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AbstrAct
Objective Immunosuppressant therapy plays a pivotal 
role in transplant success and longevity. Tacrolimus, 
a primary immunosuppressive agent, is well known 
to exhibit significant pharmacological interpatient and 
intrapatient variability. This variability necessitates the 
collection of serial trough concentrations to ensure that 
the drug remains within therapeutic range. The objective 
of this study was to build a population pharmacokinetic 
(PK) model and use it to determine the minimum number 
of trough samples needed to guide the prediction of an 
individual’s future concentrations.
Design, setting and patients Retrospective data 
from 48 children who received tacrolimus as inpatients 
at Primary Children’s Hospital in Salt Lake City, Utah were 
included in the study. Data were collected within the first 
6 weeks after heart transplant.
Outcome measures Data analysis used population 
PK modelling techniques in NONMEM. Predictive ability of 
the model was determined using median prediction error 
(MPE, a measure of bias) and median absolute prediction 
error (MAPE, a measure of accuracy). Of the 48 children in 
the study, 30 were used in the model building dataset, and 
18 in the model validation dataset.
results Concentrations ranged between 1.5 and 
37.7 µg/L across all collected data, with only 40% of those 
concentrations falling within the targeted concentration 
range (12 to 16 µg/L). The final population PK model 
contained the impact of age (on volume), creatinine 
clearance (on elimination rate) and fluconazole use (on 
elimination rate) as covariates. Our analysis demonstrated 
that as few as three concentrations could be used to 
predict future concentrations, with negligible bias (MPE 
(95% CI)=0.10% (−2.9% to 3.7%)) and good accuracy 
(MAPE (95% CI)=24.1% (19.7% to 27.7%)).
conclusions The use of PK in dose guidance has the 
potential to provide significant benefits to clinical care, 
including dose optimisation during the early stages of 
therapy, and the potential to limit the need for frequent 
drug monitoring.

IntrODuctIOn
Heart transplantation is an accepted thera-
peutic option for children with congenital 

heart disease and cardiomyopathy. More than 
400 heart transplants are performed annually 
in children across the USA with improving 
outcomes in recent decades, though mortality 
from rejection, infection and coronary vascu-
lopathy remains significant.1 2 Transplant 
survival in excess of 20 years following heart 
transplantation has been observed, with more 
than 70% of transplants expected to achieve 
greater than 5-year survival.2 3 Much of this 
success can be attributed to the use of immu-
nosuppressive therapy to prevent the rejec-
tion of the transplanted cardiac tissue.

The calcineurin inhibitors tacrolimus and 
ciclosporin play a vital role in immunosup-
pressive therapy. Currently, tacrolimus is 
preferred in comparison to ciclosporin, owing 
to its improved safety profile, especially with 
regard to hypertension and dyslipidaemia.4 
However, tacrolimus suffers from extensive 
interpatient and intrapatient pharmaco-
kinetic (PK) variability, which necessitates 
frequent drug monitoring to guide dosing 

What this study hopes to add?

 ► This study identifies age, creatinine clearance and 
fluconazole use as patient-specific factors which 
impact tacrolimus pharmacokinetics.

 ► The pharmacokinetic model demonstrates that 
as few as three concentrations can successfully 
guide the model to predict an individual’s future 
concentrations.
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What is already known on this topic?

 ► Tacrolimus is a primary immunosuppressant agent 
in preventing graft rejection in children receiving 
heart transplant.

 ► Tacrolimus suffers from substantial interpatient and 
intrapatient pharmacological variability.
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strategies. PK of tacrolimus in children has primarily 
been studied in those patients receiving liver or kidney 
transplants.5–13 There are few descriptions of tacrolimus 
PK in heart transplant recipients, especially in children, 
and a population PK model has yet to be described for 
the paediatric population.

The current study has two objectives. First, we aimed to 
develop a population PK model of tacrolimus in paediatric 
heart transplant recipients. In addition to describing PK 
of tacrolimus in the paediatric heart transplant popula-
tion, the population PK model can assess the sources and 
extent of variability associated with tacrolimus concentra-
tions. Second, the number of tacrolimus concentrations 
needed for the model to accurately predict an individu-
al’s future concentrations was assessed. This analysis was 
used to determine if the model could potentially reduce 
the drug monitoring burden in children receiving heart 
transplants.

