonate a legitimate user. For example, an adversary
may execute a password guessing attack, man-in-the-middle, or replay attack to access
the targeted node. Therefore, a secure authentication scheme must be designed to
prevent such attacks.

• Lack of data transmission encryption: The data exchange between edge devices and
fog nodes is typical, not encrypted, and transmitted through a public channel. In this
case, the attacker can still capture the network’s data by using a simple network sniffer
to monitor the connection between the user and the IIoT device. The attacker also can
record the message and obtain the edge device information to perform a replay attack.
The non-encrypted form allows the attacker to gather information about the targeted
node, such as its database used by the node/device.

• Complexity: Researchers have proposed several authentication schemes for the IIoT
environment, but those schemes are mostly based on cryptographic techniques re-
quiring a high computational cost. Some of the cryptographic techniques use an
extensive operation, such as the identity-based verification and multiplication opera-
tion. Since industrial IoT devices are limited resources with low power, a lightweight
authentication scheme must be designed for IIoT suitability.

3. Related Works

Many researchers recently focused on providing secure authentication for industrial
IoT systems. However, Chen et al. (2020) proposed a fog node Authentication Secure
Authenticated Key Exchange Scheme [20]. Moreover, the proposed scheme uses only such
basic operations because of limited resources of fog nodes and users, such as multiplication
of elliptic curve cryptography point operations, bit-wise exclusive OR, and hash-only
functions, instead of other complex algorithms. They argued that their system overcomes
the risk of a temporary secret leakage attack. They proposed a three-step authentication
system of: (1) the user registration phase, (2) fog server registration phase, and (3) login and
authentication phase. However, due to a large amount of computation and communication,
it involves heavy calculations due to public cryptography and signature algorithms or other
time-consuming calculations (e.g., bilinear pairings). Munir et al. (2018) [21] proposed a
biometric smart card authentication scheme based on pin and fingerprint identification in
fog computing. In Phase 1, the user enters his information in two phases. Simultaneously,
the pin is encrypted with DES and the fingerprint, which uses a robust mathematical
algorithm that is not invertible and where both are stored on the fog server and smart
card. In Phase 2, the user inserts the card and receives the verified information. The
unauthorized individual has access to these data if some government or other source leaks
the biometric data. However, privacy issues have been increased because an individual’s
unique identity is a biometric blueprint. Since the template cannot be decoded back to

Sensors 2021, 21, 1428 5 of 32

biometric data, it can be used to track individuals if a database links the user to a specific
biometric prototype, so the user’s operation can be tracked unlawfully. Such threats must
be tackled, and cancellable biometrics are a potential solution.

Rahman et al. (2019) [22] suggested that an enhanced mutual authentication security
scheme be addressed based on an advanced encryption protocol and hashed message
authentication code for fog computing. The authors tried to avoid the mid-attack in
interactions between the fog user and registration authority. The attacker compromises the
user’s identity by sending the identity to the registering authority as fog users obtain from
the registering authority the master secret key. However, this work still built session keys
with a long-term master secret. A different scheme of mutual authentication is proposed
for fog-based computer environments with constrained devices [23]. The proposed scheme,
called Octopus, needs a long-lived secret key to authenticate with any fog server. However,
it is about setting up and resuming the session. Session hijacking on the transport layer
will result in a DoS attack. An attacking node may individually identify the victim node
to continue between the two nodes. The nodes that are communicating may need to
re-transmission messages by altering sequence numbers [22,24,25]. In [26], the authors
provided secure key management and user authentication scheme called the SAKA-FC.
It is defined as a secure communication protocol that supports fog and uses a one-way
hash function and XOR that is bitwise supported by IoT-resource-driven devices. The
scheme suffers from controlling the privileged insider attack and cannot provide a secure
environment to compromise the attack. It should be noted that the authentication of users
and binding agreements are not secured against future attacks. The scheme is not as
lightweight as it requires more complex computing and communication. As a result, the
scheme proposed for this environment will not correctly authenticate users in cloud-driven
IIoT environments [27].

Similarly, Wang et al. [12] designed an anonymous lightweight authentication proto-
col for multi-level architecture fog-based applications. The protocol dynamically updates
both sides of the session keys and ensures anonymous user authentications. The scheme
proposed a key group protocol for management. The server can share with a specific
attribute the key to desired communication nodes, and a private key between the two
fog nodes can be created and updated without having to leak keys on the servers. How-
ever, the available group key management systems are not enough for mobile devices
and require time-consuming computations. Moreover, He et al. [28] presented a new
Mobile Healthcare Social Networks (MHSNs) handshake scheme. The scheme is based
on hierarchical identity-based cryptography. The system consists of three tiers, while the
highest level is a trusted authority using the Schnorr signature scheme to generate private
keys to participating health centers. The second level is registered health centers with
the Schnorr signature system, responsible for generating private keys. The third level
is machine patients performing symptoms matching the cross-domain handshake. The
system’s goal was to allow two users registered in separate healthcare centers to con-
duct a symptom-matching cross-domain handshake. However, the scheme requires more
computational effort because of its identity-based cryptographic technologies and lack of
reliability due to resource-constrained devices (such as the elliptic curve) being more time
consuming as they come with some operations [29,30].

In 2019, Jia et al. [31] proposed an AKE Scheme for an IoT-based fog computing health
care system. Compared to conventional medical systems, data from consumer devices and
sensors are transmitted via fog nodes in the fog layer instead of via the cloud. Fog nodes
process, transfer, and store data to the end-user and return results. However, we found
that this AKE device is vulnerable to a temporary secret attack [20]. M. Akram et al. [32]
enhanced the security features by proposing an anonymous three-factor authentication
scheme for multi-servers. The scheme designed was based on the elliptic curve cryptogra-
phy, and the biometric information is verified by the user and the server separately. The
registration center in their scheme is involved in the authentication phase and has separate
responsibilities with the server. Likewise, H. Tan et al. [33] designed a pairing-free homo-

Sensors 2021, 21, 1428 6 of 32

graphic authentication and key management scheme for VANET dynamic cross-platform
authentication. The scheme used certificateless cryptography for mutual authentication
and homomorphic key management. On each active validation, dynamic updating to
anonymous vehicle identity is performed to achieve privacy preservation. It mainly fo-
cuses on solving the heavy bandwidth consumption and high latency. However, their
scheme is vulnerable to specific passive and active attacks such as server spoofing attacks
and DoS attacks.

Venčkauskas et al. (2019) [34] presented the secure Self-Authenticable Data Transfer
Protocol to address the issue of secure communication between resource-constrained de-
vices. The authors proposed a new lightweight, secure, and authenticable transfer protocol
for communication between the edge nodes and the fog nodes. Instead of UDP (User
Datagram Protocol) and DTLS (Datagram Transport Layer Security) protocols, the primary
purpose of the proposed protocol is to use CoAP (Constrained Application Protocol) as a se-
cure transport. SSATP only uses primitive symmetric cryptography, allowing small devices
with memory and low-end processing capacities to be easily implementable. However,
DTLS must be excluded from the critical quality to suit the smart cities’ resource-intensive
sensor nodes [12,35,36]. From the discussion above, we can see that most of the authentica-
tion schemes are still not satisfying the fog computing requirements. Thus, a lightweight
and secure authentication scheme for the fog computing architecture is urgently needed.
The comparison of the related authentication scheme is illustrated in Table 1.

Table 1. Comparison of the existing authentication scheme in fog computing.

Ref. Issue Structure Implementation Method Performance Limitation

[20]
Vulnerability to an
ephemeral secret
leakage attack.

Centralized

Prototype
(IPhone6S

(A9+M9highest
2GBCPU,2GB

RAMan-
diOS10.11+PC).

ECC Computation
time = 85.7388 ms

Costly bilinear pairing
operations, and
Encryption key

management problem.

[21]
Security issues in

biometric
mis-behavioral

Centralized
Prototype (ACOS

and AET60
BioCARDKey kit)

AES NA

Privacy issues may be
used to track the
individual and

monitor the activities
of the user.

[23]

Not preserving user
privacy, therefore,
exposed to MiTM

attack

Centralized PBC lab PKC Computational
time = 387.762 ms

Public key revocation
and Used a long-term

master secret.

[26]

Fog user’s smart
devices are

resource-limited and
cannot perform

extensive,
conventional digital

signatures

Centralized JPBC library and
Bouncy Castle

Hash functions
and symmetric

encryption

Computation cost
= 8.745 ms.

Vulnerability
denial-of-service

attack, replay attack,
and password

guessing attacks.

[26]

Several protection
and privacy issues,

including data
exposure, session key

leakage, replay,
MiTM, and

impersonation
attacks

Centralized NS2-simulation ECC

Throughput,
End-to-End Delay,
Packet Loss Rate,

Computation
Costs= 54.124 ms

Not suite user
authentication in a
cloud driven IoT

environment.

Sensors 2021, 21, 1428 7 of 32

Table 1. Cont.

Ref. Issue Structure Implementation Method Performance Limitation

[12]

The application
scenario is single and
cannot be expanded

to authentication
between FC devices

Centralized Java
socket/MYSQL 5 AES

Communication
cost = 5760 bits,

Computation cost
= 76.812 ms

GKM not efficient for
mobile devices and

require
time-consuming

computations.

[28]

Not suitable for
mobile device

deployment due to
the requirement for

computationally
expensive operations

Centralized JPBC library HIDS

Computation
Overhead =
30.871 ms,

Communication
Overhead = 2240

bits

The scheme needs
more Needs more

computational effort
due to the

identity-based
cryptographic

technique, Key escrow
problem.

[33]
Heavy bandwidth
consumption and

high latency
Centralized pbc-0.5.12 Homomorphic

encryption

Total
Computation

time = 9.593ms,
Communication
cost = 2584 bits

Vulnerable to server
spoofing attack and

DoS attack.

[34]

limited resources of
the edge node

devices are requiring
less computational

resources

Centralized

Prototype
(Raspberry Pi
computer, and

Matlab)

AES, and ECC
Power

consumption,
Data loss

Vulnerable to replay
attacks.

[31]
Unprotected fog
nodes in remote

cloud data center
Centralized MIRACL library ECC

Total
Computation

time = 20.535 ms,
Communication
cost = 2752 bits

Vulnerable to
man-in-the-middle
attack, replay attack

[32]

Vulnerability to some
attacks in the

authentication
between

multi-servers

Centralized Py-crypto library ECC

Total
Computation

time = 27.028 ms,
Communication
cost = 1920 bits

Vulnerable to server
spoofing attack, and

lack of perfect forward
secrecy

4. Preliminaries

This section introduces important cryptographic principles and basic knowledge.
The elliptic cryptosystem (ECC) and AES-ECC encryption and decryption are specified.
Related notes, system models, security requirements, and network assumptions are then
specified.

4.1. The Elliptic Curve Cryptography

Let p > 3 be the large prime and Fp be the finite field with order p, where a, b ∈ Fp
satisfy the following equation: 4a3 + 27b2(modp) 6= 0. The elliptic curve Ep(a, b) over the
finite field Fp is defined with the following equation:

y2 = x3 + ax + b mod p, (1)

where (x, y) ∈ Fp. The additional operation on the curve is known as the doubling point of
the two points. The addition of point is otherwise specified. All points on the curve and
the point at infinity are a group of abelites E(Fp) additives. Please note that ∞ = (−∞)
performs as the identity element.

