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Abstract

In clear cell renal cell carcinoma (ccRCC), glycolysis is enhanced mainly because of the

increased expression of key enzymes in glycolysis. Hence, the discovery of new

molecular biomarkers for glycolysis may help guide and establish a precise system of

diagnosis and treatment for ccRCC. Expression profiles of 1079 tumor samples of

ccRCC patients (including 311 patients treated with everolimus or nivolumab) were

downloaded from public databases. Proteomic profiles of 232 ccRCC samples were

obtained from Fudan University Shanghai Cancer Center (FUSCC). Biological changes,

tumor microenvironment and prognostic differences were explored between samples

with various glycolysis characteristics. There were significant differences in CD8+

effector T cells, epithelial-to-mesenchymal transition and pan-fibroblast TGFb

between the Low and High glyScore groups. The tumor mutation burden of the Low

glyScore group was lower than that of the High glyScore group. And higher glyScore

was significantly associated with worse overall survival (OS) in 768 ccRCC patients (P

< .0001). External validation in FUSCC cohort also indicated that glyScore was of

strong ability for predicting OS (P < .05). GlyScore may serve as a biomarker for

predicting everolimus response in ccRCC patients due to its significant associations

with progression-free survival (PFS). And glyScore may also predict overall survival in
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patients treated with nivolumab. We calculated the glyScore in ccRCC and the

defined glyScore was of strong ability for predicting OS. In addition, glyScore may

also serve as a biomarker for predicting PFS in patients treated with everolimus and

could predict OS in patients treated with nivolumab.

K E YWORD S

biomarker, clear cell renal cell carcinoma, everolimus, glycolysis, nivolumab, tumor
microenvironment

What's new?

Numerous enzymes and biomarkers involved in the glycolytic process are dysregulated in clear

cell renal cell carcinoma. Here, using public and hospital gene/protein expression profiles, the

authors analysed differences in biological changes, tumour microenvironment, and prognosis

between clear cell renal cell carcinoma samples with various glycolysis characteristics. They

identified a glycolysis signature with a strong ability to predict overall survival. In addition, the

calculated glyScore showed potential as a biomarker for predicting progression-free survival in

patients treated with everolimus and overall survival in patients treated with nivolumab.

1 | INTRODUCTION

Renal cell carcinoma (RCC) is a heterogeneous disease

encompassing different histological subtypes.1 Among the histo-

logic types, clear cell RCC (ccRCC) derived from proximal tubular

epithelium accounts for 70% to 80% of RCCs. Mortality is high for

aggressive ccRCC and up to 30% of patients have been diagnosed

preliminarily with metastatic ccRCC.2-4 Localized ccRCC usually

can be treated by traditional surgical resection or ablation to obtain

satisfactory results.5 However, some patients with aggressive

ccRCC are not suitable for surgery, and chemotherapy or radiother-

apy cannot be used because of the tumor heterogeneity.6 Thus, the

carcinogenic mechanisms of ccRCC, including metabolism or molec-

ular processes, are important considerations.

Research on tumors has a long tradition, covering their occur-

rence, development, aggression and metastasis. About 100 years ago,

Otto Warburg found that cancer cells tended to generate their energy

by fermentation even in aerobic conditions while working on in vitro

biopsies of human tumor samples. The explanation for this observa-

tion is the high glycolysis rate followed by lactic acid fermentation,

even in the presence of abundant oxygen, that cancer cells use to pro-

duce their energy. This was later called the Warburg effect, which has

led to several breakthroughs for various tumor types7 and is the basis

for the diagnostic 18-fluoro-2-deoxyglucose-positron emission

tomography (FDG-PET) scan. An inversely proportional relationship

between FDG uptake and differentiation of cancers manifested in a

disorder of the transition from glycolysis to oxidative phosphorylation

was detected in cancer stem cells.8 The Warburg effect can lead to

various mutations in cancer cells, consequently, tumors with different

proliferation or metastases characteristics appear, which is one of the

primary reasons why the treatment of even the same kind of cancer

can be difficult.9,10 Glycolysis plays a major role in the genesis and

development of cancers, and the intrinsic regulatory mechanisms of

genes and other molecules involved in glycolysis have been the focus

of many recent studies.