MethODs
Data collection
Study approval was granted by the University of Utah, 
Intermountain Healthcare and Primary Children’s 
Hospital Institutional Review Board. Data for this study, 
including event times, dose amount, tacrolimus concen-
trations and demographics, were collected retrospec-
tively from the Intermountain Healthcare Enterprise 
Data Warehouse. The study included children receiving 
tacrolimus during an inpatient stay at the Primary Chil-
dren’s Hospital in Salt Lake City, Utah within the first 
6 weeks following heart transplant between the years 
of 2007 to 2015. Furthermore, children meeting these 
criteria must have had at least one dose of tacrolimus 
and one tacrolimus concentration to be incorporated 
into the study. Data collected between 2007 and 2013 
were used for model building, whereas 2014 and 2015 
data were used for model validation. Clinical dosing 
information was verified by scanning a bar code on the 
patient’s bracelet immediately prior to tacrolimus admin-
istration. Tacrolimus was typically administered two times 
per day, either orally or enterally through a nasogastric or 
nasojejunal tube. In addition to tacrolimus, all patients 
received mycophenolate as part of their immunosup-
pressive regimen, and milrinone was used to provide 
cardiac support post-transplant. Concentrations were 
determined from whole blood using a validated liquid 
chromatography–tandem mass spectrometry (LC–MS/
MS) method at ARUP Laboratories. The assay was linear 
between 1 and 40 ng/mL. Sample times were determined 
relative to the first dose of tacrolimus.

PK modelling
PK modelling used NONMEM software (V.7.3; ICON 
Development Solutions) interfaced with PDx-Pop (V.5.0). 
The first-order conditional estimation with interaction 
method was used throughout model building and evalu-
ation. Model selection was based on parsimony, objective 

function value (OFV) and visual diagnostic plots. Models 
were parameterised on the elimination rate constant (k

e
) 

and volume (V
d
), along with the oral absorption rate 

(k
a
) (TRANS1). One (ADVAN2) and two (ADVAN4) 

compartment structural models were evaluated, along 
with additive, proportional and combined (additive and 
proportional) error models, to determine the best base 
model for the data.

After the base model was established, covariates were 
tested in the model using a stepwise forward inclu-
sion (p<0.05)–backward exclusion (p<0.01) regres-
sion method. Covariates were added to the model in a 
stepwise fashion and allowed to remain in the model if 
covariate inclusion decreased the OFV by at least 3.84 
(p<0.05, χ2 df=1), and its exclusion increased the OFV 
by at least 6.63 (p<0.01, χ2 df=1). Categorical covariates, 
including sex, administration type (oral or via feeding 
tube), diet (ad libitum or prescribed diet) and use of 
comedications known to inhibit or induce tacrolimus 
metabolism (fluconazole being one example), were 
tested by fitting model parameters to the following 
equation.

 θ∗pop = θpop ∗∆γ(0 or 1) 

Where θ*
pop

 is the covariate adjusted parameter esti-
mate, θ

pop
 is the population parameter estimate, Δ is the 

parameter estimate change for those with a covariate 
value of 1 and γ refers to the value of the covariate, either 
0 or 1. Postoperative day (POD) was tested in the model 
on k

e
 using an E

max
/EC

50
 model, with and without a Hill 

coefficient.

 ke = kγe, max∗POD
kγe,50+PODγ  

Other continuous covariates, such as weight, age, body 
mass index and creatinine clearance (calculated using 
the bedside Schwartz equation), were population medi-
an-normalised and incorporated into the model using 
the following equation:

 θ∗pop = θm ∗
(

COVi
COVmedian

)γ
 

In this equation, θ*
pop

 is the covariate adjusted param-
eter estimate, θ

m
 is the parameter estimate for an indi-

vidual with the median value of the covariate, COV
i
 is 

the individual covariate value, COV
median

 is the popu-
lation median covariate and γ refers to the exponent. 
Missing data were carried forward or backwards for up 
to 48 hours, as appropriate, beyond which, population 
median values were imputed.