Definition 1 (Computational Diffie–Hellman Problem (CDHP)). Given P, aP, bP ∈ G1 for
a, b ∈ Z∗q where P is a generator of G1, the advantage in computing ab P to solve the CDHP problem
for any probabilistic polynomial-time (PPT) algorithm A is negligible, which can be defined as:

Sensors 2021, 21, 1428 8 of 32

AdvCDHP
A,G1

= Pr
[

A(P, aP, bP)→: a, b ∈ Z∗q
]

(2)

Definition 2 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Given P, Q ∈ G1,
where Q = aP. The advantage in finding the integer a ∈ Z∗q to solve the ECDLP problem for any
probabilistic polynomial-time (PPT) algorithm A is negligible, which can be defined as:

AdvCDHP
A,G1

Pr
[
(P, aP)→ a : a ∈ Z∗q

]
. (3)

4.2. AES-ECC Encryption/Decryption

In this section, we explain the process of the AES-ECC algorithm for efficient key
generation and secure user data transmission. The ECC is utilized to encrypt and transfer
the Private Keys as AES Private Keys while AES encrypts the plain text (communication
data). The process is applied when an entity needs to encrypt/decrypt the message [37,38].
The encryption/decryption processes are shown in Figure 2, and the steps are explained
as follow:

1. Data are the users’ information, i.e., their identities, passwords, and biometrics.
2. SHA-2 is used to produce a data summary.
3. ECC-related sender private key and ECDSA module are used to produce a digital

signature.
4. According to the AES encryption module (AES private key), digital signature encryp-

tion and data to be submitted are encrypted. Then, the ciphertext data and ciphertext
signature are encrypted.

5. The AES private key is encrypted by the ECC encryption module, and then the
key-ciphertext is generated.

6. All the ciphertexts are packed and sent via the cross-d system network to the receiver.
7. Therefore, the sender uploads the ciphertext to the authentication server.
8. When the receiver receives the ciphertext, the receiver uses its private key to decrypt

the AES key, and then decrypts the AES key data-ciphertext and signature-ciphertext.
He/she uses the public key to check the signature, digest the message, and then get
the plaintext by using the SHA-2 algorithm. If the message digest and plaintext are
the same, the data are valid and available; otherwise, they are invalid.

Plain-text

AES

ECC

Hashing:
SHA1

Digital Signature :
ECDSA Digital Signature

Participant
Private Key

Participant
Public Key

PRING Session
key Generation

Cipher-text

Message encrypted with
Session key

AES key

Encrypted
AES key

Cipher-text

Encrypted
AES key

(a) Encryption process.

AES Hashing:
SHA-2

Digital Signature :
ECDSA

Digital
Signature

Success

PRING Session
key Generation

Message encrypted with
Session key

AES key

Cipher-text

Encrypted
AES key

Cipher-text

Encrypted
AES key ECC

Participant
Private Key

Plain-text

Authentication

Message
Digest Yes

No

Valid?

Fail

(b) Decryption process.

Figure 2. AES-ECC Encryption/Decryption.

Sensors 2021, 21, 1428 9 of 32

5. SELAMAT Scheme

This section proposes a multi-factor authentication scheme for industrial IoT (IIoT)
to establish secure communication between the edge devices and the fog node. The
system backend architecture is shown in Figure 3; our scheme is based on a smart card,
username/password, and a biometric (fingerprint). The scheme adopts the combination
of the AES-ECC algorithm for secure key management. It provides a secure mutual
authentication among the edge and the fog server; the mutual authentication diagram is
illustrated in Figure 4. The proposed scheme comprises five phases, i.e., the setup phase,
user registration phase, fog node registration phase, login phase, and the authentication
phase. We explain the scheme phases as follows.

5.1. Setup Phase

The Cloud Provider Server (CPS) selects a κ-bit prime number p and an elliptic curve
E/Fp. The generated elliptic curve group G has a generator P. Then, CPS selects a random
integer S ∈ Z∗q as the system master key and calculates the system public key accordingly
PK = S.p. After that, CPS choose asymmetric encryption/decryption pairs E{.}/D{.},
and cryptographic collision-resistant hash function H(.). Note that the AES shared private
key is used to encrypt and decrypt the user information while being transmitted among
the entities. CPS later publishes the system public parameters {G, p, q, PK, H(.)} and keep
the system master key S secretly. Moreover, when the user enters his/her information, it is
then encrypted using the AES symmetric algorithm. The AES key is a shared private key
between the sender and the receiver, which is used to encrypt the user information, and
then it is encrypted with the ECC public key shared earlier with the user. The cipher-text is
then transmitted to the AS in the CPS for verification. The used notions in the proposed
scheme are shown in Table 2.

Message encrypted
with Session key

Cipher-text

Encrypted AES
key

Plain-text

AES

Hashing:
SHA1

ECC Public
key

AES key

Digital
Signature

Message encrypted
with Session key

Cipher-text

Encrypted AES
key

Cipher-text

ECC

Participant
Private Key

AES key

Plain-text

Digital
Signature

Hashing:
SHA2

Authentication

SuccessYes

No

Valid?

Fail

Message encrypted
with Session key

Cipher-text

Session Key

Cipher-text

Plain-text

Encrypted
Ticket

Ticket and
Timestamp SuccessYes

No

Valid?

Fail

Participant private key

Cross-Fog Node

Cloud Provider ServerEnd-User

Figure 3. The system architecture for SELAMAT.

Sensors 2021, 21, 1428 10 of 32

Cloud Provider Server

AS TGS

DB

Fog Node Platform Fog Node Platform

End-User End-User

Mutual Authentication

User Registration Node Registration

Edge Layer

Node Layer

Cloud Layer

Figure 4. The mutual authentication scheme in fog computing architecture.

Table 2. Notation and abbreviations.

Notations Description

SC Smart Card.
Ui User.
uid Identity of the User Ui
upw The password of the user Ui.
ubi Biometrics imprint of the user Ui.
p, q Two prime numbers.
ri Random number.

H(.) One-way hash function.
E{.}/D{.} A pair of symmetric encryption/decryption.

Z∗q The non-zero integers modulus p.
PK The public key of the server.
S The secret key of the server.

Auth
′
u The authenticator of the user Ui.

TS Timestamp.
ksu→tgs A key session between User and TGS.

tgssk Secret key of the TGS.
tgsid Ticket granting server identity.
f nid Identity of the Fog node.

tgstkt Ticket granting server ticket.
ksu→ f nS

Key session between User and FN.
f ntkt Fog Node ticket.
‖ Concatenation operation.
⊕ XOR operation.

5.2. User Registration Phase

In this phase, the user must register himself/herself at the cloud provider server to
access the data that he wants to use. After that, the user Ui is issued a smart card; the
authentication server (AS) in the CPS stores the user has protected biometric information
Ui in its database. The registration is transmitted securely to obtain the smart card SC.

Sensors 2021, 21, 1428 11 of 32

The user is not required to send his/her information in plaintext because the proposed
scheme utilizes asymmetric encryption/decryption pair in which the information will be
encrypted. In addition, that transmitted information is sensitive and will be handed to the
server in a masked manner using the hash function for other security matters to prevent
an insider attack. The user will firstly select his/her unique identity and password and
input his/her biometric information. Upon receiving the request, the authentication server
will decrypt the message and verify the given information whether he/she already exists
in the server database or not. If Ui already exists at the server, it will inform the user that
the identity exists and choose another. Otherwise, the AS will start user registration by
performing the following steps, as shown in Figure 5:

• The user inserts his/her smart card and then selects a unique user identity uid and a
user password upw and inputs his biometric information ubi. Then, the user randomly
chooses an integer usk ∈ Z∗q as user private key and calculates his/her public key
upk = usk.p.

• In addition, user Ui generates a random number r1 and a process to compute bioi =
H(UBi ⊕ r1) and calculates mi = H(uid ⊕ upw ⊕ bioi ⊕ r1). The user Ui consequently
encrypts the message with the AES private key εk{uid ‖ upw ‖ bioi ‖ mi}, and it
encrypts the AES private key with the ECC shared public key Msg.1. Epk{kp{uid ‖
upw ‖ bioi ‖ mi}} and sends it to the AS in the CPS.

• Upon receiving the message, AS will use his private key to decrypt the AES key,
ds{εk{uid ⊕ upw ⊕ bioi ⊕mi}}, and then it uses the AES key to obtain the user infor-
mation µk{uid ‖ upw ‖ bioi ‖ mi}. The AS verifies the received information with the
one in the database. If the user exists, the AS will notify the Ui to choose another
identity; otherwise, the AS computes ai = H(uid ‖ s), Fi = H(bioi ‖ s) and calculates
Ri = ai ⊕ H(bioi ⊕mi), ni = fi ⊕ H(uid ⊕mi) and xi = H(ai ‖ fi ‖ mi).

• Next, the authentication server AS will embed the calculated parameters {xi, ni, ri,
H(.), q, p} onto the smart card SC and will send it to the Ui. Those parameters will
also be stored in the database and recorded as an enrolled user. Now, AS sends the
parameter to the Ui via a secure channel.

• The user Ui receives the embedded smart card SC and writes the parameters Msg.2:
{xi, ni, ri, H(.), q, p} into the smart card and stores r1 in the memory.

Ui AS

Ui insert SC,

Selects UID, UPW, and imprints UBi.

Generates a random number r1,

Compute:

𝒃𝒊𝒐𝒊 = 𝑯(𝑼𝑩𝒊 ⊕ 𝒓𝟏) ,

𝒎𝒊 = 𝑯 (𝒖𝒊𝒅 ⨁ 𝒖𝒑𝒘 ⊕ 𝒃𝒊𝒐𝒊 ⊕ 𝒓𝟏).

𝒎𝒔𝒈𝟏. 𝑬𝒑𝒌{𝜿𝒑 {𝒖𝒊𝒅 ∥ 𝒖𝒑𝒘 ∥ 𝒃𝒊𝒐𝒊 ∥ 𝒎𝒊}

Decrypt:

𝒅𝒔{𝜺𝒌{𝒖𝒊𝒅 ∥ 𝒖𝒑𝒘 ∥ 𝒃𝒊𝒐𝒊 ∥ 𝒎𝒊},

Verify user info, if so;

Compute:

𝒂𝒊 = 𝑯 (𝒖𝒊𝒅 ∥ 𝒔),

𝑭𝒊 = 𝑯(𝒃𝒊𝒐𝒊 ∥ 𝒔),

𝑹𝒊 = 𝒂𝒊 ⨁ 𝑯 (𝒃𝒊𝒐𝒊 ∥ 𝒎𝒊) ,

𝒏𝒊 = 𝒇𝒊 ⨁ 𝑯 (𝒖𝒊𝒅 ∥ 𝒎𝒊),

𝒙𝒊 = 𝑯(𝒂𝒊 ∥ 𝒇𝒊 ∥ 𝒎𝒊).

Store {𝒙𝒊, 𝒏𝒊, 𝒓𝒊, 𝑯(.), 𝒒, 𝒑} into

database, and issue an embedded

SC.

Writes {𝒙𝒊, 𝒏𝒊, 𝒓𝒊, 𝑯(.), 𝒒, 𝒑} into

smartcard, and store r1 into its

memory.

𝑴𝒔𝒈. 𝟏

𝑴𝒔𝒈. 𝟐

Figure 5. User registration phase.

Sensors 2021, 21, 1428 12 of 32

5.3. Fog Node Registration Phase

This phase requires the fog node Fni to register itself into the CPS. As shown in
Figure 6, a fog node Fni performs the following steps:

• The Fni firstly selects an identity f nid and sends f nid it to the AS in the CPS via a
secure channel.

• AS receives it and checks whether the identity exists or not by comparing f nid = f nid
stored in the database; after verification, AS generates its own random number r f ;
computes α f n = h(f nid ‖ s ‖ r f), γ f n = h(f nid ‖ s), ρ f n = h(f nid ‖ r f), and
C f n = γ f n ⊕ ρ f n; stores { f nid, r f } into a database; and sends {α f n, C f n} back to Fni
securely.

• Fni receives α f n, C f n and stores it in its database.

