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Abstract: Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-

negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-

negative bacteria followed by an increase in resistance among Gram-negative bacteria.

Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics.

Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii,

Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella

spp. have an acquired resistance against colistin. However, other bacteria, including

Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic.

In addition, clinicians should be alert to the possibility of colistin resistance among multi-

drug-resistant bacteria and development through mutation or adaptation mechanisms.

Rapidly emerging bacterial resistance has made it harder for us to rely completely on the

discovery of new antibiotics; therefore, we need to have logical approaches to use old

antibiotics, such as colistin. This review presents current knowledge about the different

mechanisms of colistin resistance.
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Introduction
Antibiotic resistance, which started in the 1970s among Gram-negative bacteria, is

a crucial global problem.1–3 Development of antibiotic resistance is a phenomenon

correlated with antibiotic overuse and bacterial evolution.4 Microorganisms can use

several mechanisms to adapt against antimicrobial agents and environmental sti-

mulants. Bacteria can use genetic alterations in their genes to form genes with

improved performance to overcome antibiotics. Modification in only a few base

pairs in DNA causing replacement of one or a few amino acids in an important

target, such as cell structure or cell wall and enzymes, leads to new resistance

strains.5 Initially, the problem of bacterial resistance to antibiotics was solved by the

invention of the latest categories of antibiotics, including aminoglycosides, glico-

peptides, and macrolides, and further by the c

hemical modification of old antibiotics. Unfortunately, these antibiotics could

not keep pace with the development of antibiotic resistance in bacterial

pathogens.6 Mobile genes conferring resistance to aminoglycosides and broad-

spectrum β-lactams can transfer between species and are one of the important

factors accounting for the progressive erosion of antimicrobial activity in both

hospital and community settings.7 Emergence of multidrug-resistant (MDR) and

extensively drug-resistant (XDR) Gram-negative bacteria, as well as the lack of
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novel agents against these pathogens, have led to the

reintroduction of colistin, an old and valuable antibiotic

as a last-resort treatment option.8

Colistin, also known as polymyxin E, was isolated in

1947 from the bacterium Paenibacillus polymyxa subsp.

colistinus.9 This organism also produces colistinase, which

inactivates colistin.10 Colistin is a polycationic antibiotic, and

has significant activity against Gram negative bacteria, such

as Enterobacteriaceae. The outer cell membrane of Gram-

negative bacteria is the main site of action for colistin.

When colistin binds to lipopolysaccharides in the

outer membrane, electrostatic interaction occurr between the

α,γ-diaminobutyric acid of colistin and the phosphate groups

of the lipid A region of lipopolysaccharide (LPS). It compe-

titively displaces divalent cations (Ca2+ and Mg2+) from the

phosphate groups of membrane lipids.11,12 Therefore, disrup-

tion of LPS may cause increased permeability of the outer

membrane and leakage of intracellular contents, ultimately

leading to cell death.13–15 Unfortunately, during the last few

decades, the emergence of colistin-resistant isolates has been

frequently reported,10,12 which has increased inappropriate

use of this drug, especially as monotherapy could be the

cause of this problem.16–18 In addition, there have been

reports of increased infection due to bacteria with intrinsic

resistance to colistin, such as Proteus spp., Providencia spp.,

Serratia spp., and Morganella spp.19–21 In this article, we

assess different mechanisms of colistin resistance in

Enterobacteriaceae.

Activity spectrum of colistin
Colistin is a narrow-spectrum antimicrobial agent that has

significant activity against most members of the

Enterobacteriaceae family, including Escherichia coli,

Enterobacter spp., Klebsiella spp., Citrobacter spp.,

Salmonella spp., and Shigella spp. It also has activity

against common nonfermentative Gram-negative bacteria,

such as Acinetobacter baumannii, Pseudomonas aerugi-

nosa, and Stenotrophomonas maltophilia.14,22–24 In addi-

tion, Haemophilus influenzae, Legionella pneumophila,

Aeromonas spp., and Bordetella pertussis are naturally

susceptible to colistin.15,22,25,26

Conversely, among the Enterobacteriaceae, Proteus

spp. and Serratia marcescens have intrinsic resistance to

colistin. On the other hand, Morganella morganii,

Providencia spp., Pseudomonas mallei, Burkholderia

cepacia, Chromobacterium spp., Edwardsiella spp.,

Brucella, Legionella, and Vibrio cholera are typically

resistant to colistin. Colistin is not active against Gram-

negative cocci, such as Neisseria spp., gramGram-positive

bacteria, anaerobic bacteria, eukaryotic microbes, or mam-

malian cells.14,27–31

Mechanisms of colistin resistance in
Enterobacteriaceae
Although the main mechanism of resistance to colistin is