The best-known genetic feature of ccRCC is the von Hippel-

Lindau (VHL)/hypoxia-inducible factors (HIF) oxygen-sensing path-

way, in which deletion or mutation of the VHL tumor suppressor gene

leads to the increase and accumulation of hypoxia-inducible factors

(HIFs), thereby activating processes, such as cell proliferation, infiltra-

tion, neovascularization and metastases, ultimately leading to the

development of ccRCC.11 Many enzymes play important roles in

balancing oxidative phosphorylation and glycolysis. In the tricarboxylic

acid (TCA) cycle, fumarate hydratase and succinate dehydrogenase

are necessary for mitochondrial respiration, and mutations in either of

the two genes encoding these enzymes can disrupt the oxidative pro-

cess, which means that affected cells will rely more on glycolysis.12

Besides, mutations in genes encoding AMP-activated protein kinase,

pyruvate dehydrogenase kinase 1, lactate dehydrogenase A and pyru-

vate kinase M2 also alter the metabolism in ccRCC.13,14 Variation of

the gluconeogenesis enzyme fructose-1,6-bisphosphatase was found

to suppress gluconeogenesis and raise the glycolytic flux in RCC

cells.15 Furthermore, polybromo 1 (PBRM1), SET domain containing

2, histone lysine methyltransferase (SETD2), BRCA1-associated pro-

tein (BAP1) and phosphatase and tensin homolog (PTEN) can deter-

mine the remodeling of chromatin structure, accelerating the growth

of ccRCC.16 Thus, understanding the genetic basis of ccRCC, and the

development of a comprehensive system to assess or score ccRCCs

are crucial for the diagnosis, treatment and prognosis of ccRCC.

Bioinformatics provides a huge and convenient platform for

studying the mechanisms of multiple diseases, including enormous

databases, strong analysis tools and assessment methods.17 In this

study, we obtained gene/protein expression profiles of 1311 samples

of ccRCC and made an integrated analysis to explore glycolysis char-

acteristics of ccRCC and identify a potential glycolysis signature to

predict prognosis and drug response.
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2 | MATERIALS AND METHODS

2.1 | Data downloading and normalization

A total of 1311 samples of ccRCC were well enrolled for analysis.

Expression data of 768 ccRCC samples from the Cancer Genome

Atlas (TCGA), European Molecular Biology Laboratory (EMBL),

International Cancer Genome Consortium (ICGC), Clinical Proteo-

mic Tumor Analysis Consortium (CPTAC) were collected. Proteomic

profiles of 232 ccRCC samples were obtained from Fudan Univer-

sity Shanghai Cancer Center (FUSCC). Transcriptomic (RNA-seq)

and clinical data of 311 ccRCC samples from patients treated with

Everolism or nivolumab were obtained from Table S4 appended to

the published paper.18 The expressed values were converted and

standardized for data merging, and the batch effect was removed

for subsequent analysis. Somatic mutation data, transcriptome

data, copy number variation (CNV) data and sample phenotype data

were downloaded from the cancer genome atlas-kidney renal clear

cell carcinoma (TCGA-KIRC) database (https://xenabrowser.net/

datapages/). The somatic mutation data covered 336 samples.

There were two sets of CNV data: one set contained the CNV

results sorted by the Xena Functional Genomics Explorer, which is

specific to whether a CNV is present in a gene; and the other set

was the sample DNAcopy file downloaded from the Genomic Data

Commons Data Portal (https://portal.gdc.cancer.gov/). Set 1 was

used to facilitate grouping later and Set 2 was used to implement

the GISTIC2 analysis. The transcriptome data consisted of one set

of RNA sequencing (RNA-seq) data, labeled TCGA-KIRC, with

607 samples. Expression data were obtained for 602 of the sam-

ples, including 531 tumor samples and 71 normal samples, after

excluding samples without survival information. E-MTAB-3267

expression microarray data, including 53 tumor samples and six

normal samples, were downloaded from EMBL's ArrayExpress data-

base (https://www.ebi.ac.uk/arrayexpress/). The RECA-EU trans-

criptome data were downloaded from the ICGC (https://dcc.icgc.

org/) database, and 91 tumor samples and 45 normal samples were

obtained after excluding samples without survival information.

Transcriptome data for ccRCC samples were obtained from the

CPTAC database (https://cptac-data-portal.georgetown.edu/study-

summary/S050), including 93 tumor samples and 75 normal sam-

ples. The expression levels of the RNA-seq samples were converted

from FPKM (fragments per kilobase of transcript per million

mapped reads) to TPM (transcripts per million), and log2(TPM+ 1)

was taken. The expression levels in the microarray data were

already given as log2, and therefore no processing was required.

These four sets of expression data were combined and the inter-

section of gene expression levels was used for further analyses.

The sva package in R was used to remove the batch effect. We first

merge the dataset by taking the intersection, then, elimination of

batch effect was carried out based on ComBat function in SVA

package and known batch information. Sample IDs of all publicly

available datasets were listed in Table S6.