𝑭𝒏𝒊 AS

𝑭𝒏𝒊 select 𝒇𝒏𝒊𝒅

Checks 𝒇𝒏𝒊𝒅 = ? database;

Generates random number 𝒓𝒇,

Compute:

𝜶𝒇𝒏 = 𝒉(𝒇𝒏𝒊𝒅 ∥ 𝒔 ∥ 𝒓𝒇) ,

𝜸𝒇𝒏 = 𝒉(𝒇𝒏𝒊𝒅 ∥ 𝒔),

 𝝋𝒇𝒏 = 𝒉(𝒇𝒏𝒊𝒅 ∥ 𝒓𝒇),

𝑪𝒇𝒏 = 𝜸𝒇𝒏⨁ 𝝋𝒇𝒏 ,

Stores {𝒇𝒏𝒊𝒅, 𝒓𝒇} into a database;

Stores {𝜶𝒇𝒏 , 𝑪𝒇𝒏}

into its database;

 {𝒇𝒏𝒊𝒅}

{𝜶𝒇𝒏 , 𝑪𝒇𝒏}

Figure 6. Fog node registration phase.

5.4. Login Phase

When user Ui wants to access the data stored on the cross-platform fog server, she/he
inserts her/his smart card into the terminal and performs the following steps to log into
the system. Figure 7 shows the process of the login and authentication phases.

• The user Ui inserts her/his identity uid and password upw; inputs his/her biometric
information; and extracts the random number and the information stored in the smart
card SC. Ui computes bioi = h(u

′
B ⊕ r2i), m

′
i = h(u

′
id ⊕ u

′
pw ⊕ bio

′
i ⊕ ri).

• Then, based on the stored parameters, it will calculate a
′
i = r

′
i ⊕ h(bio

′
i ⊕ m

′
i), f

′
i =

n
′
i ⊕ h(u

′
id ‖ m

′
i), and x

′
i = h(a

′
i ‖ f

′
i ‖ m

′
i).

• Next, the smart cart computes an authentication message encrypted with the AES
private key and the ECC public key Auth

′
u = EPK{ξk{u

′
id ‖ x

′
i ‖ bio

′
i ‖ tgsid ‖ TS1}},

where the TS is the current user timestamp. Then, U sends the Msg.1 to the AS.
• Upon receiving the authentication request message Msg.1, the server decrypts the

message utilizing its private key to decrypt the message Auth
′
u = dPK{εk{u

′
id ‖ x

′
i ‖

bio
′
i ‖ tgsid ‖ TS1}}, and then the encrypted message with the AES key decrypts the

parameters with the same key to obtain the information µk{u
′
id ‖ x

′
i ‖ bio

′
i ‖ tgsid ‖

TS1}.
• After that, AS checks the timestamp to see if it is similar to the server timestamp,

extracts the u′id, and verifies x′i = xi whether it is valid or not; if not, the session is
terminated. Otherwise, AS proceeds generating a random integer number r2 and

Sensors 2021, 21, 1428 13 of 32

computes the key sessions known to protect the communication between the user and
the ticket-granting service. It is only known to the Ui and AS.

• Next, AS computes the key session ksu→tgs = H(u
′
id ‖ a

′
i ‖ r2) and generated another

random number tgssk ∈ Z∗q as the TGS secret key is known to AS and TGS only. AS

then forwardd the TGS secret key to the TGS along with 〈X′i , Bio
′
i〉 to the TGS.

• Then, AS prepares the message Msg.2: u
′
id ‖ tgsid ‖ εk{ksu→tgs ‖ TS2 ‖ tgstkt}, where

tgstkt = Etgssk{u
′
id ‖ ksu→tgs ‖ TS2 ‖ xi ‖ bio

′
i} is the Ticket. The tgstkt cannot be

decrypted but the TGS only. It then sends the messages Msg.2 to the user to enable
her/him to authenticate the TGS.

Ui insert SC,

Inputs UID, UPW, and imprints UBi.

Generates a random number r1,

Compute:

𝒃𝒊𝒐𝒊
′ = 𝒉(𝒖𝑩

′ ⨁ 𝒓𝟐𝒊),

𝒎𝒊
′ = 𝒉(𝒖𝒊𝒅

′ ⨁𝒖𝒑𝒘
′ ⨁𝒃𝒊𝒐𝒊

′⨁𝒓𝒊).

𝒂𝒊
′ = 𝒓𝒊

′ ⨁𝒉(𝒃𝒊𝒐𝒊
′⨁𝒎𝒊

′),

𝒇𝒊
′ = 𝒏𝒊

′ ⨁𝒉(𝒖𝒊𝒅
′ ∥ 𝒎𝒊

′),

𝒙𝒊
′ = 𝒉(𝒂𝒊

′ ∥ 𝒇𝒊
′ ∥ 𝒎𝒊

′).

𝑨𝒖𝒕𝒉𝒖
′ = 𝑬𝑷𝑲{𝜺𝒌{𝒖𝒊𝒅

′ ∥ 𝒙𝒊
′ ∥ 𝒃𝒊𝒐𝒊

′ ∥

𝒕𝒈𝒔𝒊𝒅 ∥ 𝑻𝑺𝟏}},

𝑭𝒏𝒊 AS TGS Ui

Successful/Fail!

Decrypt:

𝑨𝒖𝒕𝒉𝒖
′ = 𝒅𝑷𝑲{𝜺𝒌{𝒖𝒊𝒅

′ ∥ 𝒙𝒊
′ ∥ 𝒃𝒊𝒐𝒊

′ ∥ 𝒕𝒈𝒔𝒊𝒅 ∥ 𝑻𝑺𝟏}},

𝝁𝒌{𝒖𝒊𝒅
′ ∥ 𝒙𝒊

′ ∥ 𝒃𝒊𝒐𝒊
′ ∥ 𝒕𝒈𝒔𝒊𝒅 ∥ 𝑻𝑺𝟏},

Check 𝑻𝒔𝟏 ≠ ∆𝑻𝑺,

Verify 𝒙𝒊
′ ≠ 𝒙𝒊 ,

Generates random number r2,

Computes:

𝒌𝒔𝒖→𝒕𝒈𝒔 = 𝑯(𝒖𝒊𝒅
′ ∥ 𝒂𝒊

′ ∥ 𝒓𝟐),

Generate 𝒕𝒈𝒔𝒔𝒌 ∈ 𝒁𝒒
∗ ,

𝑴𝒔𝒈. 𝟐: (𝒖𝒊𝒅
′ ∥ 𝒕𝒈𝒔𝒊𝒅 ∥ 𝜺𝒌{𝒌𝒔𝒖→𝒕𝒈𝒔 ∥ 𝑻𝑺𝟐 ∥ 𝒕𝒈𝒔𝒕𝒌𝒕},

Decrypt:

(𝒖𝒊𝒅
′ ∥ 𝒕𝒈𝒔𝒊𝒅 ∥ 𝝁𝒌{𝒌𝒔𝒖→𝒕𝒈𝒔 ∥ 𝑻𝑺𝟐 ∥ 𝒕𝒈𝒔𝒕𝒌𝒕},

Computes:

𝑨𝒖𝒕𝒉𝒖→𝒕𝒈𝒔 = 𝑬𝒌𝒔𝒖→𝒕𝒈𝒔
{𝒖𝒊𝒅

′ ∥ 𝒇𝒅𝒊𝒅 ∥ 𝑻𝑺𝟑 ∥ 𝒕𝒈𝒔𝒕𝒌𝒕},

Decrypt:

𝒕𝒈𝒔𝒕𝒌𝒕 = 𝑫𝒕𝒈𝒔𝒔𝒌
{𝒖𝒊𝒅

′ ∥ 𝒌𝒔𝒖→𝒕𝒈𝒔 ∥ 𝑻𝑺𝟐 ∥ 𝒙𝒊 ∥

𝒃𝒊𝒐𝒊
′},

𝑨𝒖𝒕𝒉𝑼→𝑻𝑮𝑺 = 𝑫𝒌𝒔𝒖→𝒕𝒈𝒔
{𝒖𝒊𝒅

′ ∥ 𝒇𝒏𝒊𝒅 ∥ 𝑻𝑺𝟑 ∥

𝒕𝒈𝒔𝒕𝒌𝒕},

Verify 𝒙𝒊 ≠ 𝒙𝒊
′ , if so,

Generate a random number 𝒇𝒏𝒔𝒌 ∈ 𝒁𝒒
∗ ,

Generates a random number r3,

Compute:

𝒌𝒔𝒖→𝒇𝒅𝒔
= 𝑯(𝒇𝒅𝒊𝒅 ∥ 𝒂𝒊 ∥ 𝒓𝟑),

𝑴𝒔𝒈. 𝟒 {𝒖𝒊𝒅 ∥ 𝒇𝒏𝒕𝒌𝒕 ∥ 𝑬𝒌𝒔𝒖→𝒕𝒈𝒔
{𝒕𝒈𝒔𝒊𝒅 ∥

𝒌𝒔𝒖→𝒇𝒅 ∥ 𝑻𝑺𝟒}.

Decrypt:

{𝒖𝒊𝒅 ∥ 𝒇𝒏𝒕𝒌𝒕 ∥ 𝑫𝒌𝒔𝒖→𝒕𝒈𝒔
{𝒕𝒈𝒔𝒊𝒅 ∥ 𝒌𝒔𝒖→𝒇𝒏𝒔

∥ 𝑻𝑺𝟒}

𝑴𝒔𝒈. 𝟓 ∶ 𝑨𝒖𝒕𝒉𝒖→𝒇𝒅𝒔
= 𝑬𝒌𝒔𝒖→𝒇𝒏𝒔

{𝒖𝒊𝒅 ∥ 𝑻𝑺𝟒},

Decrypt:

𝒇𝒏𝒕𝒌𝒕 = 𝑫𝒇𝒏𝒔𝒌
{𝒖𝒊𝒅 ∥ 𝒇𝒏𝒊𝒅 ∥ 𝒌𝒔𝒖→𝒇𝒏𝒔

∥

𝑻𝑺𝟒},

𝑨𝒖𝒕𝒉𝒖→𝒇𝒏𝒔
= 𝑫𝒌𝒔𝒖→𝒇𝒏𝒔

{𝒖𝒊𝒅 ∥ 𝑻𝑺𝟒},

Check 𝑻𝒔𝟏 ≠ ∆𝑻𝑺, if so, a successful

Communication established.
0

𝑀𝑠𝑔. 1

𝑀𝑠𝑔. 2

𝑀𝑠𝑔. 3

𝑀𝑠𝑔. 4

𝑀𝑠𝑔. 5

Figure 7. Login and authentication phase.

Sensors 2021, 21, 1428 14 of 32

5.5. Authentication Phase

In this phase, the user will decrypt the message A to obtain the critical session and the
parameters after successfully receiving the messages from the authentication server. The
message B will be forwarded to the TGS. The steps of the authentication phase are given
below:

• The user decrypts message Msg.2 using the key µk to get the critical session ksu→tgs

and other information (u
′
id ‖ tgsid ‖ µk{ks(u→tgs) ‖ TS2 ‖ tgstkt}, and contains the

Ticket granting service ticket tgstkt and this message is encrypted by the tgssk and the
user cannot modify the Ticket in private. Therefore, Ui will forward it to the TGS as
message Msg.3.

• It then computes an authentication message Authu→tgs = Eksu→tgs{u
′
id ‖ f nid ‖ TS3 ‖

tgstkt}, which contains the user identity, fog node identity, the current user timestamp,
and the TGS ticket. The message is encrypted with the key session ksu→tgs that is
shared to communicate Ui and TGS. The user sends a request to the TGS to get
permission to visit the fog node server.