Model validation included a prediction corrected 
visual predictive check and bootstrapping accomplished 
using PsN 4.4.0 ( psn. sourceforge. net) and Pirana 2.9.2 
(http:// pirana- software. com), both using 1000 simu-
lated datasets based on the data collected between 2007 
and 2013. An additional model validation step compared 
data observed in the validation dataset (data collected in 
2014 and 2015) to data simulated from the population in 
that dataset. Data were compared using median predic-
tion error (MPE, a measure of bias) and median absolute 

http://pirana-software.com
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prediction error (MAPE, a measure of accuracy), as 
shown in the following equations:

 PE =
Cpred−Cobs

Cobs
 

 APE =
|Cpred−Cobs|

Cobs
 

Predicting tacrolimus concentrations
The described population PK model structure was used 
to investigate the number of samples required to predict 
an individual’s future tacrolimus concentrations. The 
first step in this analysis was to manipulate the dataset 
such that patient-specific post hoc parameter estimates 
could be determined using only the first observed 
concentration from each patient. This was accomplished 
by changing all but each patient’s first observed concen-
tration to be a missing dependent variable (ie, DV=−1) 
within the dataset used for this analysis. Notably, the first 
observed concentration represents a trough concentra-
tion following the first tacrolimus dose for a majority of 
patients. Next, an event identification (EVID) column 
was added to the dataset. For each row (corresponding 
to a time at which there was a study event, either a 
dose or concentration), the EVID column value was set 
to 0 for the concentrations being used to determine 
the patient-specific post hoc parameter estimates (ie, 
MDV=0), 1 for all dosing events and 2 when the concen-
tration had been set to missing (ie, MDV=1). For all 
rows where EVID=2, NONMEM will generate an indi-
vidual predicted concentration based on the patient’s 
post hoc parameter estimate. This manipulated dataset 
was then analysed in NONMEM, and the output was used 
to compare predicted individual concentrations to the 
actual observed concentrations using MPE and MAPE. 
For the average patient with 13 samples collected over the 
course of the study, the comparison between predicted 
and observed concentrations would use the final 12 
samples (as the first sample had been used to generate 
the individual parameter estimates). This analysis was 
then repeated by sequentially including each patient’s 
next chronological concentration in the model, up to the 
first five observed concentrations for each patient. These 
results were used to determine the minimum number 
of concentrations needed to accurately and precisely 
predict future concentrations. An MPE and MAPE of less 
than 30% was targeted to define the minimum number 
of samples that were necessary to accurately and precisely 
predict future tacrolimus concentrations.

results
study population
Data for model building were obtained from 30 paedi-
atric heart transplant recipients, whereas the model 
validation dataset included 18 children. Individuals in 
the model building dataset were primarily men (n=19), 
Caucasian (n=28), with median (range) age of 5.7 (0.1 to 
17.7) years and weight of 28.9 (7.0 to 77.2) kg. The vali-
dation dataset was evenly split by sex (nine men and 

nine women), largely Caucasian (n=15), with median 
(range) age of 2.0 (0.3 to 18.4) years and weight of 11.2 
(4.9 to 63.0). Median (range) doses were 0.09 (0.02 to 
0.49) and 0.17 (0.03 to 0.69) mg/kg/day for the model 
building and validation datasets, respectively. A total of 
395 samples (on average 13 per patient) were collected 
from patients in the model building cohort, whereas 330 
samples (on average 18 per patient) were collected from 
patients in the model validation cohort. Approximately 
40% of trough concentrations were within the target 
range of 12 to 16 µg/L for both datasets. Additional 
demographic information for the studied population is 
summarised in table 1.