2.2 | Extraction of glycolysis-related genes and
unsupervised clustering

The REACTOME_GLYCOLYSIS set of 72 genes was downloaded from

the Molecular Signatures Database (MSigDB; (https://www.gsea-

msigdb.org/gsea/msigdb) together with 186 gene sets (Canonical Path-

ways gene sets derived from the KEGG pathway database). Gene sets

of 23 infiltrating cells were downloaded from the previous study.19

Gene sets of biological processes such as angiogenesis, CD8+ effector

T cells, epithelial-to-mesenchymal transition stages (EMT1, EMT2,

EMT3) and pan-fibroblast TGFb were downloaded from the previous

study.20 The expression values of 72 glycolytic genes were extracted

using unscreened TCGA-KIRC expression data, and a boxplot of these

genes was drawn using the ggpubr package in R to show the differ-

ences in gene expression between tumor and normal tissues. The CNV

data for the glycolytic genes were extracted, the frequencies of amplifi-

cation and deletion were counted, and a dot plot was drawn. TCGA-

KIRC samples in MAF format were imported using the maftools pack-

age in R to display the somatic mutation spectrum. A Circos map of the

glycolytic genes was drawn using the RCircos package in R to visualize

the positions of the glycolytic genes on the human reference genome

hg38. A principal component analysis (PCA, Table S5) of the expression

matrix of 72 glycolytic genes was performed using the pca3d package

in R, and a 3D PCA map was drawn. The expression matrix of 72 glyco-

lytic genes was extracted from the combined data using the

ConsensusClusterPlus package in R and saved as the input file for

unsupervised clustering. The parameter settings were: maximum classi-

fication number maxK = 6; repeated sampling reps = 1000; proportion

of selected samples pItem = 0.8; proportion of features pFeature = 1;

clustering algorithm clusterAlg = “PAM”; and distance = “Pearson.”
The output results were integrated, K values were screened and the

classification of each sample was obtained. Clinical data of the samples

were integrated. Survival analysis was performed using the survival

package in R, and a Kaplan-Meier survival curve of glycolysis.cluster

was plotted using the survminer package in R. Log-rank was used as

the statistical test, with P-value <.05 set as the significant survival dif-

ference between groups.

2.3 | Gene set variation analysis

For the different glycolysis.clusters, every two clusters formed a

group. In every intra-group, the expression matrices of all the genes in

the two clusters were extracted and combined with the reference

gene set c2.cp.kegg.v7.1.symbols as the input file for the gene set var-

iation analysis (GSVA) package in R. The enrichment score of each

gene set in each sample was obtained. Then, the limma package in R

was used for gene set difference analysis, and the screening threshold

was set as Benjamini-Hochberg corrected P-value <.05. The top 20 dif-

ferential gene sets were extracted, and the ComplexHeatmap package

in R was used to draw the enrichment score heat map of the differen-

tial gene sets, with grouping and data source labels.
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2.4 | Assessing the proportion and differences of
23 infiltrating immune cells

The expression matrices of all the genes in the combined data and the

gene sets of 23 infiltrating cells were used as the input file for the

GSVA package to carry out single-sample gene set enrichment analy-

sis (ssGSEA); the enrichment score was taken as the content of each

cell. A boxplot was drawn using the ggpubr package, and a log-rank

test was conducted to indicate the differences among the 23 infiltrat-

ing cells in different glycolysis.cluster groups. Differentiated cells were

selected, and the hazard ratio and P-values were obtained by univari-

ate Cox risk regression analysis using the survival package. Forest

plots were obtained using the forestplot package in R to visualize the

prognostic effect of the differentiated cells. Differences in the enrich-

ment scores for the angiogenesis, CD8+ effector T cells, EMT1,

EMT2, EMT3 and pan-fibroblast TGFb processes among the glycoly-

sis.cluster groups also were demonstrated using the methods

described above. Gene sets were replaced and ssGSEA was used to

obtain enrichment scores for each of the six biological processes in

each sample. A boxplot using the ggpubr package, and a log-rank test

were conducted.

2.5 | Construction of glycolysis gene signatures

For different glycolysis clusters, every two clusters formed a group.

The limma package was used to analyze the differential genes, and

the threshold of differential gene screening was log2 (fold

change) = log2 (1.25) and corrected P-value <.05. Finally, several

groups of differentially expressed genes were obtained, and the inter-

section was taken as the final differential gene. The expression matrix

of the above differentially expressed genes was extracted as the input

file, and the ConsensusClusterPlus package was used to identify gly-

colysis gene clusters. Clinical data of the samples were integrated, and

survival analysis of the glycolysis gene clusters was performed using

Kaplan-Meier methods. Univariate Cox risk regression analysis was

performed using the survival package for the detected differential

genes with P-values <.05. For the selected genes, the random forest

model was constructed using the randomForestSRC package in R,

then the important characteristic variables were chosen as the glycol-

ysis gene signatures. The glycolysis score (glyScore) was calculated by

PCA as: glyScore¼P
PC1iþPC2ið Þ, where i is the expression value of

the glycolysis-related gene.