• Upon receiving the request from Ui, TGS decrypts the Ticket tgstkt = Dtgssk
{u′id ‖

ksu→tgs ‖ TS2 ‖ xi ‖ bio
′
i} to obtain a key session and decrypts the authenticator mes-

sage as well by using the shared key sessions Authu→tgs = Dksu→tgs{u
′
id ‖ f nid ‖ TS3

‖ tgstkt}.
• Next, it verifies the xi 6= x

′
i that was received earlier from AS; if it is not equal, the

session will be terminated; if yes, then the TGS will generate a random number
f nsk ∈ Z∗q as the fog node secret key that will be known to the TGS and the fog node
server, and it will then be sent to the fog node along with < T4 >.

• Then, it generates a random number r3 to compute the key session ksu→ f ns = H(f nid ‖
ai ‖ r3) and composes the message Msg.4 {uid ‖ f ntkt ‖ Eksu→tgs{tgsid ‖ ksu→ f n ‖
TS4}}, where the fog node ticket is f ntkt = E f nsk

{uid ‖ f nid ‖ ksu→ f ns
‖ TS4}, which

contains user the identity, fog node identity, shared key session, and the current times-
tamp. It then sends the message Msg.4 to the user to enable him/her to authenticate
to the fog node.

• The user Ui receives information from the TGS; it will firstly decrypt the message
{uid ‖ f ntkt ‖ Dksu→tgs{tgsid ‖ ksu→ f ns ‖ TS4}} to get the shared session key, and the
user cannot decrypt the fog node Ticket.

• Next, the user generates an authenticator message Msg.5: Authu→ f ns
= Eksu→ f ns

{uid ‖
TS4}, and composes the Ticket f ntkt = E f nsk

{uid ‖ f nid ‖ ksu→ f ns
‖ TS4}. Then, it

will send the messages to the fog node for mutual authentication.
• The fog node server receives the message Msg.5, and it will decrypt the message from

the secret key that it shared earlier from the TGS f ntkt = D f nsk
{uid ‖ f nid ‖ ksu→ f ns

‖
TS4} to get a key session.

• Then, the server decrypts the authenticator message using a shared key session
Authu→ f ns

= Dksu→ f ns
{uid ‖ TS4}, and checks the authenticator timestamp with a

shared timestamp and if it is not equal, the server terminates the session; if yes, then
the client can trust the server and can start issuing service requests to the server and
send a successful message. The fog node server now provides the requested services
to the user.

6. Security Analysis

The security analysis is carried out formally and informally in this section. The formal
security analysis of the proposed scheme was conducted with the BAN logic (Burrows–
Abadi–Needham), a formal model that aims to see how information exchange can be
secured from eavesdropping. Informal security analysis ensures that, e.g., the proposed
scheme prevents different kinds of known attacks. The following paragraphs provide
details of the BAN logic.

Sensors 2021, 21, 1428 15 of 32

6.1. Mutual Authentication Proof Using BAN Logic

We conducted a BAN logic analysis to verify the proposed scheme with secure mutual
authentication. Table 3 specifies the BAN logic notations and postulates and describes the
goals, assumptions, idealized version formulas, and confirms secure mutual authentication
in the proposed scheme before performing a BAN logic analysis.

Table 3. Notation and abbreviations.

Construct Explanation

Ui User.
AS Authentication Server.

TGS Ticket Granting Server.
FN Fog Node.
KX X’s shared session key with CA.

KX,Y X’s shared session key with Y.
.K A message encrypted by Key K.

TicketX,Y Ticket used to visit X and Y.
TS1, TS2, TS3 Random numbers Timestamp.

X K−→ Y K is the shared session key between X and Y.

6.1.1. Message Exchanges

This section illustrates an optimal way of the message exchanges for our proposed
scheme.

1. The authentication service exchanges: Firstly, the messages in the scheme are ex-
changed between the user and the authentication server (AS), also called the ticket
exchange. The user applies for the ticket TGT to communicate with TGS and the
session key from the Cloud Provider Server (CPS). The user needs to input his/her
user identity and password to log into the network. The user sends a request message
U_AS_REQ, and AS responds U_AS_REP.

(a) Ui→ AS: U_AS_REQ {u′id, x′i , bio′i , tgsid, ts1}.
(b) AS→ Ui: U_AS_REP (u′id, tgsid, Eupk{ksu→tgs, ts2, tgstkt}.

2. The authorization service exchanges: It is the process of the message’s exchanges
between the user and the TGS to get a ticket to communicate with the fog server. The
user sends a request encrypted with a shared session key and for decryption as well.
The TGS exchange consists of two messages: U_TGS_REQ and U_TGS_REP.

(a) Ui→ AS: U_TGS_REQ Eksußtgs
{u′id, f nid, ts3, tgstkt}.

(b) AS→ Ui: U_TGS_REP{uid, f ntkt, Eksu→tgs{tgsid, ksu→ f ns
, ts4, }}.

3. The user/fog server exchange: In this process, the user gets the Ticket and shared
key session known to the user edge and fog node server f n. The user can now
communicate to the f n using the received information and will consist of two mes-
sages: U_FN_REQ and U_FN_REP. U_FN_REP is only used when there is a need for
two-way authentication, and the server wants to prove its identity to the client.

(a) Ui→ FN: U_FN_REQ (E f nsk
{uid, f nid, ksu→ f ns

, ts4}).
(b) FN→ Ui : U_FN_REP (success/fail).

6.1.2. Goals and Assumptions

Initial assumptions: Hence, the authentication goals are given as follows:

• Goal 1: Ui believes Ui
pk−→ AS.

• Goal 2: FN believes FN
ks f n,tgs−−−→ TGS.

• Goal 3: Ui believes AS Controls Ticketui, f n.

Sensors 2021, 21, 1428 16 of 32

• Goal 4: Ui believes TGS controls ksui, f n.
• Goal 5: Ui believes TGS controls ksui, f n.
• Goal 6: FN believes TGS controls ksui, f n.
• Goal 7: Ui believes fresh (TS1).
• Goal 8: FN believes fresh (TS2).
• Goal 9: Ui believes fresh (TS3).

6.1.3. BAN Logic Proof

Based on the logical assumptions, the authentication goals of the proposed scheme
can be illustrated according to the BAN logic as follows:

1. According to the message meaning rule (Rule 1): Ui believes the PK is a shared public
key between Ui and AS. In addition, the Ui sees that TiketU,TGS is encrypted with
ksu−tgs, and then Ui believes that AS once said Ticketu,tgs.

Ui believes FN
pk−→ TGS, Ui sees {Ticketu,tgs}ksui→tgs

Ui believes AS said Ticketui,tgs

2. By timestamp-verification rule (Rule 2): The Ui believes that [TS1] is fresh if Ui believes
that AS once said Ticketui,tgs. Meanwhile, Ui believes that AS believes Ticketu,tgs.

Ui believes fresh (TS1), Ui believes AS said Ticketui,tgs

Ui believes AS believes Ticketui,tgs

3. By Rule 3: If Ui believes that AS controls Ticketui,tgs, then Ui believes that AS believes
Ticketui,tgs and the Ui believes the Ticketui,tgs.

Ui believes AS controls Ticketui,tgs, Ui believes AS believes Ticketui,tgs

Ui believes Ticketui,tgs

4. By Rule 4u,
Ui believes ksui,tgs

5. Again, by message meaning rule: Ui believes that ksui,tgs is shared session key with
TGS, and Ui sees the Ticketui, f n is encrypted with KSui,tgs, and then Ui believes that
TGS once said Ticketui, f n.

Ui believes Ui
ksui,tgs−−−→ TGS, Ui sees {Ticketui, f n}ksui→tgs

Ui believes TGS believes Ticketui, f n

6. By Rule 2: Ui believes that the (Ticketui, f n) is fresh, and Ui believes that TGS once
said Ticketui, f n, while Ui believes that TGS believes Ticketui, f n.

Ui believes fresh (Ticketui, f n), Ui believes TGS said Ticketui, f n

Ui believes TGS believes Ticketui, f n

7. Again, by Rule 3, if Ui believes that TGS controls Ticketui, f n, then Ui believes that TGS
believes Ticketui, f n and Ui believes Ticketui, f n.

Ui believes TGS controls Ticketui, f n, Ui believes TGS believes Ticketui, f n

Ui believes Ticketui, f n

Sensors 2021, 21, 1428 17 of 32

8. Finally, according to Rule 4u

Ui believes Ui
ksui, f n−−−→ FN

9. According to the message meaning rule: FN believes that ks f n,tgs is a shared session
key with TGS, and FN sees the {Ticketui, f n} is encrypted with ks f n,tgs, and then FN
believes that TGS once said Ticketui, f n.

FN believes FN
ks f n,tgs−−−→ TGS, FN sees {Ticketui, f n}ks f n,tgs

FN believes TGS said Ticketui, f n

10. Again, by the timestamp-verification rule: The FN believes that [TS] is fresh if FN
believes that TGS once said Ticketui, f n. Then, FN believes that TGS believes Ticketui, f n.

FN believes fresh (TS), FN believes TGS said {Ticketui, f n}ks f n,tgs

FN believes TGS believes Ticketui, f n

11. By Jurisdiction rule again: If FN believes that TGS has jurisdiction over Ticketui, f n
and FN believes that TGS believes Ticketui, f n, then FN believes Ticketui, f n.

FN believes TGS controls Ticketui, f n, FN believes TGS believes Ticketui, f n

FN believes Ticketui, f n

12. Finally, according to Rule 4u,

FN believes Ui
ksui, f n−−−→ FN

13. By Rule 1 (message meaning rule): If FN believes that the (ksui, f n) is a shared session

key with Ui, then, FN sees that TS3, Ui
ksui, f n−−−→ FN is encrypted with ksui, f n, and FN

believes that Ui once said Ui
ksui, f n−−−→ FN.

FN believes Ui
ksui, f n−−−→ FN, FN sees {TS3, Ui

ksui, f n−−−→ FN}ksui, f n

FN believes Ui said Ui
ksui, f n−−−→ FN

14. By Rule 2: If FN believes that Ui
ksui, f n−−−→ FN is fresh and FN believes that Ui once said

Ui
ksui, f n−−−→ FN, then FN believes that Ui believes Ui

ksui, f n−−−→ FN.

FN believes fresh (Ui
ksui, f n−−−→ FN), FN believes Ui said Ui

ksui, f n−−−→ FN

FN believes Ui believes Ui
ksui, f n−−−→ FN

Finally, we derive that FN believes that Ui believes.

FN believes Ui believes Ui
ksui, f n−−−→ FN.

Similarly, we can get,

Ui believes FN believes Ui
ksui, f n−−−→ FN.

The above demonstrates our authentication goal and proves that this scheme ensures
that the user and the fog node are mutually communicated.

Sensors 2021, 21, 1428 18 of 32

6.2. Informal Security Analysis

This section illustrates several security problems and shows that the proposed scheme
is secure from various types of malicious attacks as follows:

Theorem 1. The proposed scheme avoids the key escrow problem inherited by the Identity based
cryptography (IBC).

Proof of Theorem 1. As mentioned above, a distinctive user identity is assigned as uid
and biometric ubi, while the assigned secret key is upk. Please note that upk is stored in the
SC record and shared between the user and the fog server. Subsequently, the user itself
randomly generates its secret key usk ∈ Z∗q , which will later be kept a secret to AS. The
secret key is generated based on the random number r1, and the server has no access to
it. In this way, other entities cannot extract r1 from the published bioi = H(ubi ⊕ r1) or
mi = H(uid ⊕ upw ⊕ bioi ⊕ r1). Similarly, the authentication request is encrypted with the
user public key.

Theorem 2. The proposed scheme is secure from a replay attack.