Population PK model
A one-compartment structural model with additive error 
was selected as the base model. A one compartment 
structural model was selected owing to the minimal 
improvement in model fit when a peripheral compart-
ment was added to the model. The additive error model 
was chosen based on model stability. Base model param-
eter estimates are shown in table 2. The k

a
 parameter was 

estimated during base model construction. However, esti-
mation of this parameter resulted in some model insta-
bility, likely because limited absorption phase data were 
available for model building. Therefore, the k

a
 estimated 

from the base model (k
a
=3.43/hour) was fixed to that 

value prior to covariate modelling.
During the forward inclusion step of stepwise covariate 

modelling, creatinine clearance and fluconazole use were 
found to be significantly associated with k

e
, whereas age 

was associated with V
d
 (p<0.0001). Additionally, postoper-

ative day was found to be significantly associated with k
e
; 

however, the inclusion of this covariate caused significant 
model instability and prevented proper model conver-
gence. As a result, this covariate was removed from the 
model and not included in further analyses. Including 
creatinine clearance in the model resulted in the greatest 
improvement in model fit, followed by the impact of age 
and, finally, fluconazole use. Tacrolimus elimination was 
reduced by 34% in those patients coadministered fluco-
nazole compared with those children who did not receive 
fluconazole. All of these relationships were retained 
during the backwards exclusion modelling step. Final 
parameter estimates were as follows, where fluconazole 
use was indicated with FLUC=1 (table 2).

 ke = 0.0408 ∗
(
0.657FLUC) ∗

(
CRCL
122.4

)0.85
 

 Vd = 233 ∗
(

AGE
(
yrs

)
5.7

)0.775
 

Model diagnostic plots demonstrated adequate model 
fit (figure 1A–D). Eta-shrinkage was 16% on k

e
 and 14% 

on V
d
. Visual predictive check (figure 2) and bootstrap-

ping (table 2) supported the model. Additionally, the 
constructed model was validated using data collected in 
2014–2015 that were not available when the model was 
initially constructed. The analysis supported the model 
as having minimal bias (MPE (95% CI): −3.8% (−7.6 to 
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Table 1 Demographic characteristics of the study 
population

Model building 
dataset

Model validation 
dataset

Study period January 2007–
December 2013

January 2014–
December 2015

Subjects 30 18

Sex

  Male 19 9

  Female 11 9

Race

  Caucasian 28 15

  African-American 1 1

  Other 1 2

Fluconazole use

  Yes 15 16

  No 15 2

Age (year)

  Median (range) 5.7 (0.1 to 17.7) 2.0 (0.3 to 18.4)

Weight (kg)

  Median (range) 28.9 (7.0 to 77.2) 11.2 (4.9 to 63.0)

Creatinine clearance 
(mL/min/1.73 m2)

Median (range) 122.4 (15.6 to 
442.2)

104.7 (8.5 to 
224.9)

Transplant 
indications

  Congenital heart 
disease

14 8

  Cardiomyopathy 16 9

  Arrhythmia 0 1

Dose (mg/kg/day)

  Median (range) 0.09 (0.02 to 0.49) 0.17 (0.03 to 0.69)

Concentration (µg/L)

  Median (range) 12.7 (1.5 to 32.7) 13.4 (2.5 to 37.7)

  <12 µg/L 41% 36%

  12 to 16 µg/L 39% 40%

  >16 µg/L 20% 24%

−0.27)) and good accuracy (MAPE (95% CI): 19.4% 
(16.9 to 22.6)) when predicting concentrations from the 
validation dataset. Combined, the model diagnostics and 
validation analysis support the fit of the described model.

Predicting tacrolimus concentrations
The model structure (including covariates) described 
above was used to predict subsequent tacrolimus concen-
trations when between one and five concentrations were 
used to determine individual parameter estimates. MPE 
ranged between −2.1% and 1.9% (table 3), suggesting 
minimal bias in predicted concentrations, regardless of 

the number of concentrations used to guide the model. 
MAPE decreased from 44.0% when one concentra-
tion was used to 24.1% when three concentrations 
were used (table 3). The reduction in MAPE (there-
fore, the improvement in accuracy) from three to five 
(MAPE=21.4%) concentrations was minimal. Given the 
minimal improvement in accuracy and the added time 
burden of collecting those additional samples, three 
concentrations were selected as the minimal number 
required to successfully predict subsequent tacrolimus 
concentrations for an individual.