2.6 | Identifying biological changes behind the
glyScore and exploring its potential use in predicting
immunotherapy response

The REACTOME_GLYCOLYSIS gene set and six groups of the top

10 differential gene sets obtained by GSVA were integrated, and

ssGSEA was performed. The enrichment score of the gene sets com-

bined with the glyScore was used to calculate a Pearson correlation

coefficient matrix and P-value. The correlation plot of the upper tri-

angle was plotted using the corrplot package in R; P-values <.01

were considered significant. Colored dots indicate the corresponding

correlation coefficients. Based on the Tumor Immune Dysfunction

and Exclus (TIDE) (http://tide.dfci.harvard.edu/) immunotherapy out-

comes prediction, a 5-year ROC (receiver operating characteristic)

curve was plotted using the survivalROC package in R.

2.7 | A proteomic cohort from FUSCC

We performed genomic and proteomic profiling of 232 paired Chinese

ccRCC samples with the median follow-up time for 85months (range,

3-138months) from FUSCC. Firmiana and the human National Center

for Biotechnology Information (NCBI) RefSeq protein database

(updated on April 7, 2013, 32 015 entries) were used in processing

the Raw files. Mass tolerances were 20 ppm for precursor and 50mmu

for product ions. Up to two missed cleavages were allowed. Precursor

ion score were limited to +2, +3 and +4. A decoy database was also

utilized to search the data so that protein identifications were accepted

at FDR of 1%. A label-free intensity-based absolute quantification

TABLE 1 The basic information of datasets used in our study

Databases Data label Data platform Tumor samples Normal samples Total samples

TCGA TCGA-KIRC RNAseq 531 71 602

EMBL E-MTAB-3267 Affymetrix GeneChip Human

Gene 1.0 ST array

53 6 59

ICGC RECA-EU RNAseq 91 45 136

CPTAC ccRCC RNAseq 93 75 168

CM-025 (CheckMate-025) CM-025 RNAseq 311 0 311

FUSCC FUSCC Proteome 232 232 464

Abbreviations: ccRCC, clear cell renal cell carcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium; EMBL, European Molecular Biology

Laboratory; FUSCC, Fudan University Shanghai Cancer Center; ICGC, International Cancer Genome Consortium; TCGA, the cancer genome atlas; TCGA-

KIRC, the cancer genome atlas-kidney renal clear cell carcinoma.

TIAN ET AL. 69

http://tide.dfci.harvard.edu/


F IGURE 1 The overall display of glycolytic genes using the cancer genome atlas (TCGA) data. (A) Differential expression of 72 glycolytic
genes in unscreened the cancer genome atlas-kidney renal clear cell carcinoma (TCGA-KIRC) tumor tissues and normal tissues. (B) Copy number
variations (CNV) variation frequency of 536 samples of 72 glycolytic genes. (C) The spectrum of TCGA-KIRC somatic mutation. (D) The genomic
locations of 72 glycolytic genes
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(iBAQ) approach was used for calculating the protein quantifications. A

dynamic regression function was built based on common peptides in

tumor/adjacent samples. Based on the correlation value R2, Firmiana

chooses a linear or quadratic function for regression to calculate the

retention time 935 (RT) of corresponding hidden peptides and checks

the existence of the extracting ion current (XIC) based on the m/z and

calculated RT. The peak area values of existing XICs were determined

by the program and were calculated as parts of corresponding proteins.

Proteins with at least one unique peptide with a 1% FDR at the peptide

level were selected for further analysis. The fraction of total (FOT) was

used to represent the normalized abundance of a particular protein

across samples and it was defined as a protein's iBAQ divided by the

total iBAQ of all proteins identified in each sample. FOT values were

multiplied by 105 for ease of presentation and missing values were

assigned 10-5. A total of 16 915 proteins and 11 678 somatic variants

were obtained. Proteome raw datasets are publicly available at the

iProX data portal: https://www.iprox.cn/page/PSV023.html;?url=

1633189560349iEVs, with a password Ygzk. We used median value to

define High and Low glyScore groups. To explore the potential differ-

ences in TME between High and Low glyScore groups, we used immu-

nohistochemistry to estimate the expression level of CD70 (67749-1-Ig,

Proteintech), CD80 (66406-1-Ig, Proteintech), CD86 (91882S; Cell Sig-

naling Technology) and PD-L1 (ab205921; Abcam) according to proce-

dures as previously described.21

F IGURE 2 Unsupervised clustering of glycolytic genes (glycolysis cluster). (A) Glycolytic gene interaction network map, different colors
represented different gene classifications, the size of gene nodes corresponded to the log-rank test P-value of Cox risk regression analysis. The
smaller P-value was, the more significant the prognostic effect was, and the larger the node was. Green dots in the nodes indicated favorable