Proof of Theorem 2. Assume that an adversary tries replaying the previously captured
valid login and authentication messages < u′id, x′i , bio′i , ts1 >. The message is encrypted by
using the server public key PK, and it takes a fresh timestamp tsn to validate a legitimate
user. After the server decrypts the message to obtain user information, AS will verify the
received timestamp TS1 with the server’s current stamp TS4, TS1 6= TS4. Likewise, if the
adversary tries to replay the authentication message by replaying TS1 with TS2, it will not
be able to pass because X′i is encrypted using a one-way hash function x

′
i = H(a

′
i ‖ f

′
i ‖ m

′
i)

so, the AS can detect any changes in the message. Hence, the scheme is resistant to a replay
attack.

Theorem 3. The proposed scheme is secure from the impersonation attack.

Proof of Theorem 3 . The adversary in this attack is trying to provide a login message
by eavesdropping or computing a message to deceive the AS as a legal user. In the
proposed scheme, if the adversary tries to replay the previous message or to impersonate
< u

′
id, x

′
i , bio

′
i , ts1 >, the AS will validate the message by checking x

′
i 6= xi. Moreover,

the adversary cannot capture the valid x′i , due to the lack of the user identity u′id, user
password u′pw and user biometric info u′bi. Therefore, a malicious user cannot impersonate
a legitimate user to access the fog node.

Theorem 4. The proposed scheme is resistant to a man-in-the-middle attack.

Proof of Theorem 4 . Assume that the adversary intercepts the login and authentication
messages successfully {u′id ‖ x

′
i ‖ bio

′
i ‖ tgsid ‖ ts1}, {u

′
id ‖ ksu→tgs ‖ ts2 ‖ xi ‖ bio

′
i}, and

{u′id ‖ f nid ‖ ts3 ‖ tgstkt}. The adversary will fail because there is a crucial session KS
established between all the entities and shared after the mutual authentication is generated
between them. In addition, the ticket-granting service is sharing the encrypted ticket
tgstkt = Etgssk

{u′id ‖ ksu→tgs ‖ ts2 ‖ xi ‖ bio
′
i} using the TGS secret key and only can only

be decrypted by it, which goes for the communication between TGS and FN. However, for
the same reason mentioned above, the attacker cannot pass this process without knowing
the patient’s uid and the personal values xi and TS. Therefore, the adversary cannot cheat
the user Ui to share a key session and believe that the key is shared with the authentication
server AS, and this judgment also works on the FN. Therefore, the adversary cannot launch
the man-in-middle attack successfully to cheat either the user or the servers in the proposed
scheme.

Sensors 2021, 21, 1428 19 of 32

Theorem 5. The proposed scheme withstands the known-key attacks.

Proof of Theorem 5 . The proposed scheme provides resistance against known-key session
attacks according to the unique key session that has been generated between each entity.
The key session in the proposed scheme is calculated based on < a

′
i ‖ r2 > that makes it

unique because the random integer r is generated randomly and independently by the Ui,
AS, and TGS. Since the r1, r2, and r3 are different from each other, the critical session in
each run is unique in the proposed scheme. Therefore, the proposed scheme is resisting
this attack. Using a unique key session during every communication session allows
achieving freshness of the key in the proposed scheme. The session keys are generated
in AS ksu→tgs = H(u

′
id ‖ a

′
i ‖ r2) and TGS ksu→ f nS

= H(f nid ‖ ai ‖ r3), differently and
independently.

Theorem 6. The proposed scheme withstands privileged insider attacks.

Proof of Theorem 6. Assume that the adversary attempts to obtain the legal user informa-
tion uid and upw, but he/she will fail to impersonate since he/she must provide the correct
biometrics ubi of the targeting user. In addition, it will be difficult for the attacker to obtain
the legal user information since the proposed scheme is performing a hash function on the
user information H(uid ⊕ upw ⊕ bioi ⊕ r1) and contains a randomly generated number in it.
The user biometric is protected as well in the hash formatting with the random number r1.
The attacker cannot extract the stored parameters from the stored hash value successfully;
thus, the proposed scheme works against any insider attack.

Theorem 7. The proposed scheme withstands a stolen smart card attack.

Proof of Theorem 7. In this attack, the adversary attempts to extract the user information
stored in the smart card. He/she will fail since the parameters {xi, ni, Ri, H(.), q, p} are
secured and the attacker cannot successfully compute H(ai ‖ fi ‖ mi) = xi, fi ⊕ H(uid ‖
mi) = ni, and ai ⊕ H(bioi ‖ mi) = Ri as they are secured using a collision-resistant one-
way hash function H(.). Therefore, the attacker is unable to determine the user information
uid and upw. Therefore, the proposed scheme is resistant to the stolen smart card attack.

Theorem 8. The proposed scheme is secure from a replay attack.

Proof of Theorem 8. The proposed scheme is resistant to a server spoofing attack. An ad-
versary exploits a legitimate user’s information to counterfeit as a server. To success-
fully impersonate as an authentication server AS, it cannot compute the (u

′
id ‖ tgsid ‖

Eupk{ksußtgs ‖ ts2 ‖ tgstkt}, and tgstkt = Etgssk
{u′id ‖ ksu→tgs ‖ ts2 ‖ xi ‖ bio

′
i}; to compute

the correct values, a malicious server needs to know the critical session KS, timestamp TS,
and the secret value Xi. The values are encrypted and cannot be decrypted by only using
the secret server key that is shared earlier. As mentioned above, he/she will need to know
the user identity u− id to compute critical sessions.

Theorem 9. The proposed scheme withstands a Denial of Service (DoS) Attack.

Proof of Theorem 9. This attack can suspend services of the server by flooding the net-
work, but the proposed scheme is resistant to this attack. Since the proposed scheme
verifies the user identity uid and password upw, it also verifies the secret value X

′
i 6= Xi so

he/she fails. Moreover, the server will detect a false message sent to it by the adversary
using the timestamp (TS1, TS2, and TS3). The authentication server AS and FN will only
proceed if the login message passes the check (TS1− Tcurr) ≤ 4TS, and the Ticket granting
server (TS2 − Tcurr) ≤ 4TS. The FN will also not process the message only if the shared

Sensors 2021, 21, 1428 20 of 32

timestamp matches the shared timestamp TS3. In addition, the TGS will check the validity
of the X

′
i 6= Xi after the AS.

Theorem 10. The proposed scheme is secure from an offline password guessing attack.

Proof of Theorem 10. The user identity uid, password upw, and the biometric ubi are se-
cured using a one-way hash function H(ubi ⊕ Ri) = bioi, H(uid ⊕ upw ⊕ bioi ⊕ r1) = mi
and contains a random number in it. In addition, any alteration in the login message will
be detected after the server verification. The attacker can never validate the password with
a stolen smart card SC. If the attacker intercepts the login message SC {Xi, ni, Ri, H(.), q, p}
as a legitimate user, he/she will need to guess the user identity and password that server
will validate the message after decrypting. Thus, the proposed scheme is highly secured
against offline password guessing attacks.

Theorem 11. The proposed scheme facilitates user anonymity.

Proof of Theorem 11. Assume an adversary intercepts the message {u′id ‖ x
′
i ‖ bio

′
i ‖

tgsid ‖ ts1}. The attacker cannot obtain the information because the authentication message
is encrypted using the authentication server public key EPK{}. In addition, the server will
check the validity of the user by extracting the original user’s identity uid and the secret
value x

′
i 6= xi as well. The AS and TGS will generate a key session using a unique random

number with every communication session. Moreover, the adversary cannot launch a
guessing attack to obtain the user information, because with knowledge of xi, an adversary
cannot compute H(uid ⊕ upw ⊕ bioi ⊕ r1) = mi successfully according to the using of a
one-way hash function as well. Therefore, nobody will be able to know the real identity of
the user, except the user himself and the server.

Theorem 12. The proposed scheme facilitates against user traceability attacks.

Proof of Theorem 12. The proposed scheme protects the real user identity, and the trans-
mitted message is changed by updating r during every session. The transmitted messages
are different from one session to the other since there is a new key session. KS is com-
puted based on a new random number when every new session begins. Therefore, the
attacker cannot distinguish whether the intercepted messages belong to the same user or
not. Therefore, the proposed scheme provides user untraceability.

Theorem 13. The proposed scheme facilitates a mutual authentication property.

Proof of Theorem 13. The authentication scheme needs to allow all the considered entities
in communication to verify the identity of each other mutually. The use of ECC is in
providing mutual authentication. The user and the server can authenticate each other by
checking session key freshness ks = H(u

′
id ‖ a

′
i ‖ r) in every session, and verifying the

xi 6= x
′
i with the timestamp, respectively, in the AS and the TGS. Therefore, the proposed

scheme achieves mutual authentication.

Theorem 14. The proposed scheme achieves perfect forward secrecy property.

Proof of Theorem 14 . In the proposed scheme, the adversary cannot generate the key
session ksu→tgs = H(u

′
id ‖ a

′
i ‖ r2), ksu→ f nS

= H(f nid ‖ ai ‖ r3) because the adversary
does not know the user identity. Therefore, the attacker cannot obtain the user/server
identity. To successfully compute the key session, the attacker needs a secret value A

′
i,

and random number r, but he/she will fail because it is impossible to obtain the random
number and the value A

′
i is secured using the one-way hash function a

′
i = R

′
i⊕H(bio

′
i ‖ m

′
i)

Sensors 2021, 21, 1428 21 of 32

In addition, it includes protected biometric. As a result, it is difficult to determine the
information, and the proposed scheme is achieving forward secrecy.

Theorem 15. The proposed scheme achieves a biometric protection property.

Proof of Theorem 15. The user biometric u
′
bi is highly protected by a high entropy random

number integer r and one-way hash function bio
′
i = H(u

′
bi ⊕ r1). Assume the adversary

obtains the stored information on the smart card; but he/she cannot extract the User
biometric u

′
bi without the knowledge of the user identity uid

′ and password u
′
pw. Therefore,

the proposed scheme of protects the user’s biometric.

7. Formal Security Verification Using AVISPA Tool: Simulation Study

Simulations were carried out to test the proposed security framework using AVISPA [39],
an extensively used security analysis model. It proves that the scheme avoids replay
and man-in-the-middle attacks. This section includes a simple overview of the AVISPA
tool [40]. It then shows the implementation code for the User (U), authentication server
(AS), ticket-granting server (TGS), fog node (FN), session, goals, and the environment in
High-Level Protocol Specification Language (HLPSL). Third, the simulation results are
demonstrated.

7.1. AVISPA Tool Basic Explanation

AVISPA is a simulation verification tool to validate authentication schemes. Specifica-
tion language (HLPSL) is used to implement the simulation code. AVISPA is a participant-
related program. Each participant is autonomous and has some knowledge across channels
in the form of communication parameters. First, wrote the code into HLPSL in this tool,
and then used hlpsl2if to translate it into an intermediate (IF) format. AVISPA is currently
being introduced in four back ends: (a) CL-AtSe; (b) OFMC; (c) SATMC; and (d) TA4SP.
AVISPA is implemented on a backend basis on-the-fly model checker (OFMC); the output
format is generated and then represented based on these back-ends, confirming that the
system is safe from active and passive attacks.