unclear, Gram-negative bacteria employ several mechan-

isms to protect themselves against colistin toward other

polymyxins (Figure 1). According to the literature, most

colistin-resistance mechanisms are adaptive mechanisms

ithat occur after in vitro exposure.15 Resistance to colistin

occur with LPS modification via different routes. The most

common strategies for resistance to colistin are modifica-

tions of the bacterial outer membrane through alteration of

the LPS and reduction in its negative charge.32,33 The

other strategy is the overexpression of efflux-pump

systems.34 Another mechanism is overproduction of cap-

sule polysaccharide.35–37 No enzymatic mechanisms of

resistance have been reported, but strains of P. polymyxa

produce colistinase.38

Intrinsic resistance mechanisms
Resistance to polymyxins occurs naturally in P. mirabilis and

S. marcesens by modification of the LPS via cationic substitu-

tion. The mechanism of resistance in these species is linked to

expression of the arnBCADTEF operon and the eptB gene. In

this way, the 4-amino-4-deoxy-L-arabinose (L-Ara4N) and

phosphoethanolamine (pEtN) cationic groups are added to

the LPS by this operon and gene, respectively. It has been

shown that the LPS of P. mirabilis contains L-Ara4N and the

genome of this bacterium contains the eptC gene, which is

mediated to the modification of LPS with PETN.39–41 Putative

loci in P. mirabilis include the sap operon encoding a transport

protein, ATPase gene, and O-acetyltransferase gene, which

take part in biosynthesis or transfer of amino arabinose.42

Also, the existence of rppA/rppB TCS has been discovered

to play a role in activation of the arnBCADTEF operon.43,44

Similarly, this operon is responsible for intrinsic resistance to

colistin in S. marcescens, as it has been shown that arnB and

arnC mutants lead to a reduction insusceptibility to colistin

(minimum inhibitory concentration [MIC] from 2,048 to 2 µg/

mL) compared to the wild type.45

This modification of LPS and the increase inits charge give

rise to the affinity of colistin decrease for binding to LPS.

Therefore, intrinsic resistance has occurred in these

species.9,41,43

Aghapour et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Infection and Drug Resistance 2019:12966

http://www.dovepress.com
http://www.dovepress.com


Acquired resistance mechanisms in

Enterobacteriaceae
Acquired colistin-resistance mechanisms have been

recognized in some members of Enterobacteriaceae

family, such as E. coli, Salmonella spp., Klebsiella

spp., and Enterobacter spp., and remain unknown for

other bacterial species. Resistance mechanisms are pre-

sumed to be linked to chromosomal mutation untrans-

ferable via horizontal gene transfer.46–48 Only one

mechanism of resistance has been identified as

a transferable mechanism (plasmid-mediated mcr

gene) so far (Table 1).9,21

Many genes and operons play a role in modification

of LPS, which in turn leads to colistin resistance. These

include: genes and operons responsible for encoding

enzymes that have a direct role in LPS modification,

such as the pmrC and pmrE genes and the

pmrHFIJKLM operon;46,49 regulatory two-component

systems (TCSs), including PmrAB and PhoPQ, as well

as crrAB, which regulates the PmrAB system;50–52 the

mgrB gene, a negative regulator of TCSs, including

PmrAB and PhoPQ;53 plasmid-mediated mcr

genes;54,55 and Cpx and Rcs as regulator of upregulation

of capsule biosynthesis and activator of the efflux pump

KpnEF regulating the PhoPQ system, respectively.8

mgrB gene and regulators of PmrAB and PhoPQ

two-component systems

Some operons and regulators have a role in the modifica-

tion of LPS by PmrAB and PhoPQ TCSs. The pmrABC

operon encodes PmrA (BasR) as a regulator protein,

PmrB (BasS) as a cytoplasmic membrane-bound sensor

kinase, and PmrC as a putative membrane protein.56 The

addition of L-arabinoseamine (L-Ara4N) to the 1-phos-

phate or 4 -phosphate group leads to colistin resistance.46

Generally, L-Ara4N is connected to 4 -phosphate and

modifies it while PETN is connected to 1-phosphate.57,58

The pmrHFIJKLM operon (also named arnBCDADTEF

or pbgPE) and PmrE synthesize L-Ara4N from uridine

diphosphate glucuronic acid and fix it to lipid A.59,60 The

biosynthesis of L-Ara4N depends on the pmr (arn)

operon.61 Moreover, under environmental stimulants,

such as macrophage phagosomes, the high concentration

of iron (Fe3+) and exposure to aluminum (Al3+), as well

as acidic pH, leads to activation of PmrB.56,62 On the

other hand, low concentration of Mg2+ or Ca2+ leads to

activation of phoQ.63,64 PmrB activates PmrA by phos-

phorylation, and PmrA in turns activates regulation of the

pmrABC and pmrHFIJKLM operons and the pmrE gene.