prognostic factors and black dots indicated risk factors. (B) The consistent clustering diagram. (C) Kaplan-Meier survival curves of glycolysis
cluster. D-F represented top20 differential gene sets of glycolysis-cluster A vs glycolysis-cluster B, glycolysis-cluster A vs glycolysis-cluster C,
glycolysis-cluster B vs glycolysis-cluster C, respectively (based on BH-corrected P-value sequencing). ssGSEA assessed the proportions and
differences of 23 types of cells in different glycolysis clusters. (G) The boxplot showed the difference in the proportions of 23 infiltrating cells in
different glycolysis clusters. (H) In the prognostic forest plot of differential infiltrating cells, each row represented one type of infiltrating cell. The
third column showed the distribution of hazard ratio (HR) at 95% confidence intervals graphically, where the value of the horizontal axis
corresponding to the blue box represented HR
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2.8 | Genomic and clinical data with immune
checkpoint blockade and mTOR inhibitor therapy for
ccRCC

One immunotherapeutic cohort—advanced ccRCC treated with PD-1

blockade and mammalian target of rapamycin (mTOR) inhibition—was

included. We obtained the genomic, transcriptomic and clinical data

from Table S4 appended to the published paper. Then, we tested the

glycolysis signature in the cohort and assessed the associations

between the glyScore and drug response.18

2.9 | Statistical analysis

A comparison between the two groups in the boxplots was conducted

using the Wilcox test, and the Kruskal-Wallis rank-sum test was used

F IGURE 3 The relevance
between different clusters and
clinical features. Gray in the
column indicated missing
comment information of samples
(A). Heat map (B) of
223 differential genes expression.
Gray in the column indicated
missing comment information of
samples. (C) The difference of the
enrichment scores of tumor-
related biological processes in
different glycolysis gene clusters.
Survival analysis of glycolysis gene
cluster and expression of

glycolytic genes in different
glycolysis gene clusters (D).
Enrichment bar chart. The color
difference represented the
number of enriched genes, the
value on the horizontal axis
represented the significant degree
of enrichment, the higher, the
more significant (E). Boxplot
showing the expression of
72 glycolytic genes in different
glycolysis gene clusters (F)
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to compare the multi groups. To visualize the molecular types of the

samples, Sankey diagrams of the glycolysis cluster, glycolysis gene

cluster, glyScore grouping and survival status of 768 tumor samples

were plotted using the ggalluvial package in R. The maftools package

in R was used to visualize the somatic mutation map and CNV peak

figure. To visualize the CNV data, the results of the GISTIC2 analysis

of the sample files were necessary, but because the GISTIC2 results in

TCGA database were not complete, the GISTIC2 analysis was

implemented using the DNAcopy file. The methods and parameter

settings were according to those detailed in the CNV Analysis Pipeline

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_

Pipeline/). The ComplexHeatmap package was used to draw the

enrichment score heat map of the differential gene sets. The Pearson

correlation coefficient of glycolytic genes was calculated, with the P-

value cutoff set as <.00001 and the absolute value of the correlation

coefficient set as >.45. Genes were clustered by consistent clustering,

and the prognostic effects of genes were determined by univariate

Cox risk regression. The results were compiled into a table and impo-

rted into Cytoscape (3.7.2) to generate a gene interaction network

map (Table 1).

F IGURE 4 Calculating the glyScore. (A) The Sankey diagram showed the grouping and molecular typing of 768 samples. Kaplan-Meier
survival curves of glycolysis-score (B). (C) The difference of glyScore among glycolysis clusters. (D) The difference of glyScore among glycolysis
gene clusters. (E) The difference of glyScore among different stages of clear cell renal cell carcinoma (ccRCC). (F) The difference of glyScore
among different grades of ccRCC. (G) The difference of the related biological processes enrichment scores between the glyScore groups.
(H) Expression level of immune checkpoint proteins. (I) Correlation map of glycolysis-score, glycolytic genes (REACTOME_GLYCOLYSIS gene set)
and differential enrichment pathway. The shade of dots represented correlation degree, yellow was a positive correlation, blue was a negative
correlation, and white was irrelevant. The size of the dots indicated the absolute value of the correlation. The larger the absolute value of the
correlation, the larger the dots. Statistical test P-value < .01, and the correlation coefficient that did not pass the statistical test was not shown
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3 | RESULTS

3.1 | Glycolysis pattern of ccRCC (TCGA cohort)

We found that 81% of the glycolytic genes in the TCGA cohort were

differentially expressed between normal and cancer tissues, as shown

in Figure 1A. The CNV frequencies of the glycolytic genes showed

that PFKFB4, SEC13, NUP210, ENO1 and NUP43 had high frequencies

of deletion (14.3%, 13.8%, 13.6%, 5.1% and 3.9%, respectively),

whereas HC3, GNPDA1 and PPP2CA had high frequencies of amplifi-

cation (22.8%, 20.9% and 19.7%, respectively), as shown in Figure 1B.

