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Abstract: Antimicrobial resistant bacteria are an increasing concern due to the resulting 

increase in morbidity, mortality, and health-care costs associated with the administration of 

inadequate or delayed antimicrobial therapy. The implications of inadequate antimicrobial 

therapy in complicated skin and skin structure infections (cSSSIs) have gained more attention 

recently, most likely due to the recent emergence of community-acquired methicillin resistant 

Staphylococcus aureus (MRSA) and the already high prevalence of MRSA in the nosocomial 

setting. Due to the continuous threat of resistance arising and the limitations of currently 

available agents for the treatment of cSSSIs, it is necessary to develop new antimicrobials for 

this indication. Ceftobiprole medocaril, the prodrug of ceftobiprole, is a parental investigational 

cephalosporin for the treatment of cSSSIs displaying a wide-spectrum of activity against both 

Gram-positive and Gram-negative species, including MRSA. Ceftobiprole displays noncom-

plex linear pharmacokinetics, is eliminated primarily by glomerular filtration, and distributes 

to extracellular fluid. Additionally, it has been shown that the extent of distribution to the site 

of action with regard to cSSSIs, ie, the extracellular space fluid of subcutaneous adipose tissue 

and skeletal muscle, is expected to be efficacious, as free concentrations meet efficacy targets 

for most pathogens. Similar to other beta-lactams, it displays an excellent safety and tolerability 

profile with the primary adverse events being dysgeusia in healthy volunteers, resulting from the 

conversion of the prodrug to the active, and nausea in patients. Ceftobiprole has demonstrated 

noninferiority in two large-scale pivotal studies comparing it to vancomycin, clinical cure rates 

93.3% vs 93.5%, respectively, or vancomycin plus ceftazidime, clinical cure rates 90.5% vs 

90.2%, respectively. Given the pharmacokinetic and pharmacodynamic properties, ceftobiprole 

is a promising new agent for the treatment of cSSSIs and has the potential to be used as a single 

agent for empiric treatment.

Keywords: cSSSIs, resistance, MRSA, cephalosporins

Introduction
Antimicrobial resistant bacteria are an increasing concern due to the resulting increase 

in morbidity, mortality, and health-care costs associated with the administration of 

inadequate or delayed antimicrobial therapy.1–9 Proper guidelines should be followed 

to efficiently manage skin and skin structure infections and avoid the over usage of 

available antibiotics, which could possibly facilitate resistance development. The 

management of skin and skin structure infections is dependent on several factors. 

One factor is whether the infection is complicated or uncomplicated, as this dictates 

the need for antibiotics. Complicated infections are defined as infections involving 

deep soft tissues and usually require antimicrobial therapy and possibly surgical 
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intervention. Infections occurring in patients with signifi-

cant comorbidities, eg, diabetes or eczema, or in certain 

anatomical locations, eg, perianal, may also be considered 

complicated.10–13 Uncomplicated infections, however, are 

more superficial and less serious, eg, impetigo, cellulitis, 

and folliculitis.10,12,13 Typically, uncomplicated skin and soft 

tissue infections are effectively managed with incision and 

drainage.14,15 The management of complicated infections is 

more complex and it is recommend that in addition to pos-

sible incision and drainage, the following be performed in 

order to optimize antimicrobial therapy; a detailed history, 

examination of the lesions as part of a physical exam, and 

administration of empiric antimicrobial therapy with adjust-

ment after microbiological identification of the pathogen(s).16 

These guidelines attempt to provide as much information 

as possible to health care providers so that optimal therapy 

can be started and treatment may be adjusted as additional 

information becomes available.

The selection of an empiric antibiotic with activity 

against the causative pathogen(s) is nevertheless, difficult 

due to resistance and the wide-range of possible pathogens. 

For example, Staphylococcus aureus and Pseudomonas 

aeruginosa respectively, account for approximately 45% and 

11% of skin and soft tissue infections in North America.17 

Despite these difficulties, selection of an appropriate antibiotic 

in a timely fashion is imperative due to the negative outcomes 

associated with inadequate antimicrobial therapy (IAT). The 

impact of IAT has been extensively studied in pneumonia 

and bloodstream infections due to the more severe clinical 

outcomes associated with these infections, ie, higher mortal-

ity rates.18 While there are some previous data that suggest 

that IAT results in negative outcomes in skin and soft tissue 

infections,7 the implications of IAT in complicated skin and 

skin structure infections (cSSSIs), including surgical site 

infections, have gained more attention recently.3,4,8

The high prevalence of methicillin resistant S. aureus 

in the nosocomial setting, or hospital-acquired MRSA 

(HA-MRSA), and the emergence of community-acquired 

methicillin-resistant S. aureus (CA-MRSA)19–21 is certainly 

a cause for concern and numerous studies have been con-

ducted to evaluate the impact of CA-MRSA in particular. 