Subsequently, these operons and genes lead to LPS mod-

ification by adding PETN and L-Ara4N to lipid A.56

Mutation of pmrA/pmrB results in upregulation of the
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Figure 1 Regulation and plasmid-mediated pathways of lipopolysaccharide modifications in Enterobacteriaceae.
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pmrABC and pmrFHIJKLM operons and pmrE gene.

Mutation within the pmrA and pmrB genes leading to

colistin resistance has been described in Klebsiella pneu-

moniae and Salmonella entericca (Table 1).65–69

On the other hand, the phoPQ TCS encodes PhoP as

a regulator protein and PhoQ as a sensor kinase. Under

conditions of low magnesium or calcium, acidic PH, or

cationic antimicrobial peptide, PhoPQ is activated and pro-

tects bacteria.21,63,64 Activated PhoPQ leads to modification

of lipid A via two routes: PhoQ activates PhoP by its kinase

activity via phosphorylation, which activates transcription

of the pmrFHIJKLM operon, followed by modification of

lipid A;70,71 and PhoP indirectly activates pmrA by bypass-

ing the PmrD connector protein, subsequently activates the

transcription of the pmrHFIJKLM operon and synthesizes

PETN, which transfers it to lipid A.72,73

Various of PETN-coding genes, such as eptA (pmrC),

eptB (pagC), and eptC (cptA), are able to add PETN to

different sites of LPS.74,75 Mutation of the phoP/Q genes

has been identified in K. pneumoniae and E. coli that led to

acquired colistin resistance.65,67,76–78

The mgrB gene encodes a small transmembrane protein

of 47 amino acids that exerts negative feedback on the

PhoPQ TCS.79 This protein inhibits the kinase activity of

PhoQ, which in turn represses expression of the phoQ

gene. Nevertheless, mutation/inactivation of the mgrB

gene results in upregulation of the phoPQ operon and

subsequent activation of the pmrHFIJKLM operon.

Finally, production of L-Ara4N leads to modification of

lipid A and colistin resistance.51

Various mutations or disruptions of the mgrB gene have

been reported, such as deletion, nonsense, missense, inacti-

vation, and insertional mutations. According to reports,

mgrB inactivation is the most common mechanism for

colistin resistance in K. pneumoniae and K. oxytoca.67,80–

82 In addition, it has been described that inactivation of the

mgrB gene by diverse insertion sequences at different

sites of this gene is the other mgrB mutation that often

occurs in K. pneumoniae.53,65,80 Other alterations that

have been reported in the mgrB gene include nonsense

and missense mutations, leading to premature termination

and amino-acid substitutions inmgrB, respectively.53,77

Goulian et al showed that deletion of the mgrB gene led

to upregulation of the PhoP-regulated gene in E. coli.79

CrrAB two-component system

The crrAB operon encodes two proteins: CrrA as

a regulatory protein and CrrB as a sensor kinase protein.