The mutation frequencies were highest for RANBP2 and NUP205 (3%

and 2%, respectively) (Figure 1C). The overall mutation frequency of the

glycolytic genes was 22.92%, which may indicate broad transcriptional

changes of glycolysis in ccRCC. The positions of the 72 glycolytic genes

in the reference genome hg38 are shown in Figure 1D.

3.2 | Identifying four glycolysis patterns of ccRCC

Correlation analyses indicated close relationships between glycolytic

genes and the glycolytic genes could be divided into three clusters

based on consensus clustering (Figure 2A). Among the glycolytic

genes, 36 genes were positively associated with prognosis and

11 genes were negatively associated with prognosis in 768 ccRCC

patients (Table S1). Based on consensus clustering, 768 ccRCC sam-

ples were divided into four subgroups (glycolysis cluster A, B, C, D)

and there were significant survival differences between the four sub-

groups (Figure 2B,C). The glycolysis cluster C was significantly associ-

ated with better overall survival. The functional enrichment analyses

of the results of the GSVA for glycolysis clusters A, B and C identified

six groups, as shown in Figure 2D-F. These results showed that glycol-

ysis cluster C genes involved in the fatty acid metabolism, beta-

alanine metabolism and limonene and pinene degradation pathways

were significantly highly expressed. Conversely, glycolysis cluster B

genes in these pathways were significantly lowly expressed, and gly-

colysis cluster A genes in these pathways were moderately expressed.

The enrichment results for glycolysis cluster D genes are shown in

Figure S1. The CIBERSORT results (Figure 2G) indicated that, except

for eosinophil, monocyte and Type.17.T.Helper cell in different glycol-

ysis.clusters, there were very significant differences in the contents of

the other 20 infiltrating cells, and most of the infiltrating cells in gly-

colysis cluster B were higher than those of the other three clusters.

For the 20 types of infiltrating cells, the prognostic effect was evalu-

ated. As shown in Figure 2H, immature dendritic cells, mast cells and

neutrophils were favorable prognostic factors of ccRCC, whereas

F IGURE 5 Landscape of High and Low glycolysis-score groups and predictive ability of immune checkpoint blockade (ICB) response of the
glyScore. (A) The spectrum of somatic mutations in the Low glyScore group. (B) The spectrum of somatic mutations in the High glyScore group.
(C) Copy number variations (CNV) peak in the Low glyScore group. (D) CNV peak in the High glyScore group. (E) The difference of TIDE
prediction scores between the glyScore groups. (F) The receiver operating characteristic (ROC) curve for glyScore's 5-year survival. (G) Glycolysis-
related nomogram. (H) Calibration of the nomogram. (I) ROC curves of nomogram, glyScore, stage and grade (prediction time = 5 years)
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Activated CD4 T cells, activated dendritic cells, macrophage, MDSC

and Natural killer T cells were risk prognostic factors.

3.3 | Four glycolysis clusters could be further
simplified into three glycolysis gene clusters

Most of the glycolytic genes in glycolysis Clusters B and D were lowly

expressed, whereas most of the glycolytic genes in glycolysis Clusters

A and C were relatively highly expressed. Glycolytic gene expression

patterns in glycolysis Cluster D were extremely different from those

in the other three groups. The difference analysis between pairs of

different glycolysis clusters identified a total of 223 overlapping dif-

ferentially expressed genes (DEGs) (Figure 3A, Table S2). Based on

the expression pattern of the DEGs, the four glycolysis clusters could

be further simplified into three glycolysis gene clusters (Figure 3B). Con-

sistent clustering of the DEGs identified three glycolysis gene clusters

named gene cluster A, gene cluster B and gene cluster C, which con-

tained 320, 185 and 263 ccRCC samples, respectively (Table S4). The

enrichment scores of Angiogenesis, CD8+ effector T cells, EMT1,

EMT2, EMT3 and pan-fibroblast TGFb were significantly different in dif-

ferent glycolysis gene clusters (Figure 3C). Survival analysis indicated a

very significant survival difference among three of the clusters, and that

gene cluster C had a survival advantage (P-value < .0001), as shown in

Figure 3D. The gene ontology (GO) enrichment results showed that the

DEGs were involved mainly inorganic anion transport and small mole-

cule catabolic process under the biological process category, apical part

of the cell and apical plasma membrane under the cellular component

category, and symporter activity and solute sodium symporter activity

under the molecular function category (Figure 3E, Table S3). Fifty-three

glycolytic genes were significantly differentially expressed among the

glycolysis gene clusters, whereas the other 19 genes, GAPDHS, NDC1,

NUP107, NUP155, NUP205, NUP37, NUP42, NUP62, NUP85, NUP98,

PFKFB2, PFKFB3, PGAM2, PGK2, PKM, PRKACA, PRKACG, TPI1 and TPR,

were not differentially expressed (Figure 3F).