DIscussIOn
Tacrolimus provides great value to transplant success 
as the mainstay of transplant immunosuppression, but 
extensive interpatient and intrapatient variability compli-
cates its clinical use. The population PK model identifies 
some of the causes of tacrolimus variability in paediatric 
heart transplant recipients, namely patient age, renal 
function and comedications that impact tacrolimus 
metabolism, such as fluconazole. Furthermore, we show 
that the constructed model can be used to successfully 
predict future tacrolimus concentrations when guided 
by as few as three concentrations in an individual, which 
may help reduce the drug monitoring burden in this 
patient population.

The described population PK model was used to esti-
mate mean population parameters describing tacrolimus 
disposition. For a child of median age and creatinine 
clearance, who did not receive fluconazole, mean elim-
ination rate and volume were 0.0408/hour and 233 L, 
respectively. Literature has reported a wide range of 
model structures and parameter estimates for tacro-
limus. One-compartment and two-compartment models 
with and without lag times have been reported for paedi-
atric kidney and liver transplant recipients.5 6 10 13 The 
differences in model structure inhibit the direct compar-
ison of previously determined parameter estimates; 
however, previous reports describe elimination rates 
between 0.0271 and 0.102/hour (half lives between 6.8 
and 25.6 hours), similar to the value observed in this 
study.5 6 10 11 The similarity between the elimination 
rate parameter in our model compared with the rates 
that have previously been reported supports the appro-
priateness of the constructed model. Furthermore, the 
similarity in parameter estimates between our model 
and those models which have been previously published 
supports the potential for applying this model to help 
guide tacrolimus dosing at other institutions and across 
multiple transplant organs.

We determined that concomitant use of fluconazole 
and creatinine clearance significantly impacted the 
elimination of tacrolimus, whereas age was associated 
with volume. The rationale behind the impact of creat-
inine clearance on tacrolimus elimination is unclear, 
as tacrolimus is predominately liver metabolised.14 
However, serum creatinine levels have previously been 
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Table 2 Population pharmacokinetic parameter estimates

Base model Final model
Bootstrap
(977/1000 successful)

Parameters Population mean (%RSE) Median (2.5 to 97.5 percentile)

  Elimination rate (1/hour) 0.0317 (13%) 0.0408 (15%) 0.0411 (0.0318 to 0.0558)

  Volume (L) 216 (22%) 233 (17%) 228 (167 to 312)

  Absorption rate (1/hour) 3.43 (fixed) 3.43 (fixed) 3.43 (fixed)

  Volume: age exponent – 0.775 (13%) 0.780 (0.601 to 1.01)

  Elimination rate: creatinine 
clearance exponent

– 0.850 (24%) 0.842 (0.470 to 1.25)

  Fluconazole elimination rate (1/
hour)

– 0.0268 (5%) 0.0267 (0.0234 to 0.0321)

Between-subject variability

  ω
ke

2 0.219 (51%) 0.262 (40%) 0.256 (0.0858 to 0.590)

  ω
V

2 0.991 (27%) 0.329 (35%) 0.291 (0.0637 to 0.518)

Residual error SD (%RSE)

  Additive (µg/L) 4.24 (14%) 3.69 (13%) 3.65 (3.16 to 4.14)

Figure 1 Diagnostic plots for the final 
model, including (A) observed versus 
population predicted concentrations, 
(B) observed versus individual predicted 
concentrations, (C) conditional 
weighted residuals versus time after 
dose and (D) conditional weighted 
residuals versus population predicted 
concentration. CWRES, conditional 
weighted residual; TAD, time after dose.