Wright et al described that mutation of crrB leads to colistin

resistance in K. pneumoniae.83 The mutated CrrB protein

regulates a crrAB-adjacent gene that encodes

a glycosyltransferase-like protein, which in turn leads to

modification of lipid A.83 In Cheng et al's study, six amino-

acid substitutions in the CrrB protein led to high resistance

to colistin (MICs of colistin 512–2,048 µg/mL).52 However,

mutation/inactivation of the crrB gene led to activation of

the pmrHFIJKLM operon and the pmrC and pmrE genes

through overexpression of the pmrAB operon. Furthermore,

the production and addition of L-Ara4N and PETN to lipid

A lead to acquisition of resistance to colistin.83 It was

demonstrated that CrrC afforded a connection between the

CrrAB and pmrAB systems. Mutation of the crrB gene

led to increased crrC transcription. On the other hand, it

has been suggested amino-acid substitutions of the CrrB

protein result in increased autophosphorylation of this pro-

tein, consequently leading to colistin resistance.52

Plasmid-mediated resistance to colistin

Plasmid-mediated colistin is a significant challenge and glo-

bal concern, because of easy transfer of colistin-resistance

genes to susceptible strains.54 The mcr genes are responsible

for horizontal transfer of colistin resistance. These plasmid-

mediated genes were first reported in E. coli isolated from

pigs and meat in China, November 2015.54 MCR is

a member of the PETN enzyme family, and its expression

leads to addition of PETN to lipid A. According to the

literature, isolates carrying the mcr1 gene display resistance

to colistin without other resistance mechanisms. The exis-

tence of mcr1 in isolates is enough for colistin resistance

without other resistance mechanisms, as isolates carrying this

gene displayed a four- to eightfold increase in colistin MIC.9

It is worth noting that the production of mcr1 leads to

resistance to lysozymes.84

Following initial findings, mcr1-mediating transferable

colistin resistance has been reported in several regions,

including Europe, Asia, the Americas, and Africa.85–98

There is a hypothesis that mcr1 originated in animals, parti-

cularly pigs and cattle, and subsequently spread to humans,

though the proportion of mcr1-positive isolates is low in

humans compared to animals.54,99 This transmissible gene

has been reported from diverse genera of Enterobacteriaceae,

including E. coli, Klebsiella spp., Entrobacter spp.,

Salmonella spp., Shigella spp., and Cronobacter spp., but

mostly from E. coli. Some plasmids containing the mcr1

gene carry other genes that are resistant to other antibiotics,

such as β-lactams, aminoglycosides, quinolones,
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sulfonamides, tetracyclines, and fosfomycin.9 The mcr gene

has also been identified in Enterobacteriaceae isolates, which

carry such carbapenemase genes as blaNDM1, blaNDM5,

blaNDM9, blaOXA48, blaKPC2, and blaVIM1.
97,100,101

Recently, Xavier et al reported a novel plasmid-mediated

colistin resistance gene, known as mcr2, in E. coli.55

Thereafter, mcr3 and mcr4 genes were discovered.102,103

Finally, in July 2017, Borowiak et al reported a new gene

of the mcr family from Salmonella paratyphi B were carried

in transposons instead of plasmids.104

In addition, three mobile colistin-resistance genes (mcr6,

mcr7, and mcr8) were discovered in 2018. AbuOun et al

discovered a new variant of mcr2 from Moraxella plurani-

malium that they renamed mcr6.1.105 They suggested that

Moraxella spp. may contain a natural reservoir of mcr, and

mcr-harboring Moraxella appeared in pig populations. Yang

et al found K. pneumoniae isolates harbored a new mcr

variant, mcr7.1, recovered from chickens in China.106 They

suggested that mcr7, like mcr-3, originated from

Aeromonasspp.,102 and its structure was similar to mcr3. In

addition,mcr7 displayed 78% nucleotide identity to themcr3

gene. Eventually, a new mobile genetic element, mcr-8, was

discovered in K. pneumoniae. It was identified as the coex-

istence of mcr8 and the carbapenemase-encoding gene

blaNDM, which is a great concern.107 It is notable that mcr8

has existed for some time and disseminated among

K. pneumoniae.107 mcr2–8 are similar to mcr1, as PETN

leads to the addition of phosphoethanolamine to lipid A,

followed by colistin resistance (Figure 1). Both mcr1 and

mcr2 genes originated fromMoraxella spp. In addition,mcr3

and mcr4 genes line up closely with PETN from Aeromonas

spp. and Shewanella frigidimarina, respectively,55,102,103,108

whereas the origin of mcr5 remains unknown.104 Although

mcr is a plasmid-mediated gene, recently Zurfluh et al iden-

tified the mcr1 gene on chromosomes of E. coli strains.