3.4 | Calculating glycolysis score and evaluating its
potential clinical and biological significance

The glycolysis scores (glyScore) of each sample were calculated

(Figure 4A, Table S4). The Kaplan-Meier curves of glyScore showed

that there was a significant survival difference between the High and

Low glyScore groups, and the Low glyScore group had a significant

survival advantage (Figure 4B). Glyscore was significantly higher in

both glycolysis cluster B/glycolysis gene cluster B (Figure 4C,D). And

there is a trend that a higher glyScore may be associated with a higher

tumor grade and tumor stage (Figure 4E,F). And enrichment scores of

F IGURE 6 External validation of the glyScore. (A, B) Survival and receiver operating characteristic (ROC) curves based on glyScore and
nomogram in Fudan University Shanghai Cancer Center (FUSCC) cohort. (C-F) Overall survival and progression-free survival curves based on
glyScore in patients treated with everolimus or nivolumab. (G) Representative immunohistochemistry (IHC) images of immune checkpoint
proteins
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CD8+ effector T cells, EMT1, EMT2 and pan-fibroblast TGFb were

significantly different among the glyScore groups (Figure 4G). We

evaluated the expression level of immune checkpoint proteins and

found that most of the immune checkpoint proteins were upregulated

significantly in High glyScore group, which indicated that High

glyScore may be associated with a suppressive tumor microenviron-

ment (Figure 4H). GSVA results also indicated that glyScore was sig-

nificantly associated with fatty acid metabolism, beta-alanine

metabolism, peroxisome, etc. (Figure 4I). These results indicated that

glyScore may be associated with various clinical characteristics and

biological processes.

3.5 | The landscape of High and Low glyScore
groups and potential predictive capabilities of immune
checkpoint blockade response of glyScore

Tumor mutation burden of the Low glyScore group was lower than

that of the High glyScore group, and the G-score of 5q35 of the Low

glyScore group was higher than that of the High glyScore group

(Figure 5A-D). The TIDE prediction score was significantly higher in

the High glyScore group, which implies that patients in the High

glyScore group may not benefit from immune checkpoint blockade

(ICB) therapy (Figure 5E). The area under the curve (AUC) of the

5-year ROC curve for the glyScore was 0.649 (Figure 5F). To find out

if the glyScore could behave better when it is included in a multi cox

regression model, we enrolled samples with recorded tumor stage and

grade for further analysis. In the revised version of our manuscript, we

integrated the glyScore with tumor stage, grade to construct a

glyScore-associated nomogram as depicted in Figure 5G. The

nomogram-predicted OS is relatively similar with observed OS

(Figure 5H) and the ROC-AUC (prediction time = 5 years) value of

nomogram is highest (Figure 5I, AUC = 0.760). These results indicated

that glyScore could serve as a significant tool in predicting patients'

overall survival.nomogram.

3.6 | GlyScore could predict patients' overall
survival in FUSCC cohort and may be associated with
drug response

In FUSCC cohort, higher glyScore was still significantly associated

with a worse prognosis (Figure 6A) and we further validate the

glyScore-associated nomogram in FUSCC cohort, the ROC-AUC (pre-

diction time = 5 years) value is 0.934 (Figure 6B), which also indicated

the stableness of the nomogram. Thus, external validation indicated

the stableness of the glyScore in predicting prognosis. To explore

more potential clinical significance, we tested the glyScore in two

cohorts containing patients treated with everolimus or nivolumab.

Although no significant correlations between glyScore and overall sur-

vival were observed (Figure 6C), higher glyScore was significantly

associated with worse progression-free survival (PFS) in patients

treated with everolimus (Figure 6D, P < .01). Although no significant

correlations between glyScore and PFS were observed (Figure 6F),

higher glyScore was also significantly associated with worse overall

survival in patients treated with nivolumab (Figure 6E, P < .05). As

depicted in Figure 6G, we further validated the expression level of

immune checkpoint proteins in FUSCC cohort and we found that

CD70, CD80, CD86 and PDL1 were all elevated in High glyScore

group. Our findings proved that higher glyScore may be associated

with suppressive tumor microenvironment.