Studies have examined whether or not there has been a 

correlation between physician visits and the emergence 

of CA-MRSA. The literature on the effect of CA-MRSA 

on overall ambulatory visits is controversial and therefore 

difficult to interpret. However, numerous studies do in fact 

show a correlation between the emergence of CA-MRSA 

and an increase in emergency department visits and/or visit 

rates due to skin and soft tissue infections.22–24 Subsequently, 

there may also be an increase in prescriptions for antibiotics 

with activity against CA-MRSA.22,25 However, this literature 

is also controversial.23,24 Despite contradictory reports, it can 

be definitively stated that with the emergence and prevalence 

of resistant species, particularly resistance in Staphylococcus 

species (Figure 1),12 and the negative impacts of IAT, there is 

a need to develop new antimicrobial therapeutic options.

Antimicrobial therapies  
for the treatment of cSSSIs
When selecting empiric therapeutic options for the treatment 

of cSSSIs, it is necessary to consider regional resistance 

patterns to make an appropriate treatment recommendation. 

It has been recommended that for patients with skin and 

soft tissue infections (SSTIs) in regions where CA-MRSA 

prevalence is greater than 10%–15%, alternatives to the 

commonly prescribed beta-lactams should be used.25,26 

Additionally, it has been suggested that due to resistance, 

ciprofloxacin, levofloxacin, and clindamycin, are no longer 

viable empirical treatment options.27 Vancomycin has long 

been the standard empirical therapy for patients with serious 

cSSSIs, as it displays good activity against MRSA and other 

Gram-positive organisms commonly implicated in these infec-

tions. However, resistance to vancomycin is seen in Entero­

coccus species, .10%,17,28 and in a few case reports with 

S. aureus.29–31 In view of the problem of resistance, several 

new therapeutic options have been recently developed. How-

ever, many of these new treatments have serious limitations 
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Figure 1 Trends in resistance among Gram-positive pathogens (1975–2004). MRSE: 
methicillin-resistant S. epidermidis. VRE: vancomycin-resistant Enterococcus. VISA: 
vancomycin-intermediate S. aureus. VRSA: vancomycin-resistant S. aureus. Reprinted with 
permission from Lee SY, Kuti JL, Nicolau DP. Antimicrobial management of complicated 
skin and skin structure infections in the era of emerging resistance. Surg Infect (Larchmt). 
2005;6:283–295.12 Copyright © 2005 Mary Ann Liebert, Inc. publishers.
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including a narrow activity profile, eg, Gram-positive organ-

isms only, and/or serious side effects.

Quinupristin–dalfopristin has been approved for the 

treatment of bacteremia due to vancomycin-resistant 

Enterococcus faecium and cSSSIs due to methicillin-

susceptible S. aureus  (MSSA) and Streptococcus 

pyogenes.32 However, it is not active against vancomycin-

resistant Enterococcus faecalis.32 Additionally, it is not 

indicated in infections against MRSA, although it has 

been suggested to be an acceptable treatment option33,34 

and displays an in vitro MIC
90

 # 1 mg/L.35–37 Finally, 

quinupristin–dalfopristin also bears a significant prob-

ability of myalgia as a side effect and requires a cen-

tral venous catheter for administration, which limits 

its use.34,38 Linezolid is another available agent for the 

treatment of Gram-positive infections, including MRSA. 

Like vancomycin, resistance to linezolid has occurred 

but is rare.39 A more detrimental limitation for selection 

of this agent is the cost; $1,677 for a 10-day treatment 

regimen.27 Additionally, this option does not have an 

optimal adverse event profile as a considerable frequency 

of serious adverse events is observed, eg, thrombocy-

topenia, peripheral neuropathy, and lactic acidosis.40 

Daptomycin has also been proven efficacious in cSSSIs 

but, like other previously mentioned agents, is not active 

against Gram-negative organisms.41 Myopathy may result 

due to treatment with daptomycin42 and, subsequently, 

alternative treatments may be better options in patients 

concomitantly on statins.27 Tigecycline is approved for the 

treatment of cSSSIs and has a wide-spectrum of activity 

including many resistant Gram-positive and Gram-nega-

tive pathogens, with the exception of P. aeruginosa.43–45 

Trials comparing tigecycline to vancomycin-aztreonam 

in patients with cSSSIs revealed that tigecycline has a 

significantly higher incidence of gastrointestinal events, 

including nausea and vomiting.46 However, most events 

were mild to moderate and did not lead to discontinua-

tion of therapy. Tigecycline is contraindicated in children 

and pregnant women as it has a tendency to accumulate 

in bone47,48 and cause bone and teeth discoloration.49 

The above examples describe some available treatment 

options for cSSSIs. To describe the pharmacokinetic and 

pharmacodynamic profile of each in full and evaluate the 

numerous additional therapeutic options, is beyond the 

scope of this paper and the reader is referred to several 

reviews.11,12,16,27,38,50,51

In view of the above examples, it is evident that there is a 

need to develop new antimicrobials for the treatment of cSSSIs 

which have activity against resistant Gram-positive and Gram-

negative species with acceptable safety and tolerability. One 

promising new treatment option is ceftobiprole, a parental 

cephalosporin antibiotic with a wide-spectrum of activity 

including several resistant species such as MRSA. This com-

pound has finished phase III trials for the indication cSSSIs 

but has not yet been FDA approved. This paper reviews the 

pharmacokinetic/pharmacodynamic (PK/PD) profile of cefto-

biprole with respect to its potential role in cSSSIs.