7.2. Discussion of Proposed Scheme in HLPSL

The role of user U in HLPSL is shown in Figure 8a. In the registration phase, U sends
{uid, upw, bioi, mi} to the authentication server AS using Snd() operation via a secure channel.
The declaration channel (dy) is made for the Dolev–Yao threat model. Accordingly, two dec-
laration secrets, i.e., (K_UG′, sec_c_K_UG, AS, U, TGS), (K_US′, sec_c_K_US, TGS, U, S)
state that Bio, upw is only known to U, D_S is only known by AS and U_ID is known to U, AS,
and TGS. After that, U obtains the smart card having the values, i.e., x_i, N_i, R_i, from AS.
In the login phase, the user further creates N2′, T′, Mi′, TGSid′, Ri′, Ni′, Uid′ using a new (-)
operation and transmitting (Uid

′
.N2′. Uid′.Bio′.TGSid′.U.T′_K_UG′) to the AS via a public

channel. The declaration witness (U, TGS, t1, T′) tells that U creates T for AS. In the authenti-
cation phase, U gets a reply message (U.TkT2′.S.K_US′.Uid′.Bio′.Ts2′.Xi′.Tse2′.N2_K_UG)
from AS by using Rcv () operation. Further, the user creates T2′, TGSid′, FNid′, Uid′ and
transmits the message Snd(TkT2′.U.T2′.Uid′.TGSid′.FNid′_K_US′) to the TGS. The dec-
laration request (U, TGS, k_cs1, K_US′) states that the user sends a request to the TGS
for knowing K_US’. The declaration secret (K_US′, sec_c_K_US, TGS, U, S) states that T is
known to U, AS, and TGS. The user later receives a message (Uid′.TkT1′T2_K_US) from
the TGS. The user then messages to the fog node (TkT2′.U.T2′.Uid′.FNid′_K_US′). The
declaration request (U, S, t2a, T2) states that the user sends a request to the fog node.

Figure 8b depicts the role of the authentication server AS in HLPSL. In the login phase,
AS receives (U.TGS.Li f etime

′
1.N1

′
.Uid

′
.Bio

′
.TGSid

′
.Xi

′
) from the user. Then, AS create

(Ts′, Tse′, K_UG′, Sk′, Mi′, Bio′, Uid′) and sends (TkT2′.U.T2′.Uid′.TGSid′_K_US′) to the
user. Moreover, the declaration witness (AS, U, k_cg1, K_UG′) and (AS, TGS, k_cg2, K_UG′)
indicates that AS generates a symmetric key for user U and TGS. Furthermore, the decla-

Sensors 2021, 21, 1428 22 of 32

ration secret (K_UG′, sec_a_K_UG, AS, U, TGS) states that AS,U,TGS knows the value of
K_UG′.

(a) User role.

(b) AS role

Figure 8. The User and AS roles in HLPSL.

Figure 9a presents the role of the Ticket granting server TGS in HLPSL. The role starts
from the authentication phase, TGS receives (S.Li f etime

′
2.N2

′
.U.TGS.K_UG

′
. Ts

′
.Uid

′
, Xi

′
,

Bio
′
_K_AG.U.TkT2′_K_UG′). Then, TGS transmits U.U.S.K_US′.Ts2′.Uid′, FNid′, Xi′_K_

GS.S.K_US′.Ts2′Uid′, FNid′, Xi′.Tse2′.N2′_K_UG′) to the user U. The request declaration
(TGS, U, t1, T′) states that the user U sends a request to TGS for knowing T′, where
the request (TGS, AS, k_cg2, K_UG′) states that AS sends a request to TGS for know-
ing the K_UG′. The declaration witness (TGS, U, k_cs1, K_US′) indicates that the TGS
generates K_US′ for U, where the declaration witness (TGS, S, k_cs2, K_US′) specifies
that TGS generates K_US′ for the fog node server FN. Furthermore, the declaration se-
cret (K_UG′, sec_g_K_UG, AS, U, TGS) states that AS, U, TGS know the K_UG′, while the
(K_US′, sec_g_K_US, TGS, U, S) states that TGS, U, S know the value K_US′.

Sensors 2021, 21, 1428 23 of 32

Figure 9b depicts the role of the fog node FN in HLPSL. FN receives the message
(U.FN.K_US′.Ts2′.Tse2′.Uid′, FNid′, Xi′_K_GS.U.T2′_K_US′) from the user. Then, FN
provides the user message (T2′_K_US′)and transmits it to the user. The declaration
witness (FN, U, t2a, T2′) indicates that FN generates text T (Fail/Success) for the user.
The declaration request (FN, TGS, k_cs2, K_US′) states that TGS sends a request to FN for
knowing K_US′, where the declaration request (FN, U, t2b, T2′) states that the user sends
a request to S for knowing the feedback of the fog node (Fail/Success). Moreover, the
declaration secret (K_US′, sec_K_US, TGS, U, FN) states that K_US′ is known to TGS, U,
and FN. Figure 10 demonstrates the roles of session, goals, and environment in HLPSL.

(a) TGS role

(b) Fog Node role

Figure 9. The TGS and Fog node roles in HLPSL.

Goals:

• sec_a_K_UG: It tells that the AS, U, and TGS know K_UG’.
• sec_g_K_UG: It states that K_UG’ is shared among TGS, U, and FN.
• sec_c_K_UG: It shows that AS, U, and TGS know the value K_UG’.
• sec_c_K_US: It tells that the TGS, U, and FN know the K_US’.
• sec_g_K_UG: It states that the K_UG’ is shared among AS, U, and TGS.
• sec_g_K_US: It tells that TGS, U, and FN know the value K_US’.

Authentications:

• authentication_on k_cg1: The Ticket is only shared between the user and the TGS.
• authentication_on k_cg2: The timestamp is only valid for the User to the TGS authen-

tication session.
• authentication_on k_cs1: The user sends the second ticket is only known by the User

and the FN.

Sensors 2021, 21, 1428 24 of 32

• authentication_on k_cs2: The timestamp is valid only for the authentication session
to FN.

• authentication_on t2a: The first TS is replaced with a fresh one between the User and
the TGS.

• authentication_on t2b: The User generates a fresh timestamp to authenticate to the FN.
• authentication_on t1: FN replies a text to the user about successful or failed authenti-

cation.

Figure 10. The session, goals, and environment roles in HLPSL.

7.3. Simulation Results

Figures 11 and 12 show our proposed scheme’s results with simulation results in
OFMC and CL-AtSe back ends. These back-ends show that our scheme secure from active
and passive attacks. The sequence diagram of the proposed scheme shown in Figure 13
is represented as user U, authentication server AS, ticket-granting server TGS, and fog
node FN.

Sensors 2021, 21, 1428 25 of 32

Figure 11. The simulation result using OFMC back-end.

Figure 12. The simulation result using CL-AtSe back-end.

K_FN

fn - 6

K_TGS

g - 5

K_AS

a - 4

K_user

c - 3

c.g.c_Lifetime_1. nonce-1

c.{c.g.sk-3.nonce-9.nonce-9}.kag.{g.sk-3.nonce-8.nonce-9.nonce-1}_kca

fn.cLifetime_2.nonce-11.{c.g.sk-3.nonce-8.nonce-9}_kag.{c.nonce-10}_sk-3

c.{c.fn.sk-12.nonce-13.nonce-14}_kgs.{fn.sk-12.nonce-13.nonce-14.nonce-11}_sk-3

{c.fn.sk-12.nonce-13.nonce-14}_kgs.{c.nonce-15}_sk-12

{nonce-15}_sk-12

Figure 13. The simulation sequence using AVISPA.

Sensors 2021, 21, 1428 26 of 32

8. Security Features Comparison

The security features comparison is shown in Table 4. The schemes SAKA-FC [26] and
AKA-FC [31] highly suffer from a key escrow problem and key encryption management.
The scheme is also vulnerable to identity and password guessing attacks, replay Attacks,
impersonation Attacks, insider Attacks, and DoS. Moreover, the cryptoanalysis shows that
the scheme SAKA-FC [26] suffers from user anonymity and untraceability. The schemes
SAKE [20] and AKA-FC [31] are vulnerable to stolen smart card attacks, offline password
guessing attacks, and missing mutual authentications. The schemes SAKA-FC [26] and
SAKE [20] do not facilitate perfect forward secrecy and biometric protection. Since the
proposed scheme is validated using BAN logic, this ensures secure preservation of mutual-
authentication and key session agreement. The proposed scheme is also simulated by the
web tool AVISPA [40], whose simulation results indicate that it is defended against active
and passive attacks. The proposed solution is protected against various security threats.

Table 4. Comparison on security properties.

SAKA-FC [26] SAKE [20] AKA-FC [31] AKA-MS [32] SELAMAT

Key escrow × X × × X
Replay attack × X X × X

Impersonation attack × X × X X
Man-in-the-middle attack X X X × X

Known-key attack X X X X X
Insider attack × X × X X

Stolen smart card attack X × X X X
Server spoofing attack X X × × X

Denial of service (dos) attack × X × × X
Offline password guessing attack X × × X X

User anonymity × X X X X
User untraceability × X X X X

Mutual authentication X × × X X
Perfect forward secrecy × × X × X

Biometric protection × × × × X
Cross-platform authentication × × × × X

8.1. Computation and Communication Costs

Here, we explain the comparison of the communication cost and the computation
cost of the proposed scheme with other existing schemes [20,26,31,32] which are shown in
Table 5. The performance metrics can be explained as follows.

8.1.1. Computation Cost

In this subsection, we analyze the computation cost of the related authentication
schemes SAKA-FC [26], SAKE [20], AKA-FC [31], and AKA-MS [32] and our proposed
scheme. The number of cryptographic operations involved in this study are counted.
To represent the comparison, Table 6 shows the notations, description, and computed
their approximate execution time for various cryptographic operations by using the PBC
library reported by Jia et al. [41]. Specifically, the study employed a secure hash function,
public-key-based encryption, symmetrical encryption, and symmetric decryption, which
are, respectively, denoted as TH , TPE, TSE, and TSD. It is noted that the XOR operation
and concatenates operation ‖ are ignored because their execution time is negligible. The
proposed scheme’s simulation was carried out on Intel Core™i7-5700HQ, CPU 2.70GHz
platform using Java Pairing-Based Cryptography Library (JPBC) library. Figure 14 com-
pares the proposed scheme’s computation cost against SAKA-FC, SAKE, and AKA-FC.

Sensors 2021, 21, 1428 27 of 32

Our scheme’s computation cost is shown in Table 5 comparing it to other authentication
schemes.

Table 5. Performance comparisons.

Scheme Computational Cost Communication
Cost (bits) Total

SAKA-FC [26] Login phase 2Tsm + 26Th + 1Tmtp ≈ 35.595 ms 2240 bits 2816Authentication phase 9Th ≈ 4.005 ms 376 bits

AKA-FC [31] Login phase 2ETsm + 4Th + TP ≈ 9.251 ms 1376 bits 2752Authentication phase 3ETsm + 11Th + TP ≈ 11.284 ms 1376 bits

SAKE [20] Login phase 8Th + 2Tpm + 2Tf e ≈ 40.76 ms 1376 bits 2584
Authentication phase 20Th + 4Tpm ≈ 4.295 ms 1576 bits

AKA-MS [32] Login phase 8HM ≈ 7.792 ms 928 bits 1920Authentication phase 7HM + 1Hp ≈ 19.236 ms 992 bits

SELAMAT Login phase 1HP + 1HM + 5TH + 1TPE + 4TSE + 2TSD ≈
17.292 ms 624 bits 1336

Authentication phase 2TH + TAV + 2TSE + 3TSD ≈ 0.232 ms 712 bits

Table 6. Computation time consumption.