associated with tacrolimus clearance in other population 
PK studies,15–17 underscoring the need for future research 
to understand the physiological relevance of this associa-
tion. It has previously been hypothesised that high serum 
creatinine may be a surrogate indicator of a subclinical 
hepatic injury that causes altered renal blood flow15 or 
some other alteration in drug metabolism related to the 
hepatorenal syndrome.16 It is also possible that the impact 
of creatinine clearance in our model could be driven 

by changes in bioavailability caused by renal dysfunc-
tion. Notably, a study in rats found increased tacrolimus 
bioavailability in those animals with cisplatin-induced 
renal failure versus animals with normal renal function.18 
More work is needed to clarify the physiological ratio-
nale behind the relationship between creatinine clear-
ance and tacrolimus elimination and to determine the 
utility of including this covariate when predicting dosing 
requirements in patients.
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Figure 2 Prediction corrected visual predictive check 
showing observed data concentrations (blue circles) and 
percentiles (red dashed lines: fifth and 95th percentile, red 
solid line: 50th percentile) versus time. Shaded area reflects 
the simulated concentrations and the respective 95% CI at 
the fifth and 95th percentile (black dashed line, blue shading) 
and 50th percentile (black solid line, pink shading).

Table 3 Median prediction error (MPE, measure of bias) 
and median absolute prediction error (MAPE, measure of 
accuracy) when between one and five concentrations were 
used to guide predicted concentrations

Concentrations MPE (95% CI) MAPE (95% CI)

1 −0.40 (−8.3 to 0.00) 44.0 (39.6 to 50.0)

2 −2.1 (−6.7 to 0.80) 31.3 (27.4 to 36.5)

3 0.10 (−2.9 to  3.7) 24.1 (19.7 to 27.7)

4 1.9 (−2.7 to 5.7) 21.7 (19.2 to 24.2)

5 1.8 (−1.4 to 6.3) 21.4 (17.5 to 23.7)

The interaction between fluconazole and tacrolimus has 
previously been noted in liver and kidney transplant recipi-
ents. Fluconazole use was associated with a 34% decrease in 
tacrolimus elimination in our population, which is similar 
to a previous report of a 35% reduction in clearance in an 
adult liver transplant population.19 Another report suggests 
the need for a 40% decrease in tacrolimus dosing to main-
tain the attainment of target tacrolimus concentrations in 
adult renal transplant patients who were coadministered 
fluconazole.20 Interestingly, a study in paediatric liver trans-
plant recipients proposed that fluconazole reduces tacro-
limus elimination and that the magnitude of the reduction 
was dependent on the donor’s CYP3A5 genotype.12 Specif-
ically, the authors of this study found that fluconazole 
reduced the hepatic clearance of tacrolimus by 30% when 
the donor liver expressed CYP3A5 (ie, *1/*1 or *1/*3), and 
60% when the donor liver did not express this genotype 

(ie, *3/*3). Unfortunately, our data did not allow the anal-
ysis of the impact of CYP3A5 expression on the interaction 
between fluconazole and tacrolimus; therefore, future work 
considering the impact of this genotype when the donated 
organ is not the organ responsible for drug metabolism (ie, 
in heart transplantation) is required.

When guided by as few as three concentrations, the 
constructed population PK model successfully predicted 
an individual’s future tacrolimus concentrations with 
negligible bias and acceptable accuracy. The data used in 
our study represents drug monitoring every 12 hours (ie, 
trough concentrations) as is customary at our institution 
immediately after transplant surgery. While guiding the 
predictions with more than three concentrations improved 
the accuracy of the predictions, the improvements were 
small. As an example, to improve prediction accuracy by 
2.4% (from an MAPE of 24.1% (3 concentrations) to 21.7% 
(4 concentrations)) would require an additional 12 hours 
of unoptimised care given the current standard practice. 
The minimal increase in accuracy was deemed to be insuf-
ficient compared with risk of providing unoptimised care. 
While the use of three concentrations to guide tacrolimus 
dosing must be validated clinically, these results exemplify 
the potential for and great benefits of providing care that is 
optimised and directed for an individual patient.