Ceftobiprole pharmacokinetics
Plasma concentrations
Ceftobiprole is available only as a parental agent and 

is delivered as the water-soluble prodrug ceftobiprole 

medocaril. It is supplied in single use vials as lyophilized 

powder corresponding to 500 mg of ceftobiprole, 666.6 

mg of the prodrug, and is reconstituted in water or 5% 

dextrose for injection. After reconstitution it is further 

diluted in 0.9% sodium chloride, 5% dextrose, or Lactated 

Ringer’s solution for infusion. The stability and recom-

mended storage conditions of ceftobiprole in each of these 

solutions varies and should be referenced.52 Once infused, 

the prodrug is converted to the active within seconds by 

type A esterases.53 The protein binding of ceftobiprole 

has been cited as 16%–38%.53–55 Dose proportionality is 

displayed as clearance, volume of distribution, and dose 

normalized AUC and C
max

 are consistent in doses rang-

ing from 125–1000 mg.55,56 The currently recommended 

empirical dosing regimen of ceftobiprole for the treatment 

of cSSSIs is 500 mg every 8 hours as a 2-hour i.v. infusion 

for 7–14 days. In patients without diabetic foot infection 

and where gram-positive pathogens only have been docu-

mented, the recommended treatment regimen is 500 mg 

every 12 hours as a 1-hour i.v. infusion for 7–14 days.52 

Following empirical dosing, the C
max

 is 33.0 mg/L and 

the AUC
0-tau

 is 102 mg*hr/L.52,53,57 After a single 500 mg 

dose as a 1-hour infusion, the C
max

 is 34.2 mg/L and the 

AUC
0–∞ is 116 mg*hr/L.53 In a multiple dose study the 

accumulation of ceftobiprole was found to be negligible 

with a 12-hour dosing interval.55 Similarly, no significant 

accumulation occurs during an 8-hour dosing interval.52 

The pharmacokinetics in patients with cSSSI were similar 

to healthy volunteers as after dosing 750 mg every 12 hours 

the AUC
0–∞ was 143 mg*hr/L compared to 165 mg*hr/L, 

respectively.53 In this study the half-life was somewhat lower 

in patients, 3.06 hours, compared to in healthy volunteers, 

4.11 hours.53,58 However, in a separate study in healthy 

volunteers, half-life was reported as 2.61 hours.54 It was 
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also found that gender does not affect systemic exposure of 

ceftobiprole if normalized for body weight.53

Volume of distribution/tissue distribution
Ceftobiprole is similar to other beta-lactams in that it 

distributes primarily to extracellular fluid. The volume of 

distribution of ceftobiprole is approximately 18L, reported 

range of V
ss
 11L to 21.7L.56 Therefore, it would be assumed 

that ceftobiprole reaches the site of action to a significant 

degree, as most bacterial pathogens reside in the extracel-

lular space fluid. To more accurately determine ceftobiprole’s 

concentration at the site of action, a microdialysis study was 

conducted. In this study, concentrations were measured in 

subcutaneous soft tissues, ie, adipose tissue and skeletal mus-

cle. Concentrations in these tissues are particularly important 

to define the PK/PD relationship with regard to cSSSIs. It 

was found that the AUC ratios of free tissue/free plasma were 

0.69 and 0.49 for skeletal muscle and s.c. adipose tissue, 

respectively, demonstrating that ceftobiprole has the ability to 

penetrate into these tissues54 (Figure 2). Additionally, a study 

using radiolabeled ceftobiprole was conducted in mice and 

rats to determine the tissue distribution. It was shown that 

ceftobiprole distributed rapidly into tissues with the highest 

tissue/plasma ratio occurring in the kidney, 1:3, and did not 

penetrate into the brain, tissue/plasma ratio 0:01.52 However, 

the results from radiolabelled studies should be interpreted 

cautiously as only free drug at the site of action is active 

and this technique fails to differentiate between central and 

peripheral compartments.

Clearance
Ceftobiprole is primarily eliminated by glomerular filtration 

as clearance, range 4.46–5.99L/hr,56 is highly correlated 

to creatinine clearance53 and approximately equal to the 

glomerular filtration rate multiplied by the unbound frac-

tion of ceftobiprole. The recovery of unchanged drug in 

the urine was measured in a single ascending dose study, 

dose range 125–1000 mg delivered as 0.5-hour infusions. 