4 | DISCUSSION

Metabolic deregulation is an important factor in many cancers.22 ccRCC

has been proved to be a complex disease resulted from multiple rea-

sons, the role of metabolism should be taken into account critically, the

components of TME, the energy production, even the immune surveil-

lance of cancers can be altered by the reprogramming of metabolic

pathways.23 Thus, besides the genetic and epigenetic reasons, metabo-

lism especially glycolysis in ccRCC should be paid more attention, after

all the heterogeneity of ccRCC has make troubles for clinicians.

The Warburg effect has been a vital hallmark of various kinds of

tumors, importantly, aerobic glycolysis supports adequate ATP for

cancer cell.24 Numerous enzymes and biomarkers involved in the gly-

colytic process would be dysregulated in ccRCC.25,26 Thus, represen-

tative signatures or effective classification of glycolytic genes would

be valuable for the diagnosis and prognosis of ccRCC.

For years, kinds of classification methods of ccRCC are con-

ducted. Clinicopathologic types of ccRCC are regarded as convenient

and practical, SSIGN (stage, size, grade and necrosis) scoring system

has been once extensively adopted with ccRCC patients that accepted

radical nephrectomy, this prediction model serves for clinicians to

evaluate the possible prognosis according to the tumor characteris-

tics.27 Although this prediction model appears useful for partial

nephrectomy as well,28 it seems not comprehensive merely thinking

about clinical factors. A more precise tool namely ClearCode34 is

based on gene expression signatures, which supplies risk stratification

(good/poor risk, ccA/ccB) for nonmetastatic and metastatic

ccRCC,29,30 it is more beneficial for assessing the risk of recurrence

and death. Compared to above 2 models, Büttner et al23 exploited a

novel risk score called S3-score, meaning the S3 regions of the proxi-

mal tubules in ccRCC tumors, S3-score reflected diverse carcinogenic

pathways relatively to ccA/ccB signature, while combining above

3 scoring systems, S3-score will provide more value of prognosis,

even clinical treatment choice.32

For the glycolysis-related genes (GRGs), Xing et al33 established a

novel model depended on 10 genes, their constructed model is vali-

dated by multiple cohorts and can predict the OS of ccRCC. After ana-

lyzing plentiful datasets, Zhang et al34 focused on the overall

biological pathway, and filtered 13 GRGs for a risk model, of all the

genes can represent relatively different pathways and outcomes for

ccRCC patients. Similarly, Lv et al35 built a 7-mRNA signature for indi-

cating the prognosis, even the reaction of TKI and immune-therapy.

Also, Xu et al36 constructed another glycolysis-related risk signature

76 TIAN ET AL.



from the perspective of tumor microenvironment, they suggested

some crucial genes, CD44, PLOD1, PLOD2, to be the essential

glycolytic risk genes, they put forward an important view that

these glycolysis-related genes were strongly linked to immune

microenvironment of ccRCC.

As we know, tumor immune microenvironment suggests the

communication between tumor cells and surrounding materials,

indicating the occurrence and development of cancer. Based on the

tumor microenvironment, Xu et al37 set immunophenotyping clus-

ters and validated some immune checkpoint molecules for ccRCC,

they found that “hot” or “cold” clusters showed the gene mutations

and clinical characteristics, so predicted the outcomes of ccRCC

patients. Different from this kind of classification, we provided a

more detailed method for classifying glycolysis genes; furthermore,

we set up glyScore for precisely correlating between biological pro-

cess and patients' clinical features and OS of ccRCC. Also, our sys-

tem can indicate the effect of ICB therapy. In response to the

advanced RCC, ICB would be in the first-line therapy,38 from our

scoring system, patients in different glyScore groups can be defined

as high or low response of ICB therapy, so as to apply for more suit-

able treatment.

Our scoring system and prediction model developed an innova-

tive approach to classify the ccRCC in the light of glycolytic genes.

Other than regular clustering analysis, we first took a route to screen

differential genes between tumor and normal tissues, clustering these

genes presented different state of expression in different clusters, the

highlight of our system was the clustering of overlap differential genes

between primary gene.clusters, this further clustering method make

the classification of genes easier to identify, meanwhile, the survival

analysis, screening glycolysis-gene signatures and subsequent calcula-

tion of glycolysis-score were all based on the gene.clusters, this novel

clustering idea exhibited a well-rounded system that can be more clin-

ically relevant.

In summary, metabolic features in ccRCC perform remarkably,

cells, gene identity, TME and immune response are influenced by

various metabolic transformations.39 Aiming to metabolism appears

to indeed effective, whether from the perspective of diagnosis,

treatment, or risk prediction.
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