Therefore, there is a hypothesis that this gene can be inte-

grated in the genome of some isolates.109

Role of regulator RamA

The ramA locus has three genes: ramA, romA, and ramR. The

ramR gene plays a role as a repressor of the ramA and romA

genes. Some Enterobacteriaceae possess a ramA regulator,

such as K. pneumoniae, Citrobacter spp., Enterobacter spp.,

and Salmonella spp. In K. pneumoniae, this regulator mod-

ulates lipid A biosynthesis and is related to permeability

barriers. It has been shown that ramA alterations lead to

reductions in colistin susceptibility. Recently, researchers

showed that increased levels of RamA resulted in LPS

modification and increased resistance to colistin.110 RamA

applied changes tothe bacterial surface and Klebsiella

survived against colistin. Several genes are associated with

lipid A biosynthesis, including lpxA, lpxC, lpxD, lpxB, lpxK,

lpxL, lpxM, and lpxO.111 RamA binds directly to and acti-

vates the lpxC, lpxO, and lpxL2 genes and leads to alterations

within the lipid A moiety in K. pneumoniae. Therefore,

Klebsiella can survive in such antibiotic challenges as

colistin.110

Role of capsule in colistin resistance

The role of capsular polysaccharide (CPS) has been

demonstrated to be protective against cationic antimicro-

bial peptides, including colistin.35 K. pneumoniae is able

to release CPS from its surface.112 The number of capsule

layers is related to resistance level. It has been observed

that K. pneumoniae with several layers was more resistant

to colistin than isolates with few layers.8,113 However,

upregulation of a capsular biosynthesis gene led to

a reduction in the interaction of colistin with the target

site in K. pneumoniae, followed by increased colistin

resistance.35 Consequently, there are some regulators of

capsule formation, such as Cpx (conjugative pilus expres-

sion) and Rcs (regulator of capsule synthesis). Cpx and

Rcs also appear to contribute to colistin resistance by

activating the efflux pump KpnEF and regulating the

PhoPQ TCS, respectively.46 Furthermore, the ugd gene

plays a role in CPS and L-Ara4N biosynthesis in that its

phosphorylation is related to the synthesis of capsular and

colistin resistance.114,115

Role of efflux pumps

A few studies have suggested that efflux-pump systems are

involved in colistin resistance. Efflux pumps, such as the

KpnEF, AcrAB and Sap proteins, have been reported in

Enterobactericeae. By activation of these pumps, resistance

to colistin is increased.116,117 The efflux pump KpnEF is

a member of the Cpx regulon (responsible for capsule synth-

esis in K. pneumoniae) and belongs to the SMR protein

family.8 In K. pneumoniae, this pump is mediated by colistin

resistance and other antibiotics, including ceftriaxone, erythro-

mycin, and rifampicin.117 It has been observed that

mutations in KpnEF (as a member of the small MDR efflux-

pump family) lead to more susceptibility and a doubled reduc-

tion inthe MIC of colistin.117 On the other hand, AcrAB is

a part of the AcrAB–TolC complex, which plays a role in

colistin resistance. The AcrAB-mutant E. coli

displays aneightfold increase in colistin susceptibility. It has
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been remarked that expression of this pump's proteins is depen-

dent on the PhoPQ TCS.118 Finally, the SapABCDF operon

encodes Sap proteins that are constitute of five proteins.118 In

the mutant of P. mirabilis, susceptibility to colistin is increased

by mutation of the SapABCDEF operon.42 It has been shown

that the use of efflux-pump inhibitors in the test medium

carbonyl cyanide 3-chlorophenylhydrazone leads to

a reduction in MIC for colistin-resistant strains.119

Logical approaches to use of colistin
Recent studies have suggested colistin is the foremost thera-

peutic option of XDR Gram-negative bacteria in recent years,

owing to its potent bactericidal efficacy.120 Combination thera-

pies of colistin with other antibiotics are superior to colistin

monotherapy for XDR strains, due to rapid selection of resis-

tance in some strains, heteroresistance during colistin mono-

therapy, and lower clinical efficacy during colistin-based

combination.121 In addition, rates of cure, 14-day survival,

and microbiological eradication are lower in monotherapy

compared to combination therapy.121 Moreover, several com-

bination therapies have been recommended to decrease the

development of resistance. The combination of colistin with

other drugs, such as carbapenems, sulbactam, tigecycline,

aminoglycosides, and rifampicin, has been recommended to

prevent the development of colistin-resistant strains, which

may improve clinical and microbiological outcomes.121–126

The colistin–sulbactam combination was recommended

against imipenem-resistant A. baumannii, particularly in colis-

tin-resistant strains, due to its high in vitro synergistic

activity,121,127 which may be a more favorable combination.

Colistin-based combinations with tigecycline, aminoglyco-

sides, and rifampicin have shown synergistic activity against

XDR strains,122,125,128 but tigesycline is disadvantageous in

bacteremic patients, because of its low plasma

concentrations.128 In addition, colistin–carbapenem

combinations may be preferable in the treatment of

A. baumannii infections to prevent resistance selection and

to decrease the prevalence of A. baumannii.121

Conclusion
The main target for colistin is lipid A of the LPS in Gram-

negative bacteria, leading to disruption of the bacterial

membrane and resulting in cellular death. In recent dec-

ades, the increasing use of colistin in clinical settings,

mainly in veterinary clinics, has led to the emergence of

colistin resistance. Many studies have shown that the pre-

valence of colistin resistance has increased rapidly among

Enterobacteriaceae. Clinicians should be alert to the

possibility of colistin resistance among MDR bacteria

and the development of colistin resistance through muta-

tion or adaptation mechanisms. Rapidly emerging bacterial

resistance has made it harder for us to rely completelyon

the discovery of new antibiotics; therefore, we need to

have logical approaches to use older antibiotics, such as

colistin.
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