It was determined that 62% to 78% of unchanged drug is 

recovered in urine of healthy volunteers over 24 hours.55 

After administration of ceftobiprole, 500 mg 2hr infusion 

q8hr, in healthy volunteers, $83% of the drug was found 

unchanged in the urine, while the primary metabolite, ie, 

the open-ring metabolite, represented ,7%.57 Ceftobiprole 

is not thought to be eliminated by active tubular secretion 

as demonstrated by a probenecid study or metabolism as 

preclinical and in vitro experiments showed no potential for 

CYP interactions.53 A dosing adjustment is recommended in 

patients with impaired renal function. Patients with a crea-

tinine clearance (Cl
cr
) of 30  50 mL/min should have the 

dosing interval adjusted to every 12 hours. In patients with 

a Cl
cr
 , 30 mL/min, the dosing regimen should be 250 mg 

every 12 hours as a 2 hour i.v. infusion.52

Population pharmacokinetics
Several population PK models have been developed for 

ceftobiprole. Many of these models were developed for use 

in Monte Carlo simulations to aid in selection of the optimal 

dosing regimen. Additionally, these models allow identifica-

tion of significant covariates and show how these covariates 

affect the pharmacokinetics and, subsequently, safety and 

efficacy. In terms of resistance development, theses models 

can be used to predict the target attainment rate as susceptibil-

ity changes, eg, at increased MICs. Phase I data was fit to a 

two-compartment model to perform Monte Carlo simulations 

and identify an appropriate dosing regimen for phase II.59 

Data from phase I and II studies were used to develop a three-

compartment model with first-order elimination from the 

central compartment.60 In this model, a hydrolysis compart-

ment was included as the prodrug was infused at a constant 

rate into this compartment and then hydrolyzed to the active 

compound. The active drug entered the central compartment 

via a first-order process. The clearance was dependent on 

the creatinine clearance in this model. Later the predicted 

distribution of renal function was used to calculate the target 

attainment rate and determine the appropriate dosing regi-

men in patients with various degrees of renal function. Data 

from phase I, II, and III studies were modeled using a three 

Figure 2 Mean ceftobiprole concentration in plasma (circles), free plasma (dashed line), 
skeletal muscle (squares), and s.c. adipose tissue (triangles) over 12 h. Reprinted with 
permission from Barbour A, Schmidt S, Sabarinath SN, et  al. Soft-tissue penetration 
of ceftobiprole in healthy volunteers determined by in vivo microdialysis. Antimicrob 
Agents Chemother. 2009;53:2773–2776.54 Copyright © 2009 American Society for 
Microbiology.
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compartment model which included a central compartment 

and deep and shallow peripheral compartments. In this model, 

sex, body weight, creatinine clearance, and health status were 

identified as covariates.61 Finally, epithelial lining fluid (ELF) 

concentrations from healthy volunteers were used to develop 

a four-compartment model where ELF represented a separate 

compartment.62 This model was more directed at identifying 

the target concentration at the site of action, ie, ELF, for the 

indication of nosocomial pneumonia. The application of these 

models will be discussed in a later section.

Adverse events
In pivotal phase III trials, ceftobiprole had a safety and toler-

ability profile similar to competitors. In a study comparing 

ceftobiprole to vancomycin plus ceftazidime, 56% of patients 

in the ceftobiprole arm and 57% of patients in the comparator 

arm, experienced at least one adverse event (AE).63 Similarly, 

7% of patients in the ceftobiprole arm and 9% in the competitor 

arm had at least one serious AE. Four percent of patients from 

both arms had to discontinue treatment due to an AE. In a study 

comparing ceftobiprole to vancomycin, only 52% of patients 

in the ceftobiprole arm had at least one AE, compared to 

51% in the vancomycin arm.64 Four percent of patients in the 

ceftobiprole arm and 6% in the vancomycin arm discontinued 

treatment due to an AE. Six percent of subjects in either arm 

experienced an AE. Interestingly, dysgeusia was a common 

AE in the comparator trial with vancomycin and in trials with 

healthy volunteers but was not listed in the vancomycin plus 

ceftazidime trial. The most common AEs for ceftobiprole 

from single and multiple dose studies in healthy volunteers 

and comparator studies in patients are nausea, headache, 

dysgeusia, vomiting, diarrhea, constipation, hypersensitivity, 

and infusion site reaction. Dysgeusia is directly related to 

ceftobiprole dosing and is thought to be due to the conver-

sion of ceftobiprole medocaril to the active, ceftobiprole, and 

diacetyl, which is known to produce a caramel-like odor.53,55,65 

The most common AEs in healthy volunteers and patients with 

cSSSIs are summarized in Table 1.55,63,64,66

Ceftobiprole pharmacodynamics
In vitro
Ceftobiprole, like other beta-lactams, binds to penicillin 