Description Time (ms)

Identity-based signature (TIDS) 23.866
Identity-based signature verification (TIDV) 5.8720

Asymmetric signature (TAS) 3.8500
Asymmetric signature verification (TAV) 0.1925

Public-key-based encryption (TPE) 3.8500
Public key-based decryption (TPD) 3.8500

symmetrical encryption (TSE) 0.0046
Symmetric decryption (TSD) 0.0046

Scalar multiplication (T(sm−ecc)) in G1 0.4420
Scalar multiplication (Tsm) 20.2300

ECS scalar multiplication (ETsm) 1.9700
Exponentiation Operations (Te) 1.2950

Bilinear pairing (TP) 4.2110
Map-to-point hash function (Tmtp) 4.4060

Fuzzy extractor (Tf e) 0.0023
Hn : {0, 1}∗ → Zn 0.0023
HP : {0, 1} → G1 12.4180

HM : {0, 1}∗ → G2 0.9740
HS : {0, 1}∗ → {0, 1}∗ 0.0046

In SAKA-FC [26], three cryptographic operation are scheme, Tsm, Th, and Tmtp, re-
spectively, as shown in Table 5. The execution times of these operations are 0.442, 1.709,
and 4.406 ms, respectively. In the login phase, the user firstly needs to execute the Scalar
multiplication (Tsm) six times, Map-to-point hash function (Tmtp)one, and the hash op-
eration (Th) twenty-six times related to SAKA-FC to start login into the system, so the
execution time of the phase costing nearly ≈ 35.595 ms. In the authentication phase, the
user needs to execute the hash operations (Th) nine times related to G1. Therefore, the
execution time of the authentication process in SAKA-FC is ≈ 4.005 ms. Therefore, the
total computation cost of their scheme is 39.595 ms. The computation of their scheme is
computationally high due to the used multiplication operation in the scheme. In AKA-
FC [31], there are three cryptographic operations related to ECC used in their scheme, ETsm,
Th, and TP, respectively. Table 5 shows the estimated execution time of the performed
operations individually. However, in the login phase, the user needs to perform the scale

Sensors 2021, 21, 1428 28 of 32

multiplication related Elastic compute service (ECS) 2ETsm twice, the hash function 4Th
four times, and the bilinear pairing TP once. Therefore, the execution time in the login
phase is 2ETsm + 4Th + TP = 9.251 ms. In the authentication phase, the scheme needs to
perform the scale multiplication related Elastic compute service (ECS) 2ETsmthree times,
the hash function 4Th eleven times, and the bilinear pairing TP once; thus, the time cost for
this phase is 3ETsm + 11Th + TP = 11.284 ms. Therefore, the total computational cost of
AKA-FC is 20.535 ms.

Figure 14. Computation costs comparison of SELAMAT against SAKA-FC, SAKE, AKA-FC, and AKA-MS.

In SAKE [20], the scheme employed secure hash functions, multiplication, and fuzzy
extractor operation are, respectively, denoted as Th, Tpm, and Tf e and are mainly related
to fuzzy extractor algorithm. However, in the login phase, the user needs to execute
point multiplication Tpm twice, the hash function 8Th eight times, and the fuzzy extractor
operations 2Tf e twice. Consequently, the execution time in this phase is approximately
40.76 ms. In contrast, the authentication phase’s execution time is ≈ 4.295 ms, since the
utilized operations are TH and Tpm. It is noted that the login phase takes longer than the
authentication phase in this scheme under the usage of the multiplication operation. There-
fore, the total execution time in the SAKE scheme is 45.055 ms. The AKA-MS scheme [32]
uses two cryptographic operations: hash operation related to bilinear pairing HP and hash
operation related to the group of ECC HM. The estimated execution times are 12.418 and
0.974 ms, individually. The user needs to execute the hash operations 8HP eight times in the
login phase. In comparison, there is a need to execute the hash operations 7HP seven times
and the hash operation 1HM once related to the ECC group in the authentication phase.
The total computation cost is 8HM + 7HM + 1Hp = 27.028 ms, while the proposed scheme
applied a very lightweight operation TH , HM,TPE, HP, TSE, and TSD. These operations’
execution times independently are 12.4180, 0.9740, 0.9740, 3.8500, 0.0046, and 0.0046 ms.
However, in the first phase, the user needs to perform the hash function five times, public
key encryption one time, the symmetrical encryptions four times, and the symmetrical
decryption described as 1HP + 1HM + 5TH + 1TPE + 4TSE twice. Therefore, the execution
time of the login phase is nearly ≈ 17.2920 ms. In the authentication phase, the employed
operations are TH , TAV , TSE, and TSD. The verification operation is included in this phase.
However, the computation cost here is 2TH + TAV + 2TSE + 3TSD. Therefore, the execution
time for user operation is ≈ 0.232 ms. Thus, the total execution time of the proposed scheme

Sensors 2021, 21, 1428 29 of 32

is 17.524 ms. Compared to SAKA-FC [26], SAKE [20], AKA-FC [31], and AKA-MS [32], the
proposed scheme has less computation cost. According to utilizing the AES-ECC algorithm,
this result was achieved due to the fast AES encryption speed that makes it suitable for
encryption of long plain-text. The ECC solution also uses a smaller key size and low
computational system requirements, making it faster and more efficient cryptographic
keys.

8.1.2. Communication Cost

The number of message interactions measures the communication costs. To compute
the communication cost, it mainly depends on how many messages are transmitted be-
tween the entities multiplied by the (bit) size. We assume that the user’s identity can be
represented by 32 bits, the secret value represented using 160 bits, the timestamp value is
24 bits, and the ticket value is represented as 128 bits. The communication cost of SAKA-
FC [26], SAKE [20], AKA-FC [31], AKA-MS [32], and the proposed scheme are summarized
in Table 5. The compassion of the proposed protocol’s communication cost against the
selected works is shown in Figure 15. In SAKA-FC [26], the scheme exchanging mes-
sages Msg.1 =< RID

′
i , Ru, au, Eu, Fu, TSu >, needs (160 + 320 + 160 + 160 + 160 + 32) =

992 bits, while in the login and authentication phase exchange the message Msg.2 =<

RID∗i , RID
′
k, Gi, Hj, Pf , TS f > needs (160 + 160 + 160 + 160 + 320 + 32) = 992 bits. The

message Msg.3 =< RID∗k , Mk, Nk, Pf , TSk > needs (160+ 160+ 160+ 320+ 32) = 832 bits.
Therefore, the total communication cost of their scheme is 2× (992 + 992 + 832) = 2816
bits. To evaluate the communication cost, the scheme AKA-FC [31] includes the length
of the points in the group G1, which is 1024 bits, the output of the hash function 2|q|,
which has the length of 160 bits, and the length of the timestamp, being 32 bits, which
is denoted as |T|. Thus, the communication cost in the login phase is 1376 bits. In the
authentication phase, the user performs the same length of messages, which is represented
as |G1|+ 2|q|+ |T| and has the length of 1346. Therefore, the total communication cost of
AKA-FC is 2752 bits. In SAKE [20], the initialization calculations on the user parameters set
(TSi

2, IDi
RSU , Oi, Ri, Certi

RSU). At this point, the total size of this message is calculated as
32 × 6 + 256 × 1 + 160 × 3 + 24 × 1 = 952 + 56 = 1008 bits. In the authentication phase, the
server finally generates packet (TSi

4, IDj
1, CertRSU , φj), Hence, the total communication cost

for an individual user is (32 × 13) + (256 × 3) + (160 × 2) + (24 × 3) = 1576 bits. Therefore,
the total communication cost for SAKE is 2584 bits.

In the AKA-MS scheme [32], the user exchanges the information (IDu, M, TW) with
the registration center; hence, the total size is computed as (160 × 4)+ (256 × 1) + (32 × 1) =
928 bits. In the authentication phase, the user communicates with the server and finally
exchanges M1 = PIDu, DIDu, which needs (160 + 160) =320 bits. Then, the server sends
message M2 = Quj, Vj, which has the size of (256 + 256) = 512 bits. The user later sends
M3 = Zuj that needs 160 bits. Thus, the total communications cost of AKA-MS is 1920 bits.

In the proposed scheme, there are two interacting messages between the user and the
authentication server in the login phase. The user first sends an initialization authentication
request Msg1.Auth

′
u = Epk{u

′
id ‖ X

′
i ‖ Bio

′
i ‖ tgsid ‖ TS1}; the size of the message is

calculated as 32 + 160 + 32 + 32 + 24 = 248 bits. The AS sends the second message to
the user as Msg.2 : (u

′
id ‖ tgsid ‖ Eupk{ks(u→tgs) ‖ TS2 ‖ tgstkt}; the size of the message

is computed as 32 + 32 + 128 + 24 + 160 = 376 bits. Therefore, the total communication
cost in the first phase is (248 + 376) = 624 bits. In the authentication phase, there are
three messages which are shared between the user and the AS. The user sends a message
to the TGS Msg.3 : Authu→tgs = Eksu→tgs{u

′
id ‖ f nid ‖ TS3 ‖ tgstkt}, with the size of

length computed as (32 + 32 + 24 + 160) = 248 bits. Then, the TGS response to the user
is calculated as Msg.4 : uid ‖ f ntkt ‖ Eksu→tgs{tgsid ‖ ksu→ f ns

‖ ts4}, with size (32 + 160 +

32 + 128 + 24) = 376 bits. The user requests access to the fog node Msg.5 : Authu→ f ns
=

Eksu→ f n
{uid ‖ TS4 ‖ f nid}; the message size is calculated as (32 + 24 + 32) = 88 bits.

Therefore, the total communication cost of the proposed scheme is (624 + 248 + 376 + 88) =
1336 bits. In our proposed scheme, the used operations are lightweight compared to the

Sensors 2021, 21, 1428 30 of 32

other schemes. Table 5 shows that the proposed scheme has a less communication cost
compared to the others.

Figure 15. Communication costs comparison of SELAMAT against SAKA-FC, SAKE, AKA-FC, and AKA-MS.

9. Conclusions

This paper proposes a lightweight multi-factor authentication scheme for cross-
platform industrial IoT systems, SELAMAT. In SELAMAT, we use the AES-ECC algorithm
for efficient and secure key management encryption mechanisms in the cloud provider
server that acts as a trusted authority. Furthermore, the scheme adopts the Kerberos work-
flow due to the wide acceptance of the protocol in real-life applications. The designed
algorithm offers secure communication between the edge devices and the fog node servers
when the messages are transmitted via a public network. The proposed scheme enables
edge devices to access any fog server in the fog computing network and improves the
efficiency of the system by reducing the computation and communication cost to avoid a
network burden.

The results show that the SELAMAT scheme reduces the communication and com-
putation cost compared to the SAKA-FC, SAKE, AKA-FC, and AKA-MS schemes. This
extensive comparison of the scheme efficiency shows that the proposed scheme can achieve
better performance than the existing scheme. The AVISPA tool is used to verify the security
of the scheme. The SELAMAT scheme provides robust security against attacks (replay
attack, impersonation attack, man-in-the-middle attack, known-key attack, insider attack,
server spoofing attack, etc.), and it was evaluated by using the formal and informal security
analyses. In addition, the mutual authentication of the proposed scheme was proven by
using the BAN logic. As mentioned above, the advantages pave a path for IIoT usability
and suit the IIoT resources-constrained devices. In the future, the proposed scheme can
improve the performance and the security of industrial hardware.

Author Contributions: Conceptualization, H.K, and S.J.H.; Methodology, H.K., S.J.H.; Software,
H.K.; Validation, H.K.; Results interception, H.K. and S.J.H.; Formal analysis, H.K.; Writing—original
draft preparation, H.K.; Writing—review and editing, H.K. and S.J.H.; Supervision, S.J.H., S.M.S.A.,
F.H., and M.A.C.; and Project administration, S.J.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Sensors 2021, 21, 1428 31 of 32

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank the reviewers for their careful, constructive and insight-
ful comments in relation to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A survey of internet of things (IoT) Authentication schemes. Sensors

2019, 19, 1141. [CrossRef]
2. Kwon, S.; Jeong, J.; Shon, T. Toward security enhanced provisioning in industrial IoT systems. Sensors 2018, 18, 4372. [CrossRef]
3. Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018, 82,

395–411. [CrossRef]
4. Ni, J.; Zhang, K.; Lin, X.; Shen, X.S. Securing fog computing for internet of things applications: Challenges and solutions. IEEE

Commun. Surv. Tutor. 2017, 20, 601–628. [CrossRef]
5. Choudhary, K.; Gaba, G.S.; Butun, I.; Kumar, P. MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for

Industrial Internet of Things. Sensors 2020, 20, 5166. [CrossRef]
6. Lin, C.; He, D.; Huang, X.; Choo, K.K.R.; Vasilakos, A.V. BSeIn: A blockchain-based secure mutual authentication with

fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 2018, 116, 42–52. [CrossRef]
7. Lupascu, C.; Lupascu, A.; Bica, I. DLT Based Authentication Framework for Industrial IoT Devices. Sensors 2020, 20, 2621.