Previous literature has described the use of population 
PK models for Bayesian forecasting of tacrolimus concen-
trations, similar to our analysis. While most of these studies 
were conducted in adult kidney transplant recipients,21–29 
a few studied paediatric transplant recipients.9 30–32 
Across all populations, MPE (bias) ranged between 
−15% and 10%, whereas MAPE (accuracy) ranged from 
0.8% to 40%.9 21–32 The MPE and MAPE determined in 
our current study compare well with these previously 
published studies. Notably, while other studies achieved 
high accuracy and low bias with frequent sampling imme-
diately after dosing, our prediction demonstrated negli-
gible bias and acceptable accuracy despite primarily using 
trough concentration data. We therefore anticipate that 
refining our model with more robust concentration data 
collected from a prospective clinical study may improve 
the prediction accuracy generated by our model.

Our data demonstrated that ~60% of observed concen-
trations in our study were outside of the target therapeutic 
range (12–16 µg/L). A majority of these concentrations 
were below the therapeutic target, suggesting the poten-
tial for increased risk of graft rejection, with the imme-
diate post-transplant period known to be one of the 
highest risk periods.2 This finding underscores the need 
for individualised tacrolimus dosing guidance to get each 
patient into therapeutic range as quickly as possible. 
Though it is anticipated that clinicians would suggest a 
dose increase when a trough concentration <12 µg/L is 
observed, this was found to be the case only 55% of the 
time at our institution.33 Furthermore, the uncertainty 
in prescribing the correct dose modification could be 
avoided by using individualised dosing guidance based 
on a population PK model.
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While our analysis offers many strengths, there are some 
limitations. First, our study used retrospective clinical data 
largely consisting of trough concentrations. As a result, we 
did not have sufficient data to stably estimate the rate of 
absorption. Additionally, the lack of non-trough data likely 
explains the overpredictions in the population predicted 
versus observed concentration diagnostic plots. However, 
our parameter estimates agreed well with previous literature 
reports, and the subsequent analyses successfully demon-
strated the model’s ability to predict future concentrations. 
Therefore, while additional data allowing the estimation 
of the absorption rate might improve the predictive ability 
of the model, the absence of that data has not significantly 
impacted the current clinically driven analysis. Addition-
ally, owing to the retrospective nature of the data collected, 
we were unable to assess if more frequent sampling could 
be used to improve prediction accuracy while decreasing 
the time prior to optimising an individual’s dose. At the 
same time, the tolerability of frequent sampling in paedi-
atric heart transplant recipients is unknown. As a result, 
we feel that our analysis describes a more realistic clinical 
scenario and is therefore applicable to clinical practice. 
Owing to the clinical, retrospective nature of the collected 
data, we do not have CYP3A5 genotype data for the studied 
patients. CYP3A5 genotype has been previously described 
to impact dosing in children receiving heart transplants.34 35 
A future prospective study is needed to assess the potential 
for improving the model’s predictive ability when CYP3A5 
genotype is incorporated. Finally, the collected data was 
limited to inpatients within the first 6 weeks following trans-
plant in order to reduce variability due to non-adherence 
or misreported dose times that may occur in the outpatient 
setting. More work is needed to evaluate the utility of this 
approach in the outpatient setting where adherence to 
prescribed dose and timing of immunosuppression may be 
more variable, as well as validating this current model in a 
more heterogeneous population.

In conclusion, we constructed a population PK model 
that describes tacrolimus concentrations in paediatric 
patients receiving heart transplant. The model demon-
strated success in predicting future concentrations in 
this population based on patient-specific characteristics 
(including age, renal function and fluconazole, a comed-
ication known to affect tacrolimus metabolism), though 
that success needs to be replicated with a prospective trial 
to demonstrate its clinical utility. If successful, this approach 
could greatly benefit the clinical use of tacrolimus by 
enabling patients to achieve their target therapeutic range 
quickly and accurately. Maintaining a patient within target 
therapeutic range is expected to positively influence the 
rates of rejection and infection that directly impact graft 
and patient survival. This approach also has the potential to 
minimise the frequency of drug monitoring in this patient 
population. Delivering optimal, PK-guided, individualised 
directed care can provide significant and meaningful posi-
tive effects on the post-transplant lives of children receiving 
heart transplant.
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