binding proteins (PBPs) and inhibits cell-wall synthesis. It 

has a wide-range of activity against gram-positive patho-

gens, including MRSA, and a pharmacodynamic profile 

similar to cefepime and ceftazidime against Gram-negative 

pathogens.67 The in vitro activity of ceftobiprole against 

isolates collected from cSSSIs during the phase III pivotal 

studies is presented in Table 2.68 One feature of ceftobiprole 

that makes it a more attractive therapeutic option over many 

other antibiotics is its activity against several resistant spe-

cies including MRSA. Ceftobiprole’s activity against MRSA 

is due to its strong affinity for PBP2a (PBP2’), the major 

cause of resistance to other beta-lactams.69,70 Additionally, 

ceftobiprole has been determined to be primarily bactericidal 

from in vitro time-kill studies71 and by demonstrating MBC/

MIC ratios of ,4 for a large majority of tested isolates.72 

Ceftobiprole, however, shows poor affinity for PBP5 and is 

therefore not active against E. faecium.70 Also, ceftobiprole 

is susceptible to some beta-lactamases which explains the 

wide range of MICs for P. aeruginosa, Klebsiella pneumo­
Table 1 Most common adverse events (AEs) in healthy volunteers 
and patients.55,63,64,66

Healthy volunteers Patients

Total No. of subjects 42 932
Total No. of subjects  
with at least one AE

21 507

Total No. of subjects with  
at least one serious AE

0 63

Dysgeusia 17 30
Nausea 10 113
Headache 10 68
Abdominal pain 2 *
Vomiting 1 61
Diarrhea 1 62
Constipation 0 33
Hypersensitivitya 0 49
Infusion-site reaction 1 48
aIncluding rash and pruritus.
Reprinted with permission from Barbour A, Schmidt S, Rand KH, Derendorf H. 
Ceftobiprole: a novel cephalosporin with activity against Gram-positive and Gram-
negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int 
J Antimicrob Agents. 2009;34:1–7.56 Copyright © 2009 Elsevier.

Table 2 In vitro susceptibility determined from isolates collected 
from cSSSIs from phase III trials with ceftobiprole68

MIC90 (mg/L) MIC range (mg/L)

MSSA 0.5 0.12–1
MRSA 2 0.25–4
Pseudomonas aeruginosa* .64 0.25–.64
Enterococcus faecalis 0.5 0.12–0.5
Enterococcus faecium# # 2–.64
Escherichia coli 0.12 0.015–.64
Enterobacter cloacae .64 0.03–.64
Klebsiella pneumonia 32 0.03–.64
Streptococcus pyogenes 0.015 0.008–0.25
Streptococcus agalactiae 0.12 0.015–0.12
CoNS methicillin susceptible 0.5 0.015–1
CoNS methicillin-resistant 2 0.06–4
Proteus mirabilis 0.12 0.015–.64
*Pseudomonas aeruginosa ceftazidime-susceptible MIC90-16.70 #Three isolates collected.
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nia, and Escherichia coli. For example, 38.7% of P. aerugi­

nosa are inhibited at an MIC # 1 mg/L, while 85.2% are 

inhibited at an MIC # 8 mg/L.73 Ceftobiprole is resistant to 

hydrolysis by the TEM-1 and SHV-1 beta-lactamases, simi-

lar to the competitors cefepime and ceftazidime. However, 

it is susceptible to hydrolysis by P. aeruginosa displaying 

high expression of AmpC beta-lactamases or the VIM-2 

carbapenemase and E. coli expressing KPC-2 carbapen-

emase or the CTX-M-15 extended-spectrum beta-lactamase 

(ESBL).74 The MIC
90

 against Klebsiella species and E. coli for 

ceftobiprole was .8 mg/L, while the MIC
90

 of the carbapen-

ems ertapenem, imipenem, and meropenem were #0.5 mg/L 

in isolates confirmed as ESBL producing.73

The post-antibiotic effect (PAE), is a pharmacodynamic 

measurement that determines if there is any residual effect 

once the antimicrobial agent has been removed from the system 

after exposure to suprainhibitory antimicrobial concentrations. 

For ceftobiprole, PAEs for S. pneumoniae, S. aureus, and E. 

faecalis were 1.4–3.1 hours, 0–1.7 hours, and 0–0.9 hours, 

respectively.75 Perhaps a more useful in vitro pharmacodynamic 

measurement is the post-antibiotic sub-MIC effect (PA-SME) 