[CrossRef] [PubMed]
8. Sari, A.; Lekidis, A.; Butun, I. Industrial Networks and IIoT: Now and Future Trends. In Industrial IoT; Springer: Berlin, Germany,

2020; pp. 3–55.
9. Iorga, M.; Feldman, L.; Barton, R.; Martin, M.J.; Goren, N.S.; Mahmoudi, C. Fog Computing Conceptual Model; Technical Report;

No. Special Publication (NIST SP)-500-325; NIST: Gaithersburg, MD, USA, 2018.
10. Greenberg, A. How 30 Lines of Code Blew Up a 27-Ton Generator. WIRED Security. 2020. Available online: https://www.wired.

com/story/how-30-lines-of-code-blew-up-27-ton-generator/ (accessed on 26 December 2020).
11. Evans, B. Firebase: Google Cloud’s Evil Twin. SANS Blog, Security Boulevard. 2020. Available online: https://securityboulevard.

com/2020/10/firebase-google-clouds-evil-twin-excerpt/ (accessed on 26 December 2020).
12. Wang, L.; An, H.; Chang, Z. Security Enhancement on a Lightweight Authentication Scheme with Anonymity for Fog Computing

Architecture. IEEE Access 2020, 8, 97267–97278. [CrossRef]
13. Cigoj, P.; Blažič, B.J. An authentication and authorization solution for a multiplatform cloud environment. Inf. Secur. J. Glob.

Perspect. 2015, 24, 146–156. [CrossRef]
14. Monteiro, A.C.B.; França, R.P.; Estrela, V.V.; Iano, Y.; Khelassi, A.; Razmjooy, N. Health 4.0 as an Application of Industry 4.0 in

Healthcare Services and Management. Med. Technol. J. 2018, 2, 262–276.
15. Yang, Y.; Hu, M.; Kong, S.; Gong, B.; Liu, X. Scheme on cross-domain identity authentication based on group signature for cloud

computing. Wuhan Univ. J. Nat. Sci. 2019, 24, 134–140. [CrossRef]
16. Wang, W.; Hu, N.; Liu, X. BlockCAM: A blockchain-based cross-domain authentication model. In Proceedings of the 2018 IEEE

Third International Conference on Data Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 896–901.

17. Kaur, H.; Kumar, N.; Batra, S. ClaMPP: A cloud-based multi-party privacy preserving classification scheme for distributed
applications. J. Supercomput. 2019, 75, 3046–3075. [CrossRef]

18. Sengupta, J.; Ruj, S.; Bit, S.D. A Comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.
J. Netw. Comput. Appl. 2020, 149, 102481. [CrossRef]

19. Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
20. Chen, C.M.; Huang, Y.; Wang, K.H.; Kumari, S.; Wu, M.E. A secure authenticated and key exchange scheme for fog computing.

Enterp. Inf. Syst. 2020, 4, 1–16. [CrossRef]
21. Munir, K.; Mohammed, L.A. Biometric smartcard authentication for fog computing. Int. J. Netw. Secur. Appl. (IJNSA) 2018, 10,

34–42. [CrossRef]
22. Rahman, G.; Wen, C.C. Mutual Authentication Security Scheme in Fog Computing. Int. J. Adv. Comput. Sci. Appl. 2019, 10,

443–451. [CrossRef]
23. Ibrahim, M.H. Octopus: An Edge-fog Mutual Authentication Scheme. IJ Netw. Secur. 2016, 18, 1089–1101.
24. Zmezm, H.F.; Hashim, S.; Sali, A.; Alezabi, K.A. Pre-authentication design for seamless and secure handover in mobile WiMAX.

Int. Rev. Comput. Softw. (IRECOS) 2015, 10, 764–772. [CrossRef]
25. Alezabi, K.A.; Hashim, F.; Hashim, S.J.; Ali, B.M. An efficient authentication and key agreement protocol for 4G (LTE) networks.

In Proceedings of the 2014 IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014; IEEE: Piscataway, NJ, USA,
2014; pp. 502–507.

26. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V. Design of secure key management and user authentication scheme for fog
computing services. Future Gener. Comput. Syst. 2019, 91, 475–492. [CrossRef]

http://doi.org/10.3390/s19051141
http://dx.doi.org/10.3390/s18124372
http://dx.doi.org/10.1016/j.future.2017.11.022
http://dx.doi.org/10.1109/COMST.2017.2762345
http://dx.doi.org/10.3390/s20185166
http://dx.doi.org/10.1016/j.jnca.2018.05.005
http://dx.doi.org/10.3390/s20092621
http://www.ncbi.nlm.nih.gov/pubmed/32375374
https://www.wired.com/story/how-30-lines-of-code-blew-up-27-ton-generator/
https://www.wired.com/story/how-30-lines-of-code-blew-up-27-ton-generator/
https://securityboulevard.com/2020/10/firebase-google-clouds-evil-twin-excerpt/
https://securityboulevard.com/2020/10/firebase-google-clouds-evil-twin-excerpt/
http://dx.doi.org/10.1109/ACCESS.2020.2996264
http://dx.doi.org/10.1080/19393555.2015.1078424
http://dx.doi.org/10.1007/s11859-019-1378-6
http://dx.doi.org/10.1007/s11227-018-2691-0
http://dx.doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.1080/17517575.2020.1712746
http://dx.doi.org/10.5121/ijnsa.2018.10604
http://dx.doi.org/10.14569/IJACSA.2019.0101161
http://dx.doi.org/10.15866/irecos.v10i7.6955
http://dx.doi.org/10.1016/j.future.2018.09.017

Sensors 2021, 21, 1428 32 of 32

27. Wazid, M.; Das, A.K.; Hussain, R.; Succi, G.; Rodrigues, J.J. Authentication in cloud-driven IoT-based big data environment:
Survey and outlook. J. Syst. Archit. 2019, 97, 185–196. [CrossRef]

28. He, D.; Kumar, N.; Wang, H.; Wang, L.; Choo, K.K.R.; Vinel, A. A provably-secure cross-domain handshake scheme with
symptoms-matching for mobile healthcare social network. IEEE Trans. Dependable Secur. Comput. 2016, 15, 633–645. [CrossRef]

29. Wazid, M.; Das, A.K.; Lee, J.H. User authentication in a tactile internet based remote surgery environment: Security issues,
challenges, and future research directions. Pervasive Mob. Comput. 2019, 54, 71–85. [CrossRef]

30. Wen, Y.; Zhang, F.; Wang, H.; Gong, Z.; Miao, Y.; Deng, Y. A new secret handshake scheme with multi-symptom intersection for
mobile healthcare social networks. Inf. Sci. 2020, 520, 142–154. [CrossRef]

31. Jia, X.; He, D.; Kumar, N.; Choo, K.K.R. Authenticated key agreement scheme for fog-driven IoT healthcare system. Wirel. Netw.
2019, 25, 4737–4750. [CrossRef]

32. Akram, M.A.; Ghaffar, Z.; Mahmood, K.; Kumari, S.; Agarwal, K.; Chen, C.M. An anonymous authenticated key-agreement
scheme for multi-server infrastructure. Hum. Centric Comput. Inf. Sci. 2020, 10, 1–18. [CrossRef]

33. Tan, H.; Xuan, S.; Chung, I. HCDA: Efficient Pairing-Free Homographic Key Management for Dynamic Cross-Domain Authenti-
cation in VANETs. Symmetry 2020, 12, 1003. [CrossRef]

34. Venčkauskas, A.; Morkevicius, N.; Jukavičius, V.; Damaševičius, R.; Toldinas, J.; Grigaliūnas, Š. An edge-fog secure self-
authenticable data transfer protocol. Sensors 2019, 19, 3612. [CrossRef]

35. Zhang, H.; Babar, M.; Tariq, M.U.; Jan, M.A.; Menon, V.G.; Li, X. SafeCity: Toward Safe and Secured Data Management Design
for IoT-Enabled Smart City Planning. IEEE Access 2020, 8, 145256–145267. [CrossRef]

36. Katsikas, S.; Gkioulos, V. Security, Privacy, and Trustworthiness of Sensor Networks and Internet of Things. Sensors 2020,
20, 3846. [CrossRef]

37. Mohamed, N.N.; Yussoff, Y.M.; Saleh, M.A.; Hashim, H. Hybrid Cryptographic Apprach For Internet of Hybrid Applications: A
Review. J. Inf. Commun. Technol. 2020, 19, 279–319.

38. Ganesh, A.R.; Manikandan, P.N.; Sethu, S.P.; Sundararajan, R.; Pargunarajan, K. An improved AES-ECC hybrid encryption scheme
for secure communication in cooperative diversity based Wireless Sensor Networks. In Proceedings of the 2011 International
Conference on Recent Trends in Information Technology (ICRTIT), Tamil Nadu, India, 3–5 June 2011; IEEE: Piscataway, NJ, USA,
2011; pp. 1209–1214.

39. Viganò, L. Automated security protocol analysis with the AVISPA tool. Electron. Notes Theor. Comput. Sci. 2006, 155, 61–86.
[CrossRef]

40. Chevalier, Y.; Compagna, L.; Cuellar, J.; Drielsma, P.H.; Mantovani, J.; Mödersheim, S.; Vigneron, L. The High Level Protocol
Specification Language. Available online: http://avispa-project.org/delivs/2.1/d2-1.pdf (accessed on 26 September 2006).

41. Jia, X.; Hu, N.; Su, S.; Yin, S.; Zhao, Y.; Cheng, X.; Zhang, C. IRBA: An Identity-Based Cross-Domain Authentication Scheme for
the Internet of Things. Electronics 2020, 9, 634. [CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2018.12.005
http://dx.doi.org/10.1109/TDSC.2016.2596286
http://dx.doi.org/10.1016/j.pmcj.2019.02.004
http://dx.doi.org/10.1016/j.ins.2020.02.007
http://dx.doi.org/10.1007/s11276-018-1759-3
http://dx.doi.org/10.1186/s13673-020-00227-9
http://dx.doi.org/10.3390/sym12061003
http://dx.doi.org/10.3390/s19163612
http://dx.doi.org/10.1109/ACCESS.2020.3014622
http://dx.doi.org/10.3390/s20143846
http://dx.doi.org/10.1016/j.entcs.2005.11.052
http://avispa-project.org/delivs/2.1/d2-1.pdf
http://dx.doi.org/10.3390/electronics9040634

	Introduction
	Industrial IoT Security Requirements and Issues
	Security Requirements
	Security Issues

	Related Works
	Preliminaries
	The Elliptic Curve Cryptography
	AES-ECC Encryption/Decryption

	SELAMAT Scheme
	Setup Phase
	User Registration Phase
	Fog Node Registration Phase
	Login Phase
	Authentication Phase

	Security Analysis
	Mutual Authentication Proof Using BAN Logic
	Message Exchanges
	Goals and Assumptions
	BAN Logic Proof

	Informal Security Analysis

	Formal Security Verification Using AVISPA Tool: Simulation Study
	AVISPA Tool Basic Explanation
	Discussion of Proposed Scheme in HLPSL
	Simulation Results

	Security Features Comparison
	Computation and Communication Costs
	Computation Cost
	Communication Cost

	Conclusions
	References