as it measures the effect of subinhibitory concentrations after 

initial exposure to suprainhibitory concentrations. This situa-

tion more closely mimics the in vivo situation where there is 

fluctuation between doses. The PA-SME for S. pneumoniae, 

S. aureus, and E. faecalis were 4.8  10.3 hours, 1.5–9.6 hours, 

and 3.8  10.7 hours, respectively.75 Comparatively, in vivo 

PAEs were found to be 0–0.8 hours and 3.8–4.8 hours for 

S. pneumonia and S. aureus, respectively.76

Serial passage studies
Serial passage studies are often performed with inves-

tigational antimicrobials to evaluate the potential for 

resistance development. When compared to imipenem, 

ciprofloxacin, and linezolid, ceftobiprole displayed no 

resistance development using an initial inoculum of 

105 CFU/mL of S. aureus (3 MRSA and 1 MSSA) or against 

S. aureus 745 with an initial inoculum of 2 × 108 CFU/plate 

after six to eight passages.70 In a separate study, it was 

shown that after 50 passages resistance to ceftobiprole did 

not develop in 10 strains of S. aureus, including strains with 

methicillin and/or vancomycin resistance and coagulase 

negative strains with or without methicillin and/or vancomy-

cin resistance.77 The highest observed MIC occurred in the 

vancomycin-intermediate S. aureus (VISA) strain, 8 mg/L, 

and was four times the original MIC. Similarly, after 50 

passages, resistance to ceftobiprole was also not observed in 

Haemophilus influenzae, six beta-lactamase positive and two 

negative strains, or Moraxella catarrhalis, two beta-lactamase 

positive strains.78 The highest increase in MIC was four times 

the original MIC which occurred in one strain of beta-lacta-

mase positive H. influenzae, 0.06 mg/L to 0.25 mg/L. One 

group was able to demonstrate the occurrence of resistance 

due to mutations in the mecA gene by transforming a mecA 

negative strain with a plasmid that carries the mutated gene 

or by the induction of mutations in the mecA transformed 

strain through serial passages with ceftobiprole.79 However, 

the high inoculum used to induce the mutations after serial 

passage is not likely to occur in a single patient for a sus-

tained period of time. Surprisingly, in this study, resistance 

also developed in the mecA negative strain, suggesting a 

chromosomal mechanism of resistance.

Animal models
The efficacy of ceftobiprole has also been evaluated in several 

animal models, the most relevant for the indication of cSSSIs 

being the mouse abscess model and the murine skin infection 

model. The peritonitis model will be briefly discussed as peri-

tonitis is often related to, or caused by, surgical site infections, 

a subclass of cSSSIs. Also noteworthy is the thigh infection 

model which will be discussed further in the PK/PD section. 

Animal models which support possible other indications 

including septicemia,70 endocarditis,80 and pneumonia/

lung infections81,82 will not be discussed here. In the mouse 

abscess model, mice were inoculated with S. aureus I-6, a 

MRSA strain, or Mu50, a MRSA/VISA strain, under the 

skin of the groin with abscess developing within 3 days in 

control animals.70 Treatment was administered up to 3 hours 

after inoculation. Compared to vancomycin (10 mg/kg) 

and linezolid (20 mg/kg), ceftobiprole (10 mg/kg) treat-

ment resulted in a greater decrease in bacterial counts of 

MRSA I-6 from untreated controls, 3.42, 0.80, and 5.12 log 

decreases, respectively. Similarly, with VISA, ceftobiprole 

(10 mg/kg) demonstrated a larger decrease in log bacterial 

counts compared to vancomycin (40 mg/kg) and linezolid 

(20 mg/kg), .4.79, 0.13, and 0.64, respectively, displaying 

the efficacy of ceftobiprole compared to competitors currently 

used to treat serious MRSA cSSSIs.

The murine skin infection model compared the activity 

of ceftobiprole to cefazolin, vancomycin, and linezolid 

against an MSSA and an MRSA strain in immuno-

competent mice.83 The activity of ceftobiprole was also 

compared to cefepime and meropenem-cilastatin against 

two P. aeruginosa strains, an inducible AmpC beta-

lactamase strain (OC4351) and an overproducing AmpC 

beta-lactamase strain (OC4354), in immunocompromised 
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mice.83 The mice were inoculated with 6.7–7.0 log
10

 CFU/

mouse of S. aureus or 5.9 to 6.8 log
10

 CFU/mouse of P. 

aeruginosa. After inoculation to the right (MRSA) and left 

(MSSA) flank, animals were treated with 1.6–100 mg/kg/

day at 1, 3, 25, and 27 hours post infection with ceftobi-

prole medocaril, cefazolin, vancomycin, or linezolid. One, 

2, 25, and 27 hours after inoculation to the left (OC 4351) 

and right (OC 4354) flanks with P. aeruginosa, animals 

were treated with ceftobiprole medocaril, cefepime, or 

meropenem-cilastatin with 1.6–100 mg/kg/day. The reduc-

tion of CFU/g of infected skin with MSSA and MRSA 

was greatest with ceftobiprole compared to comparators 

linezolid and cefazolin across all doses tested. Compared 

to vancomycin, ceftobiprole treatment resulted in a greater 

reduction in CFU/g for MSSA and MRSA at all doses, 

except the 100 mg/kg/day dose at which the decrease in 

CFU of MRSA/g was equivalent (-1.4 log
10

 change from 

inoculum). Similarly, ceftobiprole had a greater relative 

decrease in lesion volume compared to competitors for 

MSSA and MRSA at all doses, except MSSA with vanco-

mycin at the 100 mg/kg/day dose, lesion volumes of 555, 

437, 567, and 1181 mm3 for ceftobiprole, vancomycin, 

linezolid, and untreated controls respectively. Against 

both P. aeruginosa strains, ceftobiprole was as effica-

cious as meropenem-cilastatin and better than cefepime 

when comparing change in log
10

 CFU/g at doses of 25 

and 100 mg/kg/day. The log
10

 change in CFU/g at a dose 

of 100 mg/kg/day was -1.4, 1.7, -1.1 for ceftobiprole, 

cefepime, and meropenem-cilastatin, respectively, against 

OC4354. In terms of lesion size, ceftobiprole displayed 

a greater decrease from untreated controls than cefepime 

but displayed similar efficacy to meropenem-cilastatin. It 

should be noted that AmpC levels did not affect ceftobi-

prole efficacy. This study displayed the potential of ceftobi-

prole to be used as an empiric agent as it displayed efficacy 

against two of the most common cSSSI pathogens.

The efficacy of ceftobiprole was also compared to 

ampicillin, in the mouse Enterococcal peritonitis model.84 

Infections were induced using an initial inoculum that 

was 10 × the inoculum that caused death in half the popu-

lation (LD
50

). The strains used included four E. faecalis 

strains; one beta-lactamase producing (BLA+), two VRE, 

and one laboratory strain OG1RF. It was found that 

ceftobiprole displayed similar activity to ampicillin with 

a 50% protective dose (PD
50

) for ceftobiprole of 7.7 mg/

kg, 5.2 mg/kg, and 4.2 mg/kg compared to 12.5 mg/kg, 

16.4 mg/kg, and 8 mg/kg for ampicillin, against the two 

VRE strains and the OG1RF strain, respectively. Notably, 

ceftobiprole displayed a much lower PD
50

 compared to 

ampicillin against the Bla+ strain, 2 mg/kg compared  

to .100 mg/kg.

Comparator studies
Two large scale phase III pivotal studies have been conducted 

in patients with complicated skin and skin structure infections 

for ceftobiprole. Ceftobiprole was compared to vancomycin 

in patients with cSSSIs caused by Gram-positive pathogens.64 

In this study, 500 mg ceftobiprole or 1000 mg vancomycin 

were administered as 60 minute i.v. infusions ever 12 hours 

for 7 to 14 days. It was found that ceftobiprole is noninferior 

to vancomycin with clinical cure rates of 93.3% and 93.5%, 

respectively. In a separate study, the efficacy of ceftobiprole 

was compared to vancomycin plus ceftazidime in patients with 

cSSSI. In this study, patients in the ceftobiprole arm received 

500 mg of ceftobiprole administered as a 120-minute i.v. infu-

sion every 8 hours plus a 60-minute i.v. infusion of placebo. 

Patients in the vancomycin plus ceftazidime arm received 

1000 mg vancomycin over 60 minutes every 12 hours plus 

1000 mg of ceftazidime over 120 minutes every 8 hours.63 

It was found that ceftobiprole is noninferior to vancomycin 

plus ceftazidime as the clinical cure rates were 90.5% and 

90.2%, respectively.

While the role of PVL as a virulence factor in MRSA 

infections is controversial, it is agreed that PVL is associ-

ated with community-acquired infections and, as previ-

ously mentioned, the increasing frequency of CA-MRSA 

infections is correlated to a subsequent increase in ED 

visits. Therefore, it is interesting to note that ceftobiprole 

had a higher clinical cure rate compared to vancomycin in 

MRSA PVL-positive infections, 93.1% (27/29) compared 

to 84.6% (22/26), although this finding was not statistically 

significant.64 Similarly, ceftobiprole had a higher clinical 

cure rate for PVL-positive isolates compared to vancomycin 

plus ceftazidime, 92.1% (35/38) compared to 84.2% 

(16/19).63

Ceftobiprole pharmacokinetics/
pharmacodynamics
Establishing pharmacokinetic/
pharmacodynamic targets
The PK/PD relationship has been established in the mouse 

thigh and lung infection models.82 The more relevant targets 

for cSSSI would be those established from the thigh infection 

model and, therefore, the results from these experiments will be 

the main focus. Dose fractionation studies in neutropenic mice, 
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with doses ranging from 0.01 mg/kg to 160 mg/kg administered 

every 3, 4, 6, 8, 12 and/or 24 hours 2 to 10 hours after infec-

tion, were used to determine the best correlated PK/PD index 

and the magnitude of that index resulting in bacterial stasis or 

a 2-log kill. These studies were performed using 19 bacterial 

strains including S. aureus (MSSA and MRSA), S. pneumo­

niae (PSSP, PRSP, and one ciprofloxacin-resistant strain), E. 

coli, K. pneumoniae, Enterobacter cloacae, and P. aeruginosa. 

From the dose-response curves of the thigh infection model, it 

was found that the T . MIC needed to produce a static effect 

and 2-log were 19.8% and 31.9%, respectively, for S. aureus, 

and 15.9% and 25.1%, respectively, for S. pneumoniae. As 

typical, a larger magnitude of the PK/PD target was needed 

to produce stasis and 2-log kill with Gram-negative species, 

36.5% and 54.3%, respectively. These identified targets are in 

good agreement with the targets currently known to produce 

efficacy for beta-lactams in both animal models and in the 

clinic.85–87 Additionally, a CART analysis showed that patients 

with a T . MIC of 25% had a higher probability of therapeutic 

success, further validating the identified efficacy targets.88

Dose selection/evaluation
The targets identified from dose fractionation studies are often 

used to predict efficacy using Monte Carlo simulations to find 

the target attainment rate (TAR). Monte Carlo simulations take 

variability of the PK, such as inter-patient variability, and PD, 

ie, the MIC distribution, into account when calculating the 

TAR. This technique has been used numerous times for the 

dose selection and dose evaluation for ceftobiprole. In addition 

to the targets set by dose fractionation experiments, empirical 

targets are also used as antibiotics in the same class often have 

approximately the same target. For example, a general PK/PD 

target for beta-lactams is approximately 40% fT
.MIC

. However, 

even among beta-lactam antibiotics the efficacy target varies 

between subgroups, ie, cephalosporins, penicillins, and carbap-

enems, and specific pathogens.85–87 Monte Carlo simulations 

were performed first using PK data from 12 healthy volunteers, 

where the TAR for the PK/PD targets of fT
.MIC

 30%–60% were 

calculated for numerous doses, 250–1000 mg administered 

every 12 or 8 hours.59 From these simulations it was concluded 

that a 750 mg dose given every 12 hours had a high probability 

of efficacy for organisms with MICs up to 4 mg/L. Monte 

Carlo simulations were later performed using a larger and more 

diverse patient population.89 In these simulations, the PK was 

characterized using data from 150 subjects from both phase I 

and phase II trials. Doses of 500 mg every 8 hours delivered as 

0.5-, 1-, or 2-hour i.v. infusions and 500 mg every 12 delivered 

as a 1-hour i.v. infusion were simulated to determine the TAR 

for targets of 30%–60% f T
.MIC

. Additionally, the TAR was 

calculated in patients with renal impairment, Cl
cr
 = 30 mL/min 

dosed with 250 mg every 8 hours as a 2-hour i.v. infusion, and 

Cl
cr
 = 50 mL/min dosed with 500 mg every 12 hours as a 2-hour 

i.v. infusion. Based on these simulations, 500 mg administered 

as a 1-hour i.v. infusion every 12 hours was recommended for 

the indication of cSSSIs. Also, a dosing regimen of 500 mg as 

a 2-hour i.v. infusion every 8 hours was deemed an appropri-

ate dose in patients with mild to moderate renal impairment, 

ie, a Cl
cr
∼50 mL/min. Finally, simulations were done using a 

model that was developed using data from phase I, II, and III 

trials and the individual patient demographics from patients in 

the phase III trials using a dosing regimen of 500 mg every 8 

hours as a 2-hour i.v. infusion.61 It was found that the overall 

TAR for targets of fT
.MIC

 30% and 50% were 94.6% and 93.7%, 

respectively, based on the MIC distribution and a creatinine 

clearance of $80 mL/min.88 The dose of 500 mg delivered as 

a 2-hour infusion was also validated in the microdialysis study 

where it was found that concentrations in the extracellular fluid 

of s.c. adipose tissue and skeletal muscle met the PK/PD target 

of fT
.MIC

 40% for organisms with a MIC # 2 mg/L.54

Discussion
In North America, 44.6% of SSTIs are caused by S. aureus, of 

which 35.9% are methicillin-resistant.17 The second most com-

monly identified pathogen, P. aeruginosa, accounts for 11.1% 

of SSTIs, while the third and fourth most commonly isolated 

pathogens were Enterococcus species (9.3%) and E. coli (7.2%), 

respectively. Additionally, cSSSIs can be polymicrobial and include 

both Gram-positive and Gram-negative pathogens, eg, diabetic foot 

infections. Therefore, due to the wide-spectrum of causative patho-

gens and various resistance mechanisms, an obvious challenge 

arises in identifying a first-line single agent or even combination 

therapy for empiric treatment prior to microbial identification. 

Based on its activity profile, ceftobiprole has the potential to serve 

as a single agent for the empiric treatment of cSSSIs. However, 

pathogen identification and characterization is still needed as cefto-

biprole is susceptible to some beta-lactamases. For example, while 

activity is observed against E. coli, MIC
90

 0.12 mg/L, in species 

producing ESBLs (∼6%),17,67 the MIC
90

 is reported as .8 mg/L.67 

Additionally, ceftobiprole does not display good activity against 

E. faecium.70 Another minor limitation of ceftobiprole, is that the 

mechanism of action does not inhibit protein synthesis as some 

competitors. Down regulating PVL, a possible virulence factor, 

could be advantageous in CA-MRSA infections.27

In conclusion, ceftobiprole has several characteristics 

that make it a promising single agent for use empiri-

cally to treat cSSSIs including its spectrum of activity, 
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distributional properties, and excellent safety and 

tolerability profile